首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It is important to include the viscous effect in seismic numerical modelling and seismic migration due to the ubiquitous viscosity in an actual subsurface medium. Prestack reverse‐time migration (RTM) is currently one of the most accurate methods for seismic imaging. One of the key steps of RTM is wavefield forward and backward extrapolation and how to solve the wave equation fast and accurately is the essence of this process. In this paper, we apply the time‐space domain dispersion‐relation‐based finite‐difference (FD) method for visco‐acoustic wave numerical modelling. Dispersion analysis and numerical modelling results demonstrate that the time‐space domain FD method has great accuracy and can effectively suppress numerical dispersion. Also, we use the time‐space domain FD method to solve the visco‐acoustic wave equation in wavefield extrapolation of RTM and apply the source‐normalized cross‐correlation imaging condition in migration. Improved imaging has been obtained in both synthetic and real data tests. The migration result of the visco‐acoustic wave RTM is clearer and more accurate than that of acoustic wave RTM. In addition, in the process of wavefield forward and backward extrapolation, we adopt adaptive variable‐length spatial operators to compute spatial derivatives to significantly decrease computing costs without reducing the accuracy of the numerical solution.  相似文献   

2.
The response of low‐ductility reinforced concrete (RC) frames, designed typically for a non‐seismic region, subjected to two frequencies of base excitations is studied. Five half‐scaled, two‐bay, two‐storey, RC frames, each approximately 5 m wide by 3.3 m high, were subjected to both horizontal and/or vertical base excitations with a frequency of 40 Hz as well as a lower frequency of about 4 Hz (close to the fundamental frequency) using a shake table. The imposed acceleration amplitude ranged from 0.2 to 1.2g. The test results showed that the response characteristics of the structures differed under high‐ and low‐frequency excitations. The frames were able to sustain high‐frequency excitations without damage but were inadequate for low‐frequency excitations, even though the frames exhibited some ductility. Linear‐elastic time‐history analysis can predict reasonably well the structural response under high‐frequency excitations. As the frames were not designed for seismic loads, the reinforcement detailing may not have been adequate, based on the crack pattern observed. The effect of vertical excitation can cause significant additional forces in the columns and moment reversals in the beams. The ‘strong‐column, weak‐beam’ approach for lateral load RC frame design is supported by experimental observations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
A simple non‐linear control law is proposed for reducing structural responses against seismic excitations. This law defines control force dynamics by one differential equation involving a non‐linear term that restrains the control force amplitude. If non‐linearity is neglected, the control force becomes the force in a Maxwell element, so it is called the non‐linear‐Maxwell‐element‐type (NMW) control force. The NMW control force vs. deformation relation plots hysteretic curves. The basic performance of an SDOF model with the NMW control force is examined for various conditions by numerical analyses. Furthermore, the control law is extended to fit an MDOF structural model, and an application example is shown. The computational results show that the NMW control force efficiently reduces structural responses. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
Lake ice supports a range of socio‐economic and cultural activities including transportation and winter recreational actives. The influence of weather patterns on ice‐cover dynamics of temperate lakes requires further understanding for determining how changes in ice composition will impact ice safety and the range of ecosystem services provided by seasonal ice cover. An investigation of lake ice formation and decay for three lakes in Central Ontario, Canada, took place over the course of two winters, 2015–2016 and 2016–2017, through the use of outdoor digital cameras, a Shallow Water Ice Profiler (upward‐looking sonar), and weekly field measurements. Temperature fluctuations across 0°C promoted substantial early season white ice growth, with lesser amounts of black ice forming later in the season. Ice thickening processes observed were mainly through meltwater, or midwinter rain, refreezing on the ice surface. Snow redistribution was limited, with frequent melt events limiting the duration of fresh snow on the ice, leading to a fairly uniform distribution of white ice across the lakes in 2015–2016 (standard deviations week to week ranging from 3 to 5 cm), but with slightly more variability in 2016–2017 when more snow accumulated over the season (5 to 11 cm). White ice dominated the end‐of‐season ice composition for both seasons representing more than 70% of the total ice thickness, which is a stark contrast to Arctic lake ice that is composed mainly of black ice. This research has provided the first detailed lake ice processes and conditions from medium‐sized north‐temperate lakes and provided important information on temperate region lake ice characteristics that will enhance the understanding of the response of temperate lake ice to climate and provide insight on potential changes to more northern ice regimes under continued climate warming.  相似文献   

5.
Fertilizers and liming agents are generally used to achieve optimal economic yields. However, several negative effects of long‐term annual fertilization of nitrogen (N) in particular have been observed, such as reduced cation exchange capacity and decreased base saturation, which may stimulate accelerated leaching loss of other nutrients. Equilibrium‐tension lysimeters installed at a depth of 1.4 m were used to evaluate leaching of soil‐solution ionic constituents from a tallgrass prairie restoration and optimally and deficiently N‐fertilized, no‐tillage (NT) and chisel‐plowed (CP) maize (Zea mays L.) agroecosystems on Plano silt loam soil (fine‐silty, mixed, superactive, mesic Typic Argiudoll). This study was conducted in south‐central Wisconsin, USA during a 1‐year period of above‐normal precipitation between January 2000 and January 2001. The loss of soluble constituents added to agroecosystems to maintain adequate soil fertility and pH, such as N, phosphorus, potassium, calcium, and magnesium, was generally numerically smaller from the natural prairie 25 years after conversion from cultivated agriculture than from optimally and deficiently N‐fertilized, NT and CP maize agroecosystems, though the differences were not significant. Tillage and fertilizer N‐rate generally did not significantly affect drainage, ionic concentrations, or their leaching losses in the maize agroecosystems, though all parameters evaluated tended to be numerically smaller in the deficiently than optimally N‐fertilized maize agroecosystems. Nitrate‐N leaching losses were generally significantly positively correlated with leaching losses of K, Ca, Mg, and Na in the maize agroecosystems, but not for the prairie, indicating that nitrate‐N leaching plays a significant role in the concomitant loss of cations to maintain soil‐solution charge balance in N‐fertilized maize agroecosystems in a temperate environment.  相似文献   

6.
Major earthquakes (i.e., mainshocks) typically trigger a sequence of lower magnitude events clustered both in time and space. Recent advances of seismic hazard analysis stochastically model aftershock occurrence (given the main event) as a nonhomogeneous Poisson process with rate that decays in time as a negative power law. Risk management in the post‐event emergency phase has to deal with this short‐term seismicity. In fact, because the structural systems of interest might have suffered some damage in the mainshock, possibly worsened by damaging aftershocks, the failure risk may be large until the intensity of the sequence reduces or the structure is repaired. At the state‐of‐the‐art, the quantitative assessment of aftershock risk is aimed at building tagging, that is, to regulate occupancy. The study, on the basis of age‐dependent stochastic processes, derived closed‐form approximations for the aftershock reliability of simple nonevolutionary elastic‐perfectly‐plastic damage‐cumulating systems, conditional on different information about the structure. Results show that, in the case hypotheses apply, the developed models may represent a basis for handy tools enabling risk‐informed tagging by stakeholders and decision makers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Comprehensive flood risk assessment requires enhanced understanding of the coevolution of the river and its floodplain occupation. Paleoflood analysis to determine flood prone areas in combination with numerical simulations to estimate flood hazard and a historical analysis of urban development to consider the evolution of exposure to floods is a possible way forward. The well‐documented 2006 extreme flood in the Biobío River system and the impacted metropolitan area of Concepción, Chile (~1 million inhabitants) was used as a complex scenario to test the reliability of the proposed method. Results showed that flood prone areas determined with hydro‐geomorphological methods are consistent with those computed with numerical models based on detailed digital elevation models. The flood generation via superficial flow pathways resulting in inundated areas could explain that rivers tend to reactivate paleochannels in extreme conditions. Urban development progressively increased the city's exposure to floods from 0 ha in 1,751 to 1,363 ha in 2006 evidencing a lack of appropriate flood risk management. The 100‐year peak discharge resulted in a high flood risk for about 5% of the total urbanized area of Concepción, and higher discharges are likely to reactivate a paleochannel that crosses the current city centre. We conclude that the proposed paleo hydro‐geomorphology, hydraulic, and urban planning multimethod approach is a necessary tool to enhance understanding of flood risk in complex scenarios to improve flood risk management.  相似文献   

9.
The phase‐shift‐plus‐interpolation and extended‐split‐step‐Fourier methods are wavefield‐continuation algorithms for seismic migration imaging. These two methods can be applied to regions with complex geological structures. Based on their unified separable formulas, we show that these two methods have the same kinematic characteristics by using the theory of pseudodifferential operators. Numerical tests on a Marmousi model demonstrate this conclusion. Another important aspect of these two methods is the selection of reference velocities and we explore the influence of the selection of reference velocities by comparing the geometric progression method and the statistical method. We show that the geometric progression method is simple but does not take into account the velocity distribution while the statistical approach is relatively complex but reflects the velocity distribution.  相似文献   

10.
This paper explores the notion of detailing reinforced concrete structural walls to develop base and mid‐height plastic hinges to better control the seismic response of tall cantilever wall buildings to strong shaking. This concept, termed here dual‐plastic hinge (DPH) concept, is used to reduce the effects of higher modes of response in high‐rise buildings. Higher modes can significantly increase the flexural demands in tall cantilever wall buildings. Lumped‐mass Euler–Bernoulli cantilevers are used to model the case‐study buildings examined in this paper. Buildings with 10, 20 and 40 stories are designed according to three different approaches: ACI‐318, Eurocode 8 and the proposed DPH concept. The buildings are designed and subjected to three‐specific historical strong near‐fault ground motions. The investigation clearly shows the dual‐hinge design concept is effective at reducing the effects of the second mode of response. An advantage of the concept is that, when combined with capacity design, it can result in relaxation of special reinforcing detailing in large portions of the walls. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In order to enhance the durability of high‐performance buckling‐restrained braces (BRBs) used in bridge engineering, which are expected to withstand severe earthquakes three times without being replaced, aluminum alloys were employed to manufacture BRBs. A series of low‐cycle fatigue tests, including 18 specimens, were conducted to address the low‐cycle fatigue strength of the aluminum alloy BRB. Test results of all specimens show that stable hysteretic curves were obtained without overall buckling occurrence. Failure mode of the welded aluminum alloy BRB is obviously affected by the ribs' welding under the variable or constant strain amplitude condition. Therefore, another type of aluminum alloy BRB, the bolt‐assembled BRB with or without spot‐welded stoppers, is proposed and tested. Results showed that the low‐cycle fatigue performance of bolt‐assembled BRBs with stoppers improved four to five times compared with welded BRBs. However, the stoppers' spot welding has an adverse effect on the failure mode because the crack, which induced the specimen's failure, initiated from the spot weld toes of the stoppers. Both bolt‐assembled BRBs with and without stoppers can meet the cumulative inelastic deformation requirement proposed for high‐performance BRBs under the constant strain amplitude, not larger than 2%. In addition, under the variable strain amplitude condition, only the bolt‐assembled BRB without stoppers has an excellent cumulative inelastic deformation capacity and sustains two cycles of 2.5% strain amplitude. Finally, recommended Manson–Coffin equations and preliminary cumulative damage formulae for welded and bolt‐assembled BRBs are given as the references of the strain‐based damage evaluation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Digital elevation models and topographic pro?les of a beach with intertidal bar and trough (ridge‐and‐runnel) morphology in Merlimont, northern France, were analysed in order to assess patterns of cross‐shore and longshore intertidal bar mobility. The beach exhibited a pronounced dual bar–trough system that showed cross‐shore stationarity. The bars and troughs were, however, characterized by signi?cant longshore advection of sand under the in?uence of suspension by waves and transport by strong tide‐ and wind‐driven longshore currents. Pro?le changes were due in part to the longshore migration of medium‐sized bedforms. The potential for cross‐shore bar migration appears to be mitigated by the large size of the two bars relative to incident wave energy, which is modulated by high vertical tidal excursion rates on this beach due to the large tidal range (mean spring tidal range = 8·3 m). Cross‐shore bar migration is also probably hindered by the well‐entrenched troughs which are maintained by channelled high‐energy intertidal ?ows generated by swash bores and by tidal discharge and drainage. The longshore migration of intertidal bars affecting Merlimont beach is embedded in a regional coastal sand transport pathway involving tidal and wind‐forced northward residual ?ows affecting the rectilinear northern French coast in the eastern English Channel. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The loess landform in the Loess Plateau of China is with typical dual structure, namely, the upper smooth positive terrain and the lower cliffy negative terrain (P–N terrain for short). Obvious differences in their morphological feature, geomorphological mechanism, and hydrological process could be found in the both areas. Based on the differences, a flow‐routing algorithm that separately addresses the dual‐structure terrain would be necessary to encompass this spatial variation in their hydrological behaviour. This paper proposes a mixed flow‐routing algorithm to address aforementioned problems. First, the loess landform surface is divided into P–N terrains based on digital elevation models. Then, specific catchment area is calculated with the new algorithm to simulate the water flows in both positive and negative terrain areas. The mixed algorithm consists of the multiple flow‐routing algorithm (multiple‐flow direction) for positive areas and the D8 algorithm for negative areas, respectively. The approach is validated in two typical geomorphologic areas with low hills and dense gullies in the northern Shaanxi Loess Plateau. Four indices are used to examine the results, which show that the new algorithm is more suitable for loess terrain in simulating the spatial distribution of water accumulation, as well as in modeling the flow characteristics of the true surface by considering the morphological structures of the terrain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Ti‐SBA‐15 materials with Ti incorporated into the framework of SBA‐15 and controllable Ti contents were successfully prepared via a post‐treatment route in supercritical CO2‐ethanol solution, followed by calcination. The resultant Ti‐SBA‐15 materials were characterized by means of different techniques including X‐ray diffraction, X‐ray photoelectron spectroscopy, transmission electron microscopy, IR analysis, and N2 sorption analysis. It was demonstrated that the resultant materials retained a structure similar to that of the parent SBA‐15, and Ti was incorporated into the framework of SBA‐15. At high Ti content, i.e, Si/Ti = 5:1, a TiO2 phase formed and was coated onto the inner surface of SBA‐15 in addition to the incorporation of the Ti in the framework. The BET surface areas of the Ti‐SBA‐15 samples decreased with increasing Ti content. The presence of small amounts of H2O in the reaction medium may have resulted in some TiO2 nanoparticles being uniformly distributed in the pores of the SBA‐15 accompanying the incorporation of Ti in the SBA‐15 framework.  相似文献   

15.
This paper describes a seismic test program performed on 12 steel‐encased buckling‐restrained braces (BRBs). The use of rolled or built‐up buckling‐restraining mechanisms with welded or bolted attachments was examined. In addition, the effects of bolt pretension, core‐to‐encasing attachment details, aspect ratio of core segment and imperfections due to manufacturing on the brace response were investigated. All specimens were subjected to a stepwise incremental quasi‐static testing protocol with a maximum axial strain amplitude of 2%. All specimens except one showed satisfactory performance with stable hysteretic response and sustained cumulative inelastic deformations in excess of 200 times the yield deformation. Based on the experimental results, the compression strength adjustment factor, and the strain hardening adjustment factor for each excursion were quantified. Test results revealed that these two factors are significantly influenced by the parameters investigated in the experimental program. BRB details were also found to influence the buckling and the yielding patterns of the core segment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The phenomenon of acoustic waves inducing electric fields in porous media is called the seismoelectric effect. Earlier investigators proposed the usage of seismoelectric effect for well logging. Soil texture has a strong influence on the coupled wave fields during shallow surface explorations. In this article, we study the borehole pure shear‐horizontal wave and the coupling transverse‐electric field (acoustic–electrical coupling wave fields) in the partially saturated soil. Combined with related theories, we expand the formation parameters to partially saturated forms and discuss the influence of soil texture conditions on the seismoelectric wave fields. The results show that the elastic and electrical properties of porous media are sensitive to water saturation. The compositions of the acoustic and electric fields for different soil textures do not change, but the waveforms differ. We also use the secant integral method to simulate the interface‐converted electromagnetic waves. The results show that interface response strength is greatly influenced by soil texture. In addition, considering the sensitivity of the inducing electric field to fluid salinity, we also simulate the time‐domain waveforms of electric field for different pore fluid salinity levels. The results show that as the salinity increases, the electric field amplitude decreases monotonically. The above conclusions have certain significance for the application of borehole shear wave and its coupled electric fields for resource exploration, saturation assessment and groundwater pollution monitoring.  相似文献   

17.
In many large alluvial rivers, trees often recruit and survive along laterally accreted sediments on bars. This produces a gradient of tree ages and composition with distance from the active channel. However, in low‐order, gravel‐bed mountain streams, such as the stream investigated in this study, it is suggested that vertical accretion results in sediment deposition patterns on bars that are often highly patchy. Consequently, tree species and ages are also heterogeneously distributed, rather than having distinct linear or arcuate banding patterns with distance from the channel. In addition, overall age patterns of trees on these bars follow the distribution of floods, with numerous young trees and few older trees. Recruitment is fairly continuous on these bars and is not correlated with high water years, suggesting that even flows close to bankfull levels are capable of transporting fine sediment to the bars on which trees establish. This pattern of sediment deposition/erosion and the resulting tree recruitment and survival seem to be a result of valley confinement and the lack of lateral accretion in these smaller, mountainous channels. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Based on the approximation by polynomial‐fraction, a series of systematic lumped‐parameter models are developed in this paper for efficiently representing the dynamic behaviour of unbounded soil. Concise formulation is first employed to represent the dynamic flexibility function of foundation with a ratio of two polynomials. By defining an appropriate quadratic error function, the optimal coefficients of the polynomials can be directly solved from a system of linear equations. Through performing partial‐fraction expansion on this polynomial‐fraction and designing two basic discrete‐element models corresponding to the partial fractions, systematic lumped‐parameter models can be conveniently established by connecting these basic units in series. Since the systematic lumped‐parameter models are configured without introducing any mass, the foundation input motion can be directly applied to these models for their applications to the analysis of seismic excitation. The effectiveness of these new models is strictly validated by successfully simulating a semi‐infinite bar on an elastic foundation. Subsequently, these models are applied for representing the dynamic stiffness functions for different types of foundation. Comparison of the new models with the other existing lumped‐parameter models is also made to illustrate their advantages in requiring fewer parameters and featuring a more systematic expansion. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
The effect of the long‐period filter cut‐off, Tc, on elastic spectral displacements is investigated using a strong ground‐motion database from Europe and the Middle East. The relation between the filter and oscillator responses is considered to observe the influence of Tc for both analogue and digital records, and the variations with site classification, magnitude, filter order and viscous damping. Robust statistics are derived using the re‐processed European data to generalize the effects of the long‐period filter cut‐off on maximum oscillator deformation demands as a function of these seismological and structural features. Statistics with a 95% confidence interval are derived to suggest usable period ranges for spectral displacement computations as a function of Tc. The results indicate that the maximum period at which spectral displacements can be confidently calculated depend strongly on the site class, magnitude and filter order. The period range where reliable long‐period information can be extracted from digital accelerograms is twice that of analogue records. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
A typhoon (Typhoon No. 10) attacked Shikoku Island and the Tyugoku area of Japan in 2004. This typhoon produced a new daily precipitation record of 1317 mm on Shikoku Island and triggered hundreds of landslides in Tokushima Prefecture. One catastrophic landslide was triggered in the Shiraishi area of Kisawa village, and destroyed more than 10 houses while also leaving an unstable block high on the slope. The unstable block kept moving after the event, showing accelerating and decelerating movement during and after rainfall and reaching a displacement of several meters before countermeasures were put into place. To examine the mechanism for this landsliding characteristic, samples (weathered serpentinite) were taken from the field, and their shear behaviours examined using ring shear tests. The test results revealed that the residual shear strength of the samples is positively dependent on the shear rate, which may provide an explanation for the continuous accelerating–decelerating process of the landsliding. The roughness of the shear surface and the microstructure of the shear zone were measured and observed by laser microscope and SEM techniques in an attempt to clarify the mechanism of shear rate effect on the residual shear strength. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号