首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first Korean geostationary satellite, the Communication, Ocean, Meteorological Satellite (COMS) carries the Meteorological Imager (MI) that measures solar radiance at 0.675 μm and infrared (IR) brightness temperatures at four spectral bands centered at 3.8, 6.7, 10.8, and 12.0 μm. This study reports the calibration status of the COMS MI solar and four IR channels, based mainly on a comparison with Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. The results obtained from four months of COMS MI solar channel measurements demonstrate that the solar channel has a dark bias of about 9–10%. On the other hand, the four IR channels appear to be well-calibrated as evidenced by a high correlation and near-unity slope between COMS and MODIS data. Nevertheless, existing biases of tenths of a kelvin are still considered to be substantial. Overall, the interpretation of COMS-derived meteorological products should take into account some uncertainty caused by possible calibration errors.  相似文献   

2.
The radiation budget at the top of the atmosphere plays a critical role in climate research. Compared to the broadband flux, the spectrally resolved outgoing longwave radiation or flux(OLR), with rich atmospheric information in different bands,has obvious advantages in the evaluation of GCMs. Unlike methods that need auxiliary measurements and information, here we take atmospheric infrared sounder(AIRS) observations as an example to build a self-consistent algorithm by an angular distribution model(ADM), based solely on radiance observations, to estimate clear-sky spectrally resolved fluxes over tropical oceans. As the key step for such an ADM, scene type estimations are obtained from radiance and brightness temperature in selected AIRS channels. Then, broadband OLR as well as synthetic spectral fluxes are derived by the spectral ADM and validated using both synthetic spectra and CERES(Clouds and the Earth's Radiant Energy System) observations. In most situations, the mean OLR differences between the spectral ADM products and the CERES observations are within ±2 W m~(-2), which is less than 1% of the typical mean clear-sky OLR over tropical oceans. The whole algorithm described in this study can be easily extended to other similar hyperspectral radiance measurements.  相似文献   

3.
Aerosol optical properties and direct radiative effects on surface irradiance were examined using seven years(2006–2012)of Cimel sunphotometer data collected at Panyu—the main atmospheric composition monitoring station in the Pearl River Delta(PRD) region of China. During the dry season(October to February), mean values of the aerosol optical depth(AOD)at 550 nm, the ?ngstr?m exponent, and the single scattering albedo at 440 nm(SSA) were 0.54, 1.33 and 0.87, respectively.About 90% of aerosols were dominated by fine-mode strongly absorbing particles. The size distribution was bimodal, with fine-mode particles dominating. The fine mode showed a peak at a radius of 0.12 μm in February and October(~0.10μm~3μm~(-2)). The mean diurnal shortwave direct radiative forcing at the surface, inside the atmosphere(FATM), and at the top of the atmosphere, was-33.4 ± 7.0, 26.1 ± 5.6 and-7.3 ± 2.7 W m~(-2), respectively. The corresponding mean values of aerosol direct shortwave radiative forcing per AOD were-60.0 ± 7.8, 47.3 ± 8.3 and-12.8 ± 3.1 W m~(-2), respectively. Moreover,during the study period, FATMshowed a significant decreasing trend(p 0.01) and SSA increased from 0.87 in 2006 to 0.91 in 2012, suggesting a decreasing trend of absorbing particles being released into the atmosphere. Optical properties and radiative impacts of the absorbing particles can be used to improve the accuracy of inversion algorithms for satellite-based aerosol retrievals in the PRD region and to better constrain the climate effect of aerosols in climate models.  相似文献   

4.
基于FY-3/IRAS利用非线性模式反演OLR   总被引:1,自引:0,他引:1       下载免费PDF全文
FY-3系列卫星星载IRAS仪器设有26个通道,其中20个通道用于探测地球大气在红外波段的热辐射,通道辐射率代表了地球大气系统在大气顶的向外辐射光谱信息,与总波段的射出长波辐射(OLR)通量相关性高。该文基于逐线辐射传输模式计算软件LBLRTM对全球2521条大气廓线的大气顶射出辐射率模拟数据,计算了每条廓线的OLR和FY-3B/IRAS,FY-3C/IRAS通道辐射率,用统计回归方法建立了利用IRAS的多通道辐射率计算OLR的非线性理论回归模式;应用模式和FY-3B/IRAS,FY-3C/IRAS的L1级数据,处理得到2016年4月1-30日的全球日平均、月平均OLR格点产品。与Aqua/CERES,Terra/CERES仪器宽波段观测OLR产品对比表明:对于水平分辨率为1°×1°的全球月平均OLR格点产品,均方根误差为2.22 W·m-2,相关系数为0.9982 W·m-2,平均偏差为-0.2 W·m-2,表明FY-3/IRAS仪器定标及反演模式均达到较高水平。文中还回顾了历史上不同气象卫星的多种OLR反演算法模式,并对不同模式精度进行了比较。  相似文献   

5.
用FY-2C静止气象卫星资料计算射出长波辐射通量密度   总被引:3,自引:0,他引:3  
吴晓 《气象科技》2007,35(4):474-479
介绍用FY-2C静止气象卫星资料估算射出长波辐射(OLR)的方法,包括FY-2C OLR反演模式的建立、由FY-2C窗区通道1、窗区通道2、水汽通道遥测数据计算OLR的详细步骤;给出了FY-2C OLR产品的精度:与相近时刻的NOAA卫星OLR产品相对比,两颗星OLR产品的等值线图基本完全一致,图上绝大部分偏差0~10 W/m,最大偏差20 W/m;并给出了FY-2C OLR产品的实例及其初步应用。  相似文献   

6.
本文应用WRF-Chem(Weather Research and Forecasting—Chemistry)模式研究中国东部地区气溶胶及其部分组分(硫酸盐、硝酸盐和黑碳气溶胶)在天气尺度下的辐射强迫和对地面气温的影响。5个无明显降水时间段(2006年8月23~25日、2008年11月10~12日、2008年12月16~18日、2009年1月15~17日和2009年4月27~29日)的模拟显示,气溶胶浓度呈现显著的白天低,夜间高的日变化特征,且北方区域(29.8°~42.6°N,110.2°~120.3°E)平均PM2.5近地面浓度(40~80 μg m-3)高于南方区域(22.3°~29.9°N,109.7°~120.2°E,30~47 μg m-3)。气溶胶对地面2 m温度(地面气温)有明显的降温效果,在早上08:00(北京时,下同)和下午17:00左右最为显著,最高可降低约0.2~1 K,同时气溶胶的参与改善了模式对地面气温的模拟。本文还通过对2006年8月23~25日一次个例的模拟,定量分析了气溶胶及其部分组分(硫酸盐、硝酸盐和黑碳气溶胶)的总天气效应(直接效应+间接效应)、直接效应和间接效应分别对到达地面的短波辐射和地面气温的影响。北方区域平均气溶胶直接效应所造成的短波辐射强迫要高于南方区域,分别为-11.3 W m-2和-5.8 W m-2,导致地面气温分别降低了0.074 K和0.039 K。南方区域平均气溶胶间接效应所产的短波辐射强迫高于北方区域,分别为-14.4 W m-2和-12.4 W m-2,引起的地面气温的改变分别为-0.094 K和-0.035 K。对于气溶胶组分,硫酸盐气溶胶的直接效应和间接效应的作用相当,其总效应在北方和南方区域平均短波辐射强迫分别为-7.0 W m-2和-10.5 W m-2,对地面气温的影响为-0.062 K和-0.074 K,而硝酸盐气溶胶的作用略小。黑碳气溶胶使得北方和南方区域平均到达地表的太阳短波辐射分别减少了6.5 W m-2和5.8 W m-2,而地表气温则分别增加了0.053 K和0.017 K,相比于间接效应,黑碳气溶胶的直接效应的影响更加显著。  相似文献   

7.
This paper presents a nighttime sea fog detection algorithm incorporating unsupervised learning technique. The algorithm is based on data sets that combine brightness temperatures from the 3.7 μm and 10.8 μm channels of the meteorological imager (MI) onboard the Communication, Ocean and Meteorological Satellite (COMS), with sea surface temperature from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA). Previous algorithms generally employed threshold values including the brightness temperature difference between the near infrared and infrared. The threshold values were previously determined from climatological analysis or model simulation. Although this method using predetermined thresholds is very simple and effective in detecting low cloud, it has difficulty in distinguishing fog from stratus because they share similar characteristics of particle size and altitude. In order to improve this, the unsupervised learning approach, which allows a more effective interpretation from the insufficient information, has been utilized. The unsupervised learning method employed in this paper is the expectation–maximization (EM) algorithm that is widely used in incomplete data problems. It identifies distinguishing features of the data by organizing and optimizing the data. This allows for the application of optimal threshold values for fog detection by considering the characteristics of a specific domain. The algorithm has been evaluated using the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) vertical profile products, which showed promising results within a local domain with probability of detection (POD) of 0.753 and critical success index (CSI) of 0.477, respectively.  相似文献   

8.
The mechanisms behind the seasonal deepening of the mixed layer(ML) in the subtropical Southeast Pacific were investigated using the monthly Argo data from 2004 to 2012. The region with a deep ML(more than 175 m) was found in the region of(22?–30?S, 105?–90?W), reaching its maximum depth(~200 m) near(27?–28?S, 100?W) in September. The relative importance of horizontal density advection in determining the maximum ML location is discussed qualitatively. Downward Ekman pumping is key to determining the eastern boundary of the deep ML region. In addition, zonal density advection by the subtropical countercurrent(STCC) in the subtropical Southwest Pacific determines its western boundary, by carrying lighter water to strengthen the stratification and form a "shallow tongue" of ML depth to block the westward extension of the deep ML in the STCC region. The temperature advection by the STCC is the main source for large heat loss from the subtropical Southwest Pacific. Finally, the combined effect of net surface heat flux and meridional density advection by the subtropical gyre determines the northern and southern boundaries of the deep ML region: the ocean heat loss at the surface gradually increases from 22?S to 35?S, while the meridional density advection by the subtropical gyre strengthens the stratification south of the maximum ML depth and weakens the stratification to the north. The freshwater flux contribution to deepening the ML during austral winter is limited. The results are useful for understanding the role of ocean dynamics in the ML formation in the subtropical Southeast Pacific.  相似文献   

9.
Time series of MODIS land surface temperature(T_s) and normalized difference vegetation index(NDVI) products,combined with digital elevation model(DEM) and meteorological data from 2001 to 2012,were used to map the spatial distribution of monthly mean air temperature over the Northern Tibetan Plateau(NTP). A time series analysis and a regression analysis of monthly mean land surface temperature(T_s) and air temperature(T_a) were conducted using ordinary linear regression(OLR) and geographical weighted regression(GWR). The analyses showed that GWR,which considers MODIS T_s,NDVI and elevation as independent variables,yielded much better results [R_(Adj)~2 0.79; root-mean-square error(RMSE) =0.51℃–1.12℃] associated with estimating T_a compared to those from OLR(R_(Adj)~2= 0.40-0.78; RMSE = 1.60℃–4.38℃).In addition,some characteristics of the spatial distribution of monthly T_a and the difference between the surface and air temperature(T_d) are as follows. According to the analysis of the 0℃ and 10℃ isothermals,T_a values over the NTP at elevations of 4000–5000 m were greater than 10℃ in the summer(from May to October),and T_a values at an elevation of3200 m dropped below 0℃ in the winter(from November to April). T_a exhibited an increasing trend from northwest to southeast. Except in the southeastern area of the NTP,T d values in other areas were all larger than 0℃ in the winter.  相似文献   

10.
This study analyzes radiative effect of the higher clouds over the fog layer and presents the improvement of fog detection over the Korean peninsula, utilizing satellite data of the Multi-functional Transport SATellite (MTSAT)-1R and the MODerate resolution Imaging Spectroradiometer (MODIS) and the Look-Up Table (LUT) based on Radiative Transfer Model (RTM) simulations. Fog detection utilizing the satellite data from visible (0.68 µm) and infrared (3.75 µm and 10.8 µm) channels has been evaluated in comparison with ground-based observations over 52 meteorological stations in the Korean Peninsula from March 2006 to February 2007. The threshold values for fog sensing have been derived from the difference (i.e., T3.7–11) in brightness temperature between 3.75 µm (T3.7) and 10.8 µm (T11) during day and night, and also from the reflectivity at 0.68 µm (R0.68) in the daytime. In the twilight, however, the difference between the temperature values at 10.8 µm and their maximum within previous 15 days (i.e., T11max-11) are used instead, because the 3.75 µm channel is inaccurate for the fog detection at dawn/dusk. The sensitivity of the T3.7–11 values with respect to the clouds is investigated based on the cloud variables such as its height, optical thickness, and amount. The values of T3.7–11 are the most sensitive to cloud height, followed by cloud optical thickness and effective radius, while R0.68 is insensitive to cloud height. The sensitivity is examined with various conditions of cloud phases and day/night. Sixteen cases among eighteen fog occurrences, which have been unable to be sensed by using only the conventional threshold values, are successfully detected with the additional LUT corrections, indicating a significant improvement. The method of fog detection in this study can be useful to the Communication, Ocean, and Meteorological Satellite (COMS) Meteorological Data Processing System (CMDPS) by reducing the cloud effect on fog sensing.  相似文献   

11.
准确估算青藏高原的云辐射效应,对分析该地区的近地面感热通量十分重要。本文首先利用加权平均方法,分别将中分辨率成像光谱仪(MODIS)、测云雷达(CPR)和云与地球辐射能量系统(CERES)的像元数据进行融合。利用这些数据,分析了青藏高原上多云个例(2017年5月5日)与少云个例(2017年8月2日)情况下的可见光通道和热红外通道的信号、云参数和大气长短波辐射强迫等的差异。研究表明,少云时高原地区的大气顶大气长波辐射强迫为108.3 W·m-2,多云时为104.5 W·m-2。同时少云个例中塔里木盆地的大气顶大气长波辐射强迫为200.7 W·m-2,表明该辐射强迫受到地表热力状况影响较大。深厚与浅薄云区的云顶高度相差不大,但多云个例中深厚云区的短波辐射强迫是浅薄云区的2倍多,这一比例远大于长波。这表明短波辐射强迫对云厚度较敏感。最后,本文分析了CERES观测的大气顶长短波辐射分别与MODIS热红外和可见光通道之间的关系,结果表明它们存在很好的相关性(相关系数超过0.95),MODIS的可见光通道可以用于估算大气顶的短波辐射量,而MODIS的热红外通道只可用来估算云区的大气顶长波辐射量。  相似文献   

12.
Direct climate responses to dust shortwave and longwave radiative forcing (RF) are studied using the NCAR Community Atmosphere Model Version 3 (CAM3). The simulated RF at the top of the atmosphere (TOA) is-0.45 W m-2 in the solar spectrum and +0.09 W m-2 in the thermal spectrum on a global average. The magnitude of surface RF is larger than the TOA forcing, with global mean shortwave forcing of-1.76 W m-2 and longwave forcing of +0.31 W m-2 . As a result, dust aerosol causes the absorption of 1.1 W m-2 in t...  相似文献   

13.
The complexity of inhomogeneous surface–atmosphere radiation transfer is one of the foremost problems in the field of atmospheric physics and atmospheric radiation. To date, the influence of surface properties on shortwave radiation has not been well studied. The daily downward surface shortwave radiation of the latest FLASHFlux/CERES(Fast Longwave And Shortwave Fluxes Time Interpolated and Spatially Averaged/Clouds and the Earth's Radiant Energy System) satellite data was evaluated against in situ data. The comparison indicated that the differences between the two data sets are unstable and large over rugged terrain compared with relatively flat terrain, and the mean absolute error of the satellite products reaches 31.4 W m-2(12.3%) over rugged terrain. Based on the SSF(single satellite footprint)/CERES product, the influence of surface properties on the distribution of downward surface shortwave radiation(DSSR) was analyzed. The influence of surface properties on DSSR over the Tibetan Plateau is about twice as large as that in two other regions located at the same latitude(eastern China–western Pacific and subtropical North Pacific). A simulation was carried out with the help of the I3RC(International Intercomparision of Three-Dimensional Radiation Code) Monte Carlo 3D radiative transfer community model. The results showed that DSSR increases as surface albedo increases. Moreover, the impact of surface albedo on DSSR is larger if the spatial distribution of clouds is more non-uniform. It is hoped that these results will contribute to the development of 3D radiative transfer models and the improvement of satellite inversion algorithms.  相似文献   

14.
The establishment of the upper-level South Asian high(SAH) over the Indo-China Peninsula(ICP) during late boreal spring and its possible causes are investigated using long-term NCEP–NCAR and ERA-40 reanalysis and satellite-observed OLR data. Results show that, from early March to mid-April, deep convection stays south of ~6?N over the northern Sumatran islands. As the maximum solar radiation moves over the latitudes of the ICP(10?–20?N) in late April, the air over the ICP becomes unstable. It ascends over the ICP and descends over the adjacent waters to the east and west. This triggers deep convection over the ICP that induces large latent heating and strong updrafts and upper-level divergence, leading to the formation of an upper-level anticyclonic circulation and the SAH over the ICP. During early to mid-May, deep convection over the ICP intensifies and extends northwards to the adjacent waters. Strong latent heating from deep convection enhances and maintains the strong updrafts and upper-level divergence, and the SAH is fully established by mid-May. Thus, the seasonal maximum solar heating and the land–sea contrast around the ICP provide the basic conditions for deep convection to occur preferentially over the ICP, which leads to the formation of the SAH over the ICP from late April to mid-May. Simulations using Reg CM4 also indicate that the diabatic heating over the ICP is conducive to the generation and development of upperlevel anticyclonic circulation, which leads to an earlier establishment of the SAH.  相似文献   

15.
Tropical upper tropospheric humidity, clouds, and ice water content, as well as outgoing longwave radiation (OLR), are evaluated in the climate model EC Earth with the aid of satellite retrievals. The Atmospheric Infrared Sounder and Microwave Limb Sounder together provide good coverage of relative humidity. EC Earth’s relative humidity is in fair agreement with these observations. CloudSat and CALIPSO data are combined to provide cloud fractions estimates throughout the altitude region considered (500–100?hPa). EC Earth is found to overestimate the degree of cloud cover above 200?hPa and underestimate it below. Precipitating and non-precipitating EC Earth ice definitions are combined to form a complete ice water content. EC Earth’s ice water content is below the uncertainty range of CloudSat above 250?hPa, but can be twice as high as CloudSat’s estimate in the melting layer. CERES data show that the model underestimates the impact of clouds on OLR, on average with about 9?W?m?2. Regionally, EC Earth’s outgoing longwave radiation can be ~20?W?m?2 higher than the observation. A comparison to ERA-Interim provides further perspectives on the model’s performance. Limitations of the satellite observations are emphasised and their uncertainties are, throughout, considered in the analysis. Evaluating multiple model variables in parallel is a more ambitious approach than is customary.  相似文献   

16.
正Nan GE1, Lei ZHONG*1,2,3, Yaoming MA4,5,6, Yunfei FU1, Mijun ZOU1,Meilin CHENG1, Xian WANG1, and Ziyu HUANG1  相似文献   

17.
Abstract

Global precipitation estimates using satellite data are derived using difference fields of outgoing long‐wave radiation (OLR). The difference fields consist of clear OLR minus cloudy OLR, which is a measure of long‐wave cloud radiative forcing at the top of the earth‐atmosphere system; and clear daytime OLR minus clear night‐time OLR, which is a measure of the diurnal variation of surface heating. All geophysical parameters used to compute OLR are derived from an analysis of the HIRS2/MSU sounding data. The derived global precipitation estimates show good agreement with collocated raingauge data over land. The correlation coefficient between the precipitation estimates derived using difference fields of OLR and raingauge data over land is about 0.65 for the FGGEyear. The correlation coefficient between precipitation estimates derived using difference fields of OLR and the GOES Precipitation Index (GPI) fraction is about 0.914 from 30°S to 30°N for July 1983, and between the precipitation estimates derived using difference fields of OLR and the difference field of atmospheric reflectance is about 0.86.

Using one set of coefficients, global precipitation fields are derived for each 10‐day period and each month of the FGGE year (from December 1978 to November 1979). These fields contain rich information on seasonal variations.  相似文献   

18.
A ‘model-to-radiance’ comparison of simulated brightness temperatures from the Hadley Centre Global Environmental Model 2 with measurements from the High Resolution Infrared Radiation Sounder/4 (HIRS/4) instrument onboard the MetOp-A satellite is presented. For the all-sky, the model overestimates brightness temperatures in the atmospheric window region with the greatest biases over areas associated with deep convective cloud. In contrast to many global climate models, much smaller clear-sky biases are found indicating that model clouds are the dominating source of error. Simulated values in upper atmospheric CO2 channels approximate observations better as a result of compensating cold biases at the poles and warm biases at lower latitudes, due to a poor representation of the Brewer Dobson circulation in the 38 level ‘low-top’ configuration of the model. Simulated all and clear-sky outgoing longwave radiation (OLR) evaluated against the Clouds and the Earth’s Radiant Energy System (CERES) and HIRS OLR products reveal good agreement, in part due to cancellation of positive and negative biases. Through physical arguments relating to the spectral energy balance within a cloud, it is suggested that broadband agreement could be the result of a balance between positive window biases and unseen negative biases originating from the water vapour rotational band in the far infrared (not sampled by HIRS).  相似文献   

19.
20.
Using 5 yr (December 2000–November 2005) of satellite data from the clouds and the earths radiant energy system (CERES) and moderate resolution imaging spectroradiometer (MODIS), we examine the instantaneous short-wave radiative efficiency ( Eτ ) of aerosols during the morning Terra satellite overpass time over the global oceans (60°N–60°S). We calculate Eτ using two commonly used methods. The first method uses the MODIS aerosol optical thickness (AOT) at 0.55 μm with radiative transfer calculations, whereas the second method utilizes the same AOT values along with a new generation of aerosol angular distribution models to convert the CERES-measured broad-band radiances to fluxes. Over the 5 yr, the global mean instantaneous Eτ between the methods is remarkably consistent and within 5 W m−2τ−1 with a mean value of –70 W m−2τ−1. The largest differences between the methods occur in high-latitude regions, primarily in the Southern Hemisphere, where AOT is low. In dust dominated regions, there is an excellent agreement between the methods with differences of <3 W m−2τ−1. These differences are largely due to assumptions in aerosol models and definition of clear sky backgrounds. Independent assessments of aerosol radiative effects from different satellite sensors and methods are extremely valuable and should be used to verify numerical modelling simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号