首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary From numerical solutions of a wind-driven homogeneous ocean model, anegative lateral eddy viscosity of the order 104 cm2 sec–1 is inferred from the large-scale time-dependent currents in the interior of an enclosed shallow basin. The transient Rossby waves in this region produce a systematic convergence of eddy momentum at the latitude of the maximum average eastward current, and thus effect a transfer of zonal momentum from the large-scale eddies to the mean flow. In this sense they are analogous to the Rossby waves in the atmospheric general circulation, and it is speculated that such waves may help to maintain the mean zonal ocean currents. Although this negative viscosity induced by the large-scale transients is relatively small compared with the prescribed lateral viscosity of 108 cm2 sec–1 and should be given a quite different physical interpretation, it is evidently an important viscous effect for the mean flow in the interior of the basin. The prescribed viscosity, on the other hand, is effective in controlling the model's simulated sub-grid scale dissipation, which occurs almost entirely in the nearby steady boundary currents.  相似文献   

2.
Summary The zonally asymmetric stationary component of the general circulation is studied for small Rossby number without the beta-plane approximation. The equations for this component are linearized about a mean flow. An analytic solution for the meridional wind is found when the zonal wind and static stability of the mean flow are independent of the vertical coordinate. The solution is used to compute the transports of angular momentum and heat. The angular momentum transports give rise to a net convergence of the order of Rossby number and are balanced by the zonal mean Coriolis torque. However, the heat transports vanish at this order of magnitude.  相似文献   

3.
热带大洋对纬向和经向风应力的联合响应   总被引:1,自引:0,他引:1       下载免费PDF全文
考虑了经向风应力和纬向风应力联合作用下热带大洋的响应问题.结果表明,只有一阶的经向风应力或具有辐合辐散的经向风应力才对最后的速度场和位势场造成影响.零阶的扰动温跃层和纬圈流受风应力的直接驱动和Kelvin波、Rossby短波的影响,而Rossby短波由经向风应力直接造成;二阶模则受风应力的直接驱动和Rossby短波的作用,同时经向风应力也产生了附加的Rossby短波.另外,在西边界处存在很强的暖水补充到赤道的现象,经向风应力有使暖水向赤道输送的作用,而西风应力使西边界处的暖水向东输送.  相似文献   

4.
切变基本纬向流中非线性赤道Rossby长波   总被引:5,自引:1,他引:4  
为了解决观测和理论研究中的一些问题以及更好地了解热带大气动力学 ,有必要进一步研究基本气流的变化对大气中赤道Rossby波动的影响 .本文研究分析基本气流对赤道Rossby长波的影响 ,利用一个简单赤道 β平面浅水模式和摄动法 ,研究纬向基本气流切变中非线性赤道Rossby波 ,推导出在切变基本纬向流中赤道Rossby长波振幅演变所满足的非线性KdV方程并得到其孤立波解 .分析表明 ,孤立波存在的必要条件是基本气流有切变 ,而且基流切变不能太强 ,否则将产生正压不稳定 .  相似文献   

5.
Based on the well established importance of long, non-dispersive baroclinic Kelvin and Rossby waves, a resonance of tropical planetary waves is demonstrated. Three main basin modes are highlighted through joint wavelet analyses of sea surface height (SSH) and surface current velocity (SCV), scale-averaged over relevant bands to address the co-variability of variables: (1) a 1-year period quasi-stationary wave (QSW) formed from gravest mode baroclinic planetary waves which consists of a northern, an equatorial and a southern antinode, and a major node off the South American coast that straddles the north equatorial current (NEC) and the north equatorial counter current (NECC), (2) a half-a-year period harmonic, (3) an 8-year sub-harmonic. Contrary to what is commonly accepted, the 1-year period QSW is not composed of wind-generated Kelvin and Rossby beams but results from the excitation of a tuned basin mode. Trade winds sustain a free tropical basin mode, the natural frequency of which is tuned to synchronize the excitation and the ridge of the QSWs. The functioning of the 1-year period basin mode is confirmed by solving the momentum equations, expanding in terms of Fourier series both the coefficients and the forcing terms. The terms of Fourier series have singularities, highlighting resonances and the relation between the resonance frequency and the wavenumbers. This ill-posed problem is regularized by considering Rayleigh friction. The waves are supposed to be semi-infinite, i.e. they do not reflect at the western and eastern boundaries of the basin, which would assume the waves vanish at these boundaries. At the western boundary the equatorial Rossby wave is deflected towards the northern antinode while forming the NECC that induces a positive Doppler-shifted wavenumber. At the eastern boundary, the Kelvin wave splits into coastal Kelvin waves that flow mainly southward to leave the Gulf of Guinea. In turn, off-tropical waves extend as an equatorially trapped Kelvin wave, being deflected off the western boundary. The succession of warm and cold waters transferred by baroclinic waves during a cycle leaves the tropical ocean by radiation and contributes to western boundary currents. The main manifestation of the basin modes concerns the variability of the NECC, of the branch of the South Equatorial Current (SEC) along the equator, of the western boundary currents as well as the formation of remote resonances, as will be presented in a future work. Remote resonances occur at midlatitudes, the role of which is suspected of being crucial in the functioning of subtropical gyres and in climate variability.  相似文献   

6.
 The circulation of the Southern Ocean is studied in the eddy-resolving model POP (Parallel Ocean Program) by an analysis of zonally integrated balances. The TEM formalism (Transformed Eulerian Mean) is extended to include topography and continental boundaries, thus deviations from a zonally integrated state involve transient and standing eddies. The meridional circulation is presented in terms of the Eulerian, eddy-induced, and residual streamfunctions. It is shown that the splitting of the meridional circulation into Ekman and geostrophic transports and the component induced by subgrid and Reynolds stresses is identical to a particular form of the zonally integrated balance of zonal momentum. In this balance, the eddy-induced streamfunctions represent the interfacial form stresses by transient and standing eddies and the residual streamfunction represents the acceleration of the zonal current by density fluxes in a zonally integrated frame. The latter acceleration term is directly related to the surface flux of density and interior fluxes due to the resolved and unresolved eddies. The eddy-induced circulation is extremely vigorous in POP. In the upper ocean a shallow circulation, reversed in comparison to the Deacon cell and mainly due to standing eddies, appears to the north of Drake Passage latitudes, and in the Drake Passage belt of latitudes a deep-reaching cell is induced by transient eddies. In the resulting residual circulation the Deacon cell is largely cancelled and the residual advection of the zonal mean potential density is balanced by diapycnal eddy and subgrid fluxes which are strong in the upper few hundred meters but small in the ocean interior. The balance of zonal momentum is consistent with other eddy-resolving models; a new aspect is the clear identification of density effects in the zonally integrated balance. We show that the wind stress and the stress induced by the residual circulation drive the eastward current, whereas both eddy species result in a braking. Finally, we extend the Johnson–Bryden model of zonal transport to incorporate all relevant terms from the zonal momentum balance. It is shown that wind stress and induction by the residual circulation carry an eastward transport while bottom form stress and the stress induced by standing eddies yield westward components of transport. Received: 26 June 2001 / Accepted: 2 November 2001  相似文献   

7.
北太平洋海表面高度的年际变化及其机制   总被引:4,自引:0,他引:4       下载免费PDF全文
利用15年(1993~2007年)月平均的海表面高度(SSH)异常资料,分析了北太平洋海表面高度的年际变化的时空结构,并研究了热通量和风应力两个因子对其的强迫作用.结果表明,北太平洋年际时间尺度SSH变化的大值区在黑潮延伸区和西太平洋暖池区.EOF分解第一模态的空间结构沿纬向呈带状分布,第二模态为沿经向呈带状分布.热通量强迫作用在中纬度的东北太平洋可以解释SSH年际变化40%以上.风应力对SSH的作用包括正压和斜压两个方面.正压Sverdrup平衡模型模拟的SSH年际变化较弱,仅能解释高纬度副极地环流西部的20%~40%.由大尺度风应力强迫的第一阶斜压Rossby波模型可以解释热带地区的20%~60%,中纬度中部的20%~40%,以及阿拉斯加环流东部和副极地环流西部的20%~60%.风应力强迫的一阶斜压Rossby波模型对SSH的强迫机理又可分为局地风应力强迫和西传Rossby波作用.其中,风应力的局地强迫作用(Ekman抽吸)在东北太平洋、白令海以及热带中部有显著的预报技巧,可以解释SSH年际变异的40%以上.Rossby波的传播作用在中纬度海域的副热带环流中西部和夏威夷岛以东起着重要作用,可解释20%~60%.  相似文献   

8.
In a series of observing system simulations, we test whether the Atlantic meridional overturning circulation (AMOC) can be observed based on the existing Line W deep western boundary array. We simulate a Line W array, which is extended to the surface and to the east to cover the basin to the Bermuda Rise. In the analyzed ocean circulation model ORCA025, such an extended Line W array captures the main characteristics of the western boundary current. Potential trans-basin observing systems for the AMOC are tested by combining the extended Line W array with a mid-ocean transport estimate obtained from thermal wind “measurements” and Ekman transport to the total AMOC (similarly to Hirschi et al., Geophys Res Lett 30(7):1413, 2003). First, we close Line W zonally supplementing the western boundary array with several “moorings” in the basin (Line W-32°N). Second, we supplement the western boundary array with a combination of observations at Bermuda and the eastern part of the RAPID array at 26°N (Line W-B-RAPID). Both, a small number of density profiles across the basin and also only sampling the eastern and western boundary, capture the variability of the AMOC at Line W-32°N and Line W-B-RAPID. In the analyzed model, the AMOC variability at both Line W-32°N and Line W-B-RAPID is dominated by the western boundary current variability. Away from the western boundary, the mid-ocean transport (east of Bermuda) shows no significant relation between the two Line W-based sections and 26°N. Hence, a Line W-based AMOC estimate could yield an estimate of the meridional transport that is independent of the 26°N RAPID estimate. The model-based observing system simulations presented here provide support for the use of Line W as a cornerstone for a trans-basin AMOC observing system.  相似文献   

9.
Observations from the Nimbus 6 pressure modulator radiometer (PMR) have been used to estimate monthly mean planetary wave fluxes of heat and momentum in the stratosphere and mesosphere. While the eddy heat fluxes play an important role in the mean meridional circulation of the winter stratosphere they are shown to be less important in the upper mesosphere. Incorporation of the observed momentum fluxes into the Oxford two-dimensional circulation model has shown that they are incapable of providing the momentum transport necessary to balance the zonal flow accelerations induced by the mean meridional motion. Other unspecified transfer processes represented by Rayleigh frictional damping of the zonal fow are shown to dominate. In contrast the observed fluxes in the stratosphere achieve the necessary redistribution of momentum. Moreover their interannual variability profoundly influences the stratospheric circulation, as demonstrated in the model by the use of two different annual sets of observed momentum fluxes. The desirability of calculating the planetary wave behaviour within the model is indicated.  相似文献   

10.
Abstract

This paper investigates the generation of linear baroclinic Rossby waves by meridional oscillations of a climatological zonal wind stress in a reduced gravity ocean bounded by an eastern coastline. Using a power series technique an analytical solution is derived for the interfacial displacement. It is found that for a given period of oscillation of the zonal winds, a finite number of propagating Rossby waves will be generated with frequencies equal to a harmonic of the forcing frequency. The number of propagating modes increases with increasing period of the wind stress. In addition to the propagating waves the complete solution for the interfacial displacement consists of a rapidly convergent infinite sum of evanescent terms. The displacement field is calculated for atmospheric forcing parameters typical of those found at mid-latitudes. Further, it is shown that a near resonant response can be generated using atmospheric parameter values typical of those found over the North Pacific.  相似文献   

11.
We show a mechanism whereby the jets result during the development of β-plumes (i.e., low-frequency Rossby waves that establish gyre circulations) in a model of ocean-basin circulation. The energy originates in baroclinic meanders of circulation at the eastern boundary of the ocean. Eddies are intimately related and occur as a result of the instability of this process. This mechanism does not rely on the existence of the small-scale turbulence to establish zonal flows. Zonal jets can then be amplified by eddies arranged in certain order in the flow. The underlying dynamics include the propagation of linear and nonlinear basin scale Rossby waves. The related barotropic theory for these waves is developed here. We demonstrate the radiative development of jets and β-plumes in a laboratory experiment using a rotating fluid with a paraboloidal free surface. The dynamical fields are measured by the laboratory analog of the satellite altimetry.  相似文献   

12.
Abstract

The flow in a mechanically driven thin barotropic rotating fluid system is analysed. The linear theory of Baker and Robinson (1969) is modified and extended into the non-linear regime.

An internal parameter, the “local Rossby number”, is indicative of the onset of nonlinear effects. If this parameter is 0(1) then inertial effects are as important as Coriolis accelerations in the interior of the transport-turning western boundary layer and both of its Ekman layers. The inertial effects in the Ekman layers, ignored in previous explorations of non-linear wind driven oceanic circulation, are retained here and calculated using an approximation of the Oseen type. The circulation problem is reduced to a system of scalar equations in only two independent variables; the system is valid for non-small local Rossby number provided only that the approximate total vorticity is positive.

To complete the solution for small Rossby number a boundary condition for the inertially induced transport is needed. It is found by examining the dynamics controlling this additional transport from the western boundary layer as the transport recirculates through the rest of the ocean basin. The strong constraint of total recirculation within the western boundary layer (zero net inertial transport) is derived.

The calculated primary inertial effects are in agreement with the observations of the laboratory model of Baker and Robinson (1969).

The analysis indicates the extent to which three-dimensional non-linear circulation can be reduced to a two dimensional problem.  相似文献   

13.
Abstract

An analysis is presented of the propagation of barotropic non-divergent oscillations along the western side of an ocean basin along which the persistent circulation in the basin is strongly intensified and laterally sheared. Because the Rossby number of a western boundary current is near unity, the properties of these waves are strongly affected by the steady circulation pattern. It is shown that for relatively long wavelengths, these waves can travel along the shelf in both directions; however, for a small range of short wavelengths they can only propagate northward and are unstable. Along the southeastern coast of North America, the unstable waves have wavelengths of order 150 km and periods of order 10 days. However, these waves can become stable oscillations in the deeper water northeast of Cape Hatteras. These oscillations are a possible explanation of the initiation of Gulf Stream meanders along the continental rise.  相似文献   

14.
The theoretical aspects of the transfer of angular momentum between atmosphere and Earth are treated with particular emphasis on analytical solutions. This is made possible by the consequent usage of spherical harmonics of low degree and by the development of large-scale atmospheric dynamics in terms of orthogonal wave modes as solutions of Laplace's tidal equations.An outline of the theory of atmospheric ultralong planetary waves is given leading to analytical expressions for the meridional and height structure of such waves. The properties of the atmospheric boundary layer, where the exchange of atmospheric angular momentum with the solid Earth takes place, are briefly reviewed. The characteristic coupling time is the Ekman spin-down time of about one week.The axial component of the atmospheric angular momentum (AAM), consisting of a pressure loading component and a zonal wind component, can be described by only two spherical functions of latitude : the zonal harmonicP 2 0 (), responsible for pressure loading, and the spherical functionP 1 1 () simulating supperrotation of the zonal wind. All other wind and pressure components merely redistributeAAM internally such that their contributions toAAM disappear if averaged over the globe. It is shown that both spherical harmonics belong to the meridional structure functions of the gravest symmetric Rossby-Haurwitz wave (0, –1)*. This wave describes retrograde rotation of the atmosphere within the tropics (the tropical easterlies), while the gravest symmetric external wave mode (0, –2) is responsible for the westerlies at midlatitudes. Applying appropriate lower boundary conditions and assuming that secular angular momentum exchange between solid Earth and atmosphere disappears, the sum of both waves leads to an analytical solution of the zonal mean flow which roughly simulates the observed zonal wind structure as a function of latitude and height. This formalism is used as a basis for a quantitative discussion of the seasonal variations of theAAM within the troposphere and middle atmosphere.Atmospheric excitation of polar motion is due to pressure loading configurations, which contain the antisymmetric functionP 2 1 () exp(i) of zonal wavenumberm=1, while the winds must have a superrotation component in a coordinate system with the polar axis within the equator. The Rossby-Haurwitz wave (1, –3)* can simulate well the atmospheric excitation of the observed polar motion of all periods from the Chandler wobble down to normal modes with periods of about 10 days. Its superrotation component disappears so that only pressure loading contributes to polar motion.The solar gravitational semidiurnal tidal force acting on the thermally driven atmospheric solar semidiurnal tidal wave can accelerate the rotation rat of the Earth by about 0.2 ms per century. It is speculated that the viscous-like friction of the geomagnetic field at the boundary between magnetosphere and solar wind may be responsible for the westward drift of the dipole component of the internal geomagnetic field. Electromagnetic or mechanical coupling between outer core and mantle may then contribute to a decrease of the Earth's rotation rate.  相似文献   

15.
Rossby wave patterns in zonal and meridional winds   总被引:1,自引:0,他引:1  
The propagation properties of Rossby waves in zonal and meridional winds are analyzed using the local dispersion relation in its wave number form, the geometry of which plays a crucial role in illuminating radiation patterns and ray trajectories. In the presence of a wind/current, the classical Rossby wave number curve, an offset circle, is distorted by the Doppler shift in frequency and a new branch, consisting of a blocking line with an eastward facing indentation, arises from waves convected with or against the flow. The radiation patterns generated by a time harmonic compact source in the laboratory frame are calculated using the method of stationary phase and are illustrated through a series of figures given by the reciprocal polars to the various types of wave number curves. We believe these results are new. Some of these wave patterns are reminiscent of a “reversed” ship wave pattern in which cusps (caustics) arise from the points of inflection of the wave number curves; whilst others bear a resemblance to the parabolic like curves characteristic of the capillary wave pattern formed around an obstacle in a stream. The Rossby stationary wave in a westerly is similar to the gravity wave pattern in a wind, whereas its counterpart in a meridional wind exhibits caustics, again arising from points of inflection in the wavenumber curve.  相似文献   

16.
Summary The wavenumber-frequency spectra of the meridional flux of angular momentum at 20°, 30°, 40°, 50°, 60° and 70°S, at 500 mb, show a definite domain of wave interactions between the zonal and meridional components of the velocity at various latitudes. In middle latitudes, the spectral band of the meridional flux of angular momentum is oriented from a region of low wavenumbers and low frequencies to a region of high wavenumbers and negative frequencies assigned for waves moving from west to east. In low latitudes, however, the spectral domain is confined to a narrow band centered near the zero frquency.In contrast to the meridional flux of angular momentum in the Northern Hemisphere in which the intensity in winter is about twice that in Summer, in the Southern Hemisphere the meridional flux shows same intensity for all seasons.In the Southern Hemisphere, most of the meridional flux of angular momentum is directed toward the south pole and is accomplished by the eastward moving waves. In the Northern Hemisphere, however, most of the meridional flux is directed toward the north pole and is contributed by the stationary waves.The National Center for Atmospheric Research, Boulder, Colorado 80302, (USA).  相似文献   

17.
Summary According to the symmetric formulation of the zonal kinetic energy equation, positive generations arise through countergradient transports of angular momentum. Five years of northern hemispheric upper air data are used to investigate two of the terms in the equation, which represent the effects of the transport, by the mean general circulation cells, of the angular momentum associated with the earth's rotation. These two -generation terms do not usually appear in the more traditional form of the conservation equation, and results of their evaluation have not appeared previously. It is found that positive generation largely dominates in the -term involving horizontal (meridional) transports of angular momentum, and negative generation in the -term involving vertical transport. In fall and particularly winter, both terms are responsible for very large amounts of generation of opposing sign for the whole atmosphere.The five years of data are also used to evaluate the balance of zonal kinetic energy implied by the symmetric equation in northern hemispheric polar caps of various pressure thicknesses. The vertical processes involved are not directly measured but rather are obtained from observed horizontal motions through use of continuity of mass and angular momentum requirements. Possible reasons for the lack of a perfect balance are offered, but in any case the residuals are generally not large enough to be of too much concern. Vertical eddies are found to play an important role in the balance of zonal kinetic energy. A study of the balance in the upper half of the atmosphere reveals that in spring the vertical eddies (summed for all scales) must tranport angular momentum and zonal kinetic energy upward toward the jet in order to counter the net effect of the mean cells in reducing the zonal kinetic energy in this volume. In the fall however, there is a dramatic change in the direction in which these vertical eddies act, as they now remove zonal kineticenergy from the upper half of the atmosphere in this season.The research reported in this paper was sponsored by the U.S. National Science Foundation under Grant No. GA-1310X.  相似文献   

18.
The problem of zonal jet formation and cyclone–anticyclone asymmetry in decaying rotating turbulence is addressed using both laboratory experiments and numerical simulations with a high-resolution shallow water model in a spherical geometry. Experiments are performed at different Rossby and Froude numbers and applying a rigid wall as meridional boundary in the numerical scheme to mimic the experimental apparatus. The formation of a zonally banded flow pattern, i.e. meridionally confined easterly/westerly jets, has observed; both experimental and numerical results confirmed that this tendency is favoured by high-planetary vorticity gradients. Also, in the experiments characterized by large rotation speeds and small Rossby deformation radius, an initial symmetric distribution of relative vorticity is found to evolve towards a dominance of anticyclonic structures, indicating a breaking of the cyclone–anticyclone symmetry. This aspect has deepened by numerically analysing the sensitivity of the temporal variations of the asymmetry index with respect to the position of the meridional confinement as well as the effect of relaxing the divergence of the fluid (i.e. non-divergent case) to zero. Results suggested that experiments characterized by the higher rotation speed and the lower fluid thickness are better reproduced by a divergent model with a high-latitude meridional boundary.  相似文献   

19.
Summary The maintenance of the axisymmetric component of the flow in the atmosphere is investigated by means of a steady-state, quasi-geostrophic formulation of the meteorological equations. It is shown that the meridional variations in the time-averaged axisymmetric variables can be expressed as the sum of three contributions, one being due to the eddy heat transport, another to the eddy momentum transport, and a third to the convective-radiative equilibrium temperature which enters the problem through the specification of a Newtonian form of diabatic heating. The contributions by the large scale eddies are evaluated through the use of observed values for the eddy heat and momentum transports.The contributions from each of the three forcing mechanisms to the temperature and zonal wind fields are invstigated individually and found to be of about equal importance. The sum of the three contributions are also presented for the temperature, the zonal wind, the stream function associated with the mean meridional circulation and the corresponding vertical motion. Although the results fail to reproduce the main observed features of the lower stratosphere, they are found to be in good agreement with observations in the middle latitude troposphere. At any pressure level, for example, the computed mean zonal wind has a jet-like profile and the axis of the jet is found to slope to the south with height, as observed in the atmosphere.Based in part on a thesis submitted by the first author as partial fulfillment of the requirements for the Ph.D. degree at the University of Michigan. — Publication No. 194 from the Department of Meteorology and Oceanography, The University of Michigan.  相似文献   

20.
In the present paper zonal mean flow excitation by inertial waves is studied in analogy to mean flow excitation by gravity waves that plays an important role for the quasi-biennial oscillation in the equatorial atmosphere. In geophysical flows that are stratified and rotating, pure gravity and inertial waves correspond to the two limiting cases: gravity waves neglect rotation, inertial waves neglect stratification. The former are more relevant for fluids like the atmosphere, where stratification is dominant, the latter for the deep oceans or planet cores, where rotation dominates. In the present study a hierarchy of simple analytical and numerical models of zonally symmetric inertial wave-mean flow interactions is considered and the results are compared with data from a laboratory experiment. The main findings can be summarised as follows: (i) when the waves are decoupled from the mean flow they just drive a retrograde (eastward) zonal mean flow, independent of the sign of the meridional phase speed; (ii) when coupling is present and the zonal mean flow is assumed to be steady, the waves can drive vertically alternating jets, but still, in contrast to the gravity wave case, the structure is independent of the sign of the meridional phase speed; (iii) when coupling is present and time-dependent zonal mean flows are considered the waves can drive vertically and temporarily oscillating mean flows. The comparison with laboratory data from a rotating annulus experiment shows a qualitative agreement. It appears that the experiment captures the basic elements of the inertial wave mean flow coupling. The results might be relevant to understand how the Equatorial Deep Jets can be maintained against dissipation, a process currently discussed controversially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号