首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The debonding mechanism has a significant effect on the performance of a buckling‐restrained brace (BRB). In this paper, a method for estimating the compression strength adjustment factor for any given BRB core strain is presented. Experimental investigations were conducted on four BRBs to examine the efficiency of four different debonding materials in reducing the difference between the cyclic peak compression and tension. Test results indicate that chloroprene rubber is very easy to install and very effective in minimizing the difference between the compressive and tensile capacities. The excellent performance of 13 full‐scale welded end‐slot BRBs (WES‐BRBs) is illustrated through experiments. Cyclic loading test results of a 12.5‐m long jumbo WES‐BRB reveal that its peak compressive strength exceeds 16,800 kN and its maximum core strain reaches 0.035. All WES‐BRBs show satisfactory performance with a very stable hysteresis response, modest peak compressive to tensile strength ratio, and very predictable axial stiffness. These specimens sustain a cumulative plastic deformation of greater than 400 times the yield deformation. The hysteresis responses can be satisfactorily predicted by using a two‐surface plasticity analytical model. Advantages of the welded end‐slot connections are also presented through a discussion on the effects of the BRB yield region length ratio on the effective stiffness, the yield story drift, and the core strain level. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Cyclic loading tests and finite element analyses on six novel all‐steel buckling‐restrained braces (BRBs) are conducted using different loading patterns to investigate the core plate high‐mode buckling phenomenon. The proposed BRB is composed of a core member and a pair of identical restraining members, which restrains the core member by using bolted shim spacers. The design of the proposed BRB allows the core plate to be visually inspected immediately following a major earthquake. If necessary, the pair of restraining members can be conveniently disassembled, and the damaged core plate can be replaced. Test results indicate that the proposed BRBs can sustain large cyclic strain reversals and cumulative plastic deformations in excess of 400 times the yield strain. Experimental and analytical results confirm that the high‐mode buckling wavelength is related to the core plate thickness and the applied loading patterns. The larger the axial compressive strain is applied, the shorter the high‐mode buckling wavelength would be developed. The buckling wavelength is about 12 times the core plate thickness when the high‐mode buckling shape is fully developed. However, it reduces to about 10 times the core plate thickness when a compressive core strain reaches greater than 0.03. The high‐mode bucking wavelength can be satisfactorily predicted using the proposed method or from the finite element analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents the results of 12 full‐scale tests on buckling‐restrained brace (BRB) specimens. A simple‐to‐fabricate all‐steel encasing joined by high‐strength bolts was used as the buckling‐restrainer mechanism. Steel BRBs offer significant energy dissipation capability through nondeteriorating inelastic response of an internal ductile core. However, seismic performance of BRBs is characterized by interaction between several factors. In this experimental study, the effects of core‐restrainer interfacial condition, gap size, loading history, bolt spacing, and restraining capacity are evaluated. A simple hinge detail is introduced at the brace ends to reduce the flexural demand on the framing components. Tested specimens with bare steel contact surfaces exhibited satisfactory performance under the American Institute of Steel Construction qualification test protocol. The BRBs with friction‐control self‐adhesive polymer liners and a graphite‐based dry lubricant displayed larger cumulative inelastic ductility under large‐amplitude cyclic loading, exceeding current code minimum requirements. The BRB system is also examined under repeated fast‐rate seismic deformation history. This system showed significant ductility capacity and remarkable endurance under dynamic loading. Furthermore, performance is qualified under long‐duration loading history from subduction zone's megathrust type of earthquake. Predictable and stable performance of the proposed hinge detail was confirmed by the test results. Internally imposed normal thrust on the restrainer is measured using series of instrumented bolts. Weak‐ and strong‐axis buckling responses of the core are examined. Higher post‐yield stiffness was achieved when the latter governed, which could be advantageous to the overall seismic response of braced frames incorporating BRBs.  相似文献   

4.
The authors developed a buckling‐restrained brace that enables increased design freedom at both ends of the core plate and strict quality control while providing stable hysteresis characteristics even under high strains. The buckling‐restrained brace can be formed by welding a core plate covered with unbonded material to a pair of mortar‐filled channel steels (steel mortar planks) as a restraining part. The use of this approach enables visual confirmation of the status of the mortar filling and also facilitates standardizing structural members and member‐by‐member quality control. Specimens of a buckling‐restrained brace with different steel mortar plank heights are fabricated to adjust the restraining force, along with specimens with different core plate width‐to‐thickness ratios. The tests were conducted to reveal the hysteretic characteristics of the braces, as well as their cumulative plastic strain energy, elastoplastic properties, and stiffening properties. A performance evaluation formula as well as a buckling‐restrained brace design method using the test results is proposed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
In order to enhance the durability of high‐performance buckling‐restrained braces (BRBs) used in bridge engineering, which are expected to withstand severe earthquakes three times without being replaced, aluminum alloys were employed to manufacture BRBs. A series of low‐cycle fatigue tests, including 18 specimens, were conducted to address the low‐cycle fatigue strength of the aluminum alloy BRB. Test results of all specimens show that stable hysteretic curves were obtained without overall buckling occurrence. Failure mode of the welded aluminum alloy BRB is obviously affected by the ribs' welding under the variable or constant strain amplitude condition. Therefore, another type of aluminum alloy BRB, the bolt‐assembled BRB with or without spot‐welded stoppers, is proposed and tested. Results showed that the low‐cycle fatigue performance of bolt‐assembled BRBs with stoppers improved four to five times compared with welded BRBs. However, the stoppers' spot welding has an adverse effect on the failure mode because the crack, which induced the specimen's failure, initiated from the spot weld toes of the stoppers. Both bolt‐assembled BRBs with and without stoppers can meet the cumulative inelastic deformation requirement proposed for high‐performance BRBs under the constant strain amplitude, not larger than 2%. In addition, under the variable strain amplitude condition, only the bolt‐assembled BRB without stoppers has an excellent cumulative inelastic deformation capacity and sustains two cycles of 2.5% strain amplitude. Finally, recommended Manson–Coffin equations and preliminary cumulative damage formulae for welded and bolt‐assembled BRBs are given as the references of the strain‐based damage evaluation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A novel type of angle steel buckling‐restrained brace (ABRB) has been developed for easier control on initial geometric imperfection in the core, more design flexibility in the buckling restraining mechanism and easier assembly work. The steel core is composed of four angle steels to form a non‐welded cruciform shape restrained by two external angle steels, which are welded longitudinally to form an external tube. Component test was conducted on seven ABRB specimens under uniaxial quasi‐static cyclic loading. The test results reveal that the consistency between the actual and design behavior of ABRB can be well achieved without the effect of weld in the core. The ABRBs with proper details exhibited stable cyclic behavior and satisfactory cumulative plastic ductility capacity, so that they can serve as effective hysteretic dampers. However, compression–flexure failure at the steel core projection was found to be the primary failure mode for the ABRBs with hinge connections even though the cross‐section of the core projection was reinforced two times that of the yielding segment. The failure mechanism is further discussed by investigating the NuMu correlation curve. It is found that the bending moment response developed in the core projection induced by end rotation was the main cause for such a failure mode, and it is suggested that core projection should be kept within elastic stage under the possible maximum axial load and bending moment response. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A test on a full‐scale model of a three‐storey steel moment frame was conducted, with the objectives of acquiring real information about the damage and serious strength deterioration of a steel moment frame under cyclic loading, studying the interaction between the structural frame and non‐structural elements, and examining the capacity of numerical analyses commonly used in seismic design to trace the real cyclic behaviour. The outline of the test structure and test program is presented, results on the overall behaviour are given, and correlation between the experimental results and the results of pre‐test and post‐test numerical analyses is discussed. Pushover analyses conducted prior to the test predicted the elastic stiffness and yield strength very reasonably. With proper adjustment of strain hardening after yielding and composite action, numerical analyses were able to accurately duplicate the cyclic behaviour of the test structure up to a drift angle of 1/25. The analyses could not trace the cyclic behaviour involving larger drifts in which serious strength deterioration occurred due to fracture of beams and anchor bolts and progress of column local buckling. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
A thin‐profile buckling‐restrained brace (thin‐BRB) consists of a rectangular steel casing and a flat steel core that is parallel to a gusset plate. A thin configuration reduces the width of the restraining member and thus saves usable space in buildings. However, deformable debonding layers, which cover the steel core plate in order to mitigate the difference between the peak tensile and compressive axial forces, provide a space for the steel core to form high mode buckling waves when the thin‐BRB is under compression. The wave crests squeeze the debonding layers and produce outward forces on the inner surface of the restraining member. If the restraining member is too weak in sustaining the outward forces, local bulging failure occurs and the thin‐BRB loses its compression capacity immediately. In order to investigate local bulging behavior, a total of 22 thin‐BRB specimens with a ratio of steel core plate to restraining steel tube depth ranging from 0.3 to 0.7 and axial yield force capacities ranging from 421 kN to 3036 kN were tested by applying either cyclically increasing, decreasing, or constant axial strains. The restraining steel tube widths of all the specimens were smaller than 200 mm and were infilled with mortar with a compressive strength of 97 MPa or 55 MPa. Thirteen of the 22 thin‐BRB specimens' restraining members bulged out when the compressive core strains exceeded 0.03. A seismic design method of the thin‐BRB in preventing local bulging failure is proposed in this study. Test and finite element model (FEM) analysis results suggest that the outward forces can be estimated according to the BRB compressive strength, steel core high mode buckling wavelength, and the debonding layer thickness. In addition, the capacity of the restraining member in resisting the outward forces can be estimated by using the upper bound theory in plastic analysis. Both the FEM analysis and test results indicate that the proposed method is effective in predicting the possibility of local bulging failure. Test results indicate that the proposed design method is conservative for thin‐BRB specimens with a large steel core plate to restraining steel tube depth ratio. This paper concludes with design recommendations for thin‐BRBs for severe seismic services. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Past experimental studies have shown that existing precast segmental concrete bridge columns possess unsatisfactory hysteretic energy dissipation capacity, which is an undesirable feature for applications in seismic regions. In this research, we propose new methods of precast segment construction for tall concrete bridge columns to enhance the columns' hysteretic energy dissipation capacity and lateral strength. This is accomplished by adding bonded mild steel reinforcing bars across the segment joints, strengthening the joint at the base of the column and increasing the height of the base segment (hinge segment). Four large‐scale column specimens were fabricated and tested with lateral cyclic loading in the laboratory. Each specimen consisted of a foundation and 9 or 10 precast column segments. Test results of specimens with the proposed design concepts showed ductile behavior and satisfactory hysteretic energy dissipation capacity. In addition to the experimental study, an analytical study using the finite element method was conducted to understand the bond conditions, strain contours and deformation patterns of the specimens tested. Good agreement was found between the experimental observations and the results of the calibrated analytical study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The outrigger system is an effective means of controlling the seismic response of core‐tube type tall buildings by mobilizing the axial stiffness of the perimeter columns. This study investigates the damped‐outrigger, incorporating the buckling‐restrained brace (BRB) as energy dissipation device (BRB‐outrigger system). The building's seismic responses are expected to be effectively reduced because of the high BRB elastic stiffness during minor earthquakes and through the stable energy dissipation mechanism of the BRB during large earthquakes. The seismic behavior of the BRB‐outrigger system was investigated by performing a spectral analysis considering the equivalent damping to incorporate the effects of BRB inelastic deformation. Nonlinear response history analyses were performed to verify the spectral analysis results. The analytical models with building heights of 64, 128, and 256 m were utilized to investigate the optimal outrigger elevation and the relationships between the outrigger truss flexural stiffness, BRB axial stiffness, and perimeter column axial stiffness to achieve the minimum roof drift and acceleration responses. The method of determining the BRB yield deformation and its effect on overall seismic performance were also investigated. The study concludes with a design recommendation for the single BRB‐outrigger system.  相似文献   

11.
The results of experimental tests carried out on reinforced concrete (RC) full‐scale 2‐storey 2‐bays framed buildings are presented. The unretrofitted frame was designed for gravity loads only and without seismic details; such frame was assumed as a benchmark system in this study. A similar RC frame was retrofitted with buckling‐restrained braces (BRBs). The earthquake structural performance of both prototypes was investigated experimentally using displacement‐controlled pushover static and cyclic lateral loads. Modal response properties of the prototypes were also determined before and after the occurrence of structural damage. The results of the dynamic response analyses were utilized to assess the existing design rules for the estimation of the elastic and inelastic period of vibrations. Similarly, the values of equivalent damping were compared with code‐base relationships. It was found that the existing formulations need major revisions when they are used to predict the structural response of as‐built RC framed buildings. The equivalent damping ratio ξeq was augmented by more than 50% when the BRBs was employed as bracing system. For the retrofitted frame, the overstrength Ω and the ductility µ are 1.6 and 4.1, respectively; the estimated R‐factor is 6.5. The use of BRBs is thus a viable means to enhance efficiently the lateral stiffness and strength, the energy absorption and dissipation capacity of the existing RC substandard frame buildings. The foundation systems and the existing members of the superstructure are generally not overstressed as the seismic demand imposed on them can be controlled by the axial stiffness and the yielding force of the BRBs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Buckling‐restrained braces (BRBs) are widely used as ductile seismic‐resistant and energy‐dissipating structural members in seismic regions. Although BRBs are expected to exhibit stable hysteresis under cyclic axial loading, one of the key limit states is global flexural buckling, which can produce an undesirable response. Many prior studies have indicated the possibility of global buckling of a BRB before its core yields owing to connection failure. In this paper, BRB stability concepts are presented, including their bending‐moment transfer capacity at restrainer ends for various connection stiffness values with initial out‐of‐plane drifts, and a unified simple equation set for ensuring BRB stability is proposed. Moreover, a series of cyclic loading tests with initial out‐of‐plane drifts are conducted, and the results are compared with those of the proposed equations. © 2013 The Authors. Earthquake Engineering & Structural Dynamics published by John Wiley & Sons Ltd.  相似文献   

13.
This paper presents the results on shaking table tests of half‐scale brick walls performed to investigate the effectiveness of newly developed Cu–Al–Mn superelastic alloy (SEA) bars in retrofitting of historical masonry constructions. Problems associated with conventional steel reinforcing bars lie in degradation of stiffness and strength, or pinching phenomena, under cyclic loading, and presence of large residual cracks in structures during and after intense earthquakes. This paper attempts to resolve the problems by applying newly developed Cu–Al–Mn SEA bars, characterized by large recovery strain, low material cost, and high machinability, as partial replacements for steel bars. Sets of unreinforced, steel reinforced, and SEA‐reinforced specimens are subjected to scaled earthquake excitations in out‐of‐plane direction. Whereas steel‐reinforced specimens showed large residual inclinations, SEA‐reinforced specimens resulted in stable rocking response with slight residual inclinations. Corresponding nonlinear finite element (FE) models are developed to simulate the experimental observations. The FE models are further used to examine the sensitivity of the response with respect to the variations in experimental conditions. Both the experimental and numerical results demonstrate the superiority of Cu–Al–Mn SEA bars to conventional steel reinforcing bars in avoiding pinching phenomena. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
An experimental program was performed for evaluating the seismic response and fragilities of nonstructural lightweight steel drywall partitions, also considering the interaction with structural elements and other nonstructural building components, ie, outdoor façade walls. Therefore, in‐plane quasi‐static reversed cyclic tests were carried out on 8 specimens of indoor partition walls infilled in a frame and on 4 specimens of indoor partition walls connected at its ends with transversal outdoor façade walls. Constructive parameters under investigation include type of connections used for connecting the indoor partition walls to the surrounding elements, stud spacing, type of sheathing panels, and type of jointing finishing. The effect of the constructive parameters on the lateral response in secant stiffness and strength is examined. Furthermore, the main damage phenomena observed during the tests are reported and associated to 3 damage limit states distinguished for the required repair level for the tested partition walls. Fragility curves are used for the experimental assessment of seismic fragility of the tested specimens, in accordance with the interstorey drift limits required by the European code. Finally, the quantitative estimation of the repair action costs starting from the damage observation is also developed. The obtained results could be considered a starting point for developing the in‐plane seismic design assisted by testing of lightweight steel drywall partition walls.  相似文献   

15.
Reinforced concrete columns with non‐ductile detailing typically exhibit a softening behavior characterized by severe degradation when subjected to cyclic lateral loads. Whether the response is brittle or ductile, shear failure occurs with an inclined through crack along which sliding occurs coupled with loss of horizontal and vertical load‐bearing capacity of the member. The rapid loss of resistance after the peak strength is reached is because of one or more of the following local failure mechanisms: brittle failure of poorly confined concrete; buckling of longitudinal reinforcing bars because of lack of adequate transverse reinforcement or following opening of stirrups after spalling of cover concrete; bond failure. In this study, a modeling strategy to build a detailed 3D finite element model capable of capturing all of the above‐mentioned local failure mechanisms is presented. In particular, a steel–concrete interface model for representing the interaction within the member between concrete core, cover and longitudinal and transverse reinforcement is proposed. Comparison with results of an experimental test of a shear‐sensitive column demonstrates the effectiveness of the simulation up to failure of the element. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Ambient and forced vibration tests were carried out on the Beauharnois bridge, a unique, 177‐m combined suspension and cable‐stayed structure near Montreal, Canada. A rehabilitation program was completed on the bridge during which the deck was completely rebuilt with an orthotropic slab on two steel trusses. The rehabilitation program also included the addition of two pairs of stay cables on both towers, creating a hybrid suspension system. The paper presents a series of dynamic tests performed to evaluate the dynamic properties and the dynamic amplification factor (DAF) for the rehabilitated bridge. The experimental program involved the measurement of vertical, transverse, and longitudinal acceleration responses of the deck and tower under ambient and controlled traffic loads. Displacement, strain, and integrated acceleration DAFs were computed under different loading conditions. Modal properties were evaluated and used to correlate a three‐dimensional finite element model for the bridge, including non‐linear cable behaviour. The paper discusses the experimental setup as well as the techniques used to evaluate vibration frequencies, mode shapes, and the DAF. Correlation of numerical dynamic properties and experimental results is also presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
A series of hybrid and cyclic loading tests were conducted on a three‐story single‐bay full‐scale buckling‐restrained braced frame (BRBF) at the Taiwan National Center for Research on Earthquake Engineering in 2010. Six buckling‐restrained braces (BRBs) including two thin BRBs and four end‐slotted BRBs, all using welded end connection details, were installed in the frame specimen. The BRBF was designed to sustain a design basis earthquake in Los Angeles. In the first hybrid test, the maximum inter‐story drift reached nearly 0.030 rad in the second story and one of the thin BRBs in the first story locally bulged and fractured subsequently before the test ended. After replacing the BRBs in the first story with a new pair, a second hybrid test with the same but reversed direction ground motion was applied. The maximum inter‐story drifts reached more than 0.030 rad and some cracks were found on the gusset welds in the second story. The frame responses were satisfactorily predicted by both OpenSees and PISA3D analytical models. The cyclic loading test with triangular lateral force distribution was conducted right after the second hybrid test. The maximum inter‐story drift reached 0.032, 0.031, and 0.008 rad for the first to the third story, respectively. This paper then presents the findings on the local bulging failure of the steel casing by using cyclic test results of two thin BRB specimens. It is found that the steel casing bulging resistance can be computed from an equivalent beam model constructed from the steel core plate width and restraining concrete thickness. This paper concludes with the recommendations on the seismic design of thin BRB steel casings against local bulging failure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
In‐plane buckling‐restrained brace (BRB) end rotation induced by frame action is a commonly observed phenomenon in buckling‐restrained braced frames (BRBFs). However, its effect on BRB end connection behavior has not yet been clear. In this study, four BRB end deformation modes for quick determination of end rotational demand are proposed for non‐moment BRBF considering different BRB arrangements, installing story of BRBs, and boundary condition of corner gussets connected with column base. Key factors affecting BRB end rotation and flexural moments are examined theoretically by parametric analysis. Subassemblage tests of seven BRB specimens under horizontal cyclic loading were conducted by adopting two loading frames to impose the expected BRB end deformations. It shows that BRB end rotation subjected BRB ends to significant flexural moments, leading to premature yielding of BRB ends or even tendency of end zone buckling. The deformation modes, the flexural rigidity of BRB ends, and the initial geometric imperfections of BRBs were found to have significant influence on BRB end connection behavior. The triggering moment induced by BRB end rotation was the main contributor to end flexural moment. However, the moment amplification effect induced by flexure of BRB end zones became prominent especially for small flexural rigidity of BRB ends. Implications and future research needs for design of BRB end connections are provided finally based on the theoretical and experimental results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with experimental tests aimed at assessing the structural performance of pure aluminium shear panels to be employed as passive energy dissipation devices with a bracing type configuration. The AW1050 A H24 is adopted as the basic material. It is an aluminium alloy with a negligible content of impurity, allowing it to be considered as a pure aluminium. In this paper, the results of four full‐scale 5thinspacemm thick multi‐stiffened square‐shaped specimens tested under cyclic diagonal loads and characterized by different slenderness ratios are presented. In order to determine the main resisting mechanisms for different shear strain demands, a careful examination of the experimental evidences is provided. Then, the global performance of tested shear panels is evaluated by the comparison of the obtained hysteretic responses, evidencing the effect of the plate slenderness on the energy dissipation capacity. Finally, a suitable analytical model, which could be useful to implement global dynamic non‐linear analysis, is set up in order to interpret the behaviour of shear panels for which the development of premature buckling phenomena is completely inhibited. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents experimental and numerical studies of a full‐scale deformable connection used to connect the floor system of the flexible gravity load resisting system to the stiff lateral force resisting system (LFRS) of an earthquake‐resistant building. The purpose of the deformable connection is to limit the earthquake‐induced horizontal inertia force transferred from the floor system to the LFRS and, thereby, to reduce the horizontal floor accelerations and the forces in the LFRS. The deformable connection that was studied consists of a buckling‐restrained brace (BRB) and steel‐reinforced laminated low‐damping rubber bearings (RB). The test results show that the force–deformation responses of the connection are stable, and the dynamic force responses are larger than the quasi‐static force responses. The BRB+RB force–deformation response depends mainly on the BRB response. A detailed discussion of the BRB experimental force–deformation response is presented. The experimental results show that the maximum plastic deformation range controls the isotropic hardening of the BRB. The hardened BRB force–deformation responses are used to calculate the overstrength adjustment factors. Details and limitations of a validated, accurate model for the connection force–deformation response are presented. Numerical simulation results for a 12‐story reinforced concrete wall building with deformable connections show the effects of including the RB in the deformable connection and the effect of modeling the BRB isotropic hardening on the building seismic response. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号