首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We study the inhomogeneous reionization in a critical density CDM universe resulting from stellar sources, including Population III objects. The spatial distribution of the sources is obtained from high-resolution numerical N -body simulations. We calculate the source properties, taking into account a self-consistent treatment of both radiative (i.e. ionizing and H2-photodissociating photons) and stellar (i.e. SN explosions) feedbacks regulated by massive stars. This allows us to describe the topology of the ionized and dissociated regions at various cosmic epochs, and to derive the evolution of H, He and H2 filling factors, soft UV background, cosmic star formation rate and the final fate of ionizing objects. The main results are: (i) galaxies reionize the intergalactic medium by z ≈10 (with some uncertainty related to the gas clumping factor), whereas H2 is completely dissociated already by z ≈25; (ii) reionization is mostly caused by the relatively massive objects which collapse via H line cooling, while objects the formation of which relies on H2 cooling alone are insufficient for this purpose; (iii) the diffuse soft UV background is the major source of radiative feedback effects for z ≤15; at higher z direct flux from neighbouring objects dominates; (iv) the match of the calculated cosmic star formation history with that observed at lower redshifts suggests that the conversion efficiency of baryons into stars is ≈1 per cent; (v) we find that a very large population of dark objects which failed to form stars is present by z ≈8. We discuss and compare our results with similar previous studies.  相似文献   

2.
The 21-cm forest     
We examine the prospects for studying the pre-reionization intergalactic medium (IGM) through the so-called 21-cm forest in spectra of bright high-redshift radio sources. We first compute the evolution of the mean optical depth τ for models that include X-ray heating of the IGM gas, Wouthuysen–Field coupling, and reionization. Under most circumstances, the spin temperature T S grows large well before reionization begins in earnest; this occurs so long as the X-ray luminosity of high-redshift starbursts (per unit star formation rate) is comparable to that in nearby galaxies. As a result,  τ≲ 10−3  throughout most of reionization, and background sources must sit well beyond the reionization surface in order to experience absorption that is measurable by square-kilometre class telescopes. H  ii regions produce relatively large 'transmission gaps' and may therefore still be observable during the early stages of reionization. Absorption from sheets and filaments in the cosmic web fades once T S becomes large and should be rare during reionization. Minihaloes can produce strong (albeit narrow) absorption features. Measuring their abundance would yield useful limits on the strength of feedback processes in the IGM as well as their effect on reionization.  相似文献   

3.
We construct star formation histories at redshifts z ≳ 5 for two physically distinct populations of primordial, metal-free stars, motivated by theoretical and observational arguments that have hinted towards the existence of an intermediate stellar generation between Population III and Population I/II. Taking into account the cosmological parameters as recently revised by the Wilkinson Microwave Anisotropy Probe after three years of operation, we determine self-consistent reionization histories and discuss the resulting chemical enrichment from these early stellar generations. We find that the bulk of ionizing photons and heavy elements produced at high redshifts must have originated in Population II.5 stars, which formed out of primordial gas in haloes with virial temperatures ≳104 K, and had typical masses ≳10 M. Classical Population III stars, formed in minihaloes and having masses ≳100 M, on the other hand, had only a minor impact on reionization and early metal enrichment. Specifically, we conclude that only ≃10 per cent by mass of metal-free star formation went into Population III.  相似文献   

4.
Early reionization of the intergalactic medium (IGM), which is favoured from the WMAP temperature–polarization cross-correlations, contests the validity of the standard scenario of structure formation in the cold dark matter (CDM) cosmogony. It is difficult to achieve early enough star formation without rather extreme assumptions such as a very high escape fraction of ionizing photons from protogalaxies or a top-heavy initial mass function (IMF). Here, we propose an alternative scenario that additional fluctuations on small scales induced by primordial magnetic fields trigger early structure formation. We found that ionizing photons from Population III stars formed in dark haloes can easily reionize the Universe by   z ≃ 15  if the strength of primordial magnetic fields is between 0.7 and  1.5 × 10−9 G  .  相似文献   

5.
We explore possibilities of collapse and star formation in Population III objects exposed to the external ultraviolet background (UVB) radiation. Assuming spherical symmetry, we solve self-consistently radiative transfer of photons, non-equilibrium H2 chemistry and gas hydrodynamics. Although the UVB does suppress the formation of low-mass objects, the negative feedback turns out to be weaker than previously suggested. In particular, the cut-off scale of collapse drops significantly below the virial temperature T vir∼104 K at weak UV intensities ( J 21≲10−2) , owing to both self-shielding of the gas and H2 cooling. Clouds above this cut-off tend to contract highly dynamically, further promoting self-shielding and H2 formation. For plausible radiation intensities and spectra, the collapsing gas can cool efficiently to temperatures well below 104 K before rotationally supported and the final H2 fraction reaches ∼ 10−3.
Our results imply that star formation can take place in low-mass objects collapsing in the UVB. The threshold baryon mass for star formation is ∼ 109 M for clouds collapsing at redshifts z ≲3 , but drops significantly at higher redshifts. In a conventional cold dark matter universe, the latter coincides roughly with that of the 1 σ density fluctuations. Objects near and above this threshold can thus constitute 'building blocks' of luminous structures, and we discuss their links to dwarf spheroidal/elliptical galaxies and faint blue objects. These results suggest that the UVB can play a key role in regulating the star formation history of the Universe.  相似文献   

6.
Large-scale polarization of the cosmic microwave background measured by the WMAP satellite requires a mean optical depth to Thomson scattering,  τe∼ 0.17  . The reionization of the Universe must therefore have begun at relatively high redshift. We have studied the reionization process using supercomputer simulations of a large and representative region of a universe which has cosmological parameters consistent with the WMAP results (  Ωm= 0.3, ΩΛ= 0.7, h = 0.7, Ωb= 0.04, n = 1  and  σ8= 0.9  ). Our simulations follow both the radiative transfer of ionizing photons and the formation and evolution of the galaxy population which produces them. A previously published model with ionizing photon production as expected for zero-metallicity stars distributed according to a standard stellar initial mass function (IMF) (1061 photons per unit solar mass of formed stars) and with a moderate photon escape fraction from galaxies (5 per cent), produces  τe= 0.104  , which is within 1.0 to  1.5σ  of the 'best' WMAP value. Values of up to 0.16 can be produced by taking larger escape fractions or a top-heavy IMF. The data do not require a separate populations of 'miniquasars' or of stars forming in objects with total masses below  109 M  . Reconciling such early reionization with the observed Gunn–Peterson troughs in   z > 6  quasars may be challenging. Possible resolutions of this problem are discussed.  相似文献   

7.
We find that at redshifts   z ≳ 10, HD  line cooling allows strongly shocked primordial gas to cool to the temperature of the cosmic microwave background (CMB). This temperature is the minimum value attainable via radiative cooling. Provided that the abundance of HD, normalized to the total number density, exceeds a critical level of  ∼10−8  , the CMB temperature floor is reached in a time which is short in comparison to the Hubble time. We estimate the characteristic masses of stars formed out of shocked primordial gas in the wake of the first supernovae, and resulting from the virialization of dark matter haloes during hierarchical structure formation to be  ∼10 M  . In addition, we show that cooling by HD enables the primordial gas in relic H  ii regions to cool to temperatures considerably lower than those reached via H2 cooling alone. We confirm that HD cooling is unimportant in cases where the primordial gas does not go through an ionized phase, as in the formation process of the very first stars in   z ≳ 20  minihaloes of mass  ∼106 M  .  相似文献   

8.
We develop a coupled model for the evolution of the global properties of the intergalactic medium (IGM) and the formation of galaxies, in the presence of a photoionizing background due to stars and quasars. We use this model to predict the thermodynamic history of the IGM when photoionized by galaxies forming in a cold dark matter (CDM) universe. The evolution of the galaxies is calculated using a semi-analytical model, including a detailed treatment of the effects of tidal stripping and dynamical friction on satellite galaxies orbiting inside larger dark matter haloes. We include in the model the negative feedback on galaxy formation from the photoionizing background. Photoionization inhibits galaxy formation in low-mass dark matter haloes in two ways: (i) heating of the IGM and inhibition of the collapse of gas into dark haloes by the IGM pressure, and (ii) reduction in the rate of radiative cooling of gas within haloes. The result of our method is a self-consistent model of galaxy formation and the IGM. The IGM is reheated twice (during reionization of H  i and He  ii ), and we find that the star formation rate per unit volume is slightly suppressed after each episode of reheating. We find that galaxies brighter than L are mostly unaffected by reionization, while the abundance of faint galaxies is significantly reduced, leading to present-day galaxy luminosity functions with shallow faint-end slopes, in good agreement with recent observational data. Reionization also affects other properties of these faint galaxies, in a readily understandable way.  相似文献   

9.
In order to interpret H2 quasar absorption-line observations of damped Lyα systems (DLAs) and subDLAs, we model their H2 abundance as a function of dust-to-gas ratio, including H2 self-shielding and dust extinction against dissociating photons. Then, we constrain the physical state of the gas by using H2 data. Using H2 excitation data for DLAs with H2 detections, we derive a gas density  1.5 ≲ log n (cm−3) ≲ 2.5  , temperature  1.5 ≲ log T (K) ≲ 3  , and an internal ultraviolet (UV) radiation field (in units of the Galactic value)  0.5 ≲ log χ≲ 1.5  . We then find that the observed relation between the molecular fraction and the dust-to-gas ratio of the sample is naturally explained by the above conditions. However, it is still possible that H2 deficient DLAs and subDLAs with H2 fractions less than  ∼10−6  are in a more diffuse and warmer state. The efficient photodissociation by the internal UV radiation field explains the extremely small H2 fraction  (≲10−6)  observed for  κ≲ 1/30  (κ is the dust-to-gas ratio in units of the Galactic value); H2 self-shielding causes a rapid increase in, and large variations of, H2 abundance for  κ≳ 1/30  . We finally propose an independent method to estimate the star formation rates of DLAs from H2 abundances; such rates are then critically compared with those derived from other proposed methods. The implications for the contribution of DLAs to the cosmic star formation history are briefly discussed.  相似文献   

10.
We present J , H and K -band spectroscopy of Cygnus A, spanning 1.0–2.4 μm in the rest-frame and hence several rovibrational H2, H recombination and [Fe  ii ] emission lines. The lines are spatially extended by up to 6 kpc from the nucleus, but their distinct kinematics indicate that the three groups (H, H2 and [Fe  ii ]) are not wholly produced in the same gas. The broadest line, [Fe  ii ] λ 1.644, exhibits a non-Gaussian profile with a broad base (FWHM≃1040 km s−1), perhaps because of the interaction with the radio source. Extinctions to the line-emitting regions substantially exceed earlier measurements based on optical H recombination lines.
Hard X-rays from the quasar nucleus are likely to dominate the excitation of the H2 emission. The results of Maloney, Hollenbach & Tielens are thus used to infer the total mass of gas in H2 v=1–0 S(1)-emitting clouds as a function of radius, for gas densities of 103 and 105 cm−3, and stopping column densities N H=1022–1024 cm−2. Assuming azimuthal symmetry, at least 2.3×108 M of such material is present within 5 kpc of the nucleus, if the line-emitting clouds see an unobscured quasar spectrum. Alternatively, if the bulk of the X-ray absorption to the nucleus inferred by Ueno et al. actually arises in a circumnuclear torus, the implied gas mass rises to ∼1010 M. The latter plausibly accounts for 109 yr of mass deposition from the cluster cooling flow, for which within this radius.  相似文献   

11.
We explore the ways in which primordial magnetic fields influence the thermal and ionization history of the post-recombination Universe. After recombination, the Universe becomes mostly neutral, resulting also in a sharp drop in the radiative viscosity. Primordial magnetic fields can then dissipate their energy into the intergalactic medium via ambipolar diffusion and, for small enough scales, by generating decaying magnetohydrodynamics turbulence. These processes can significantly modify the thermal and ionization history of the post-recombination Universe. We show that the dissipation effects of magnetic fields, which redshifts to a present value   B 0= 3 × 10−9 G  smoothed on the magnetic Jeans scale and below, can give rise to Thomson scattering optical depths  τ≳ 0.1  , although not in the range of redshifts needed to explain the recent Wilkinson Microwave Anisotropy Probe ( WMAP ) polarization observations. We also study the possibility that primordial fields could induce the formation of subgalactic structures for   z ≳ 15  . We show that early structure formation induced by nanoGauss magnetic fields is potentially capable of producing the early reionization implied by the WMAP data. Future cosmic microwave background observations will be very useful to probe the modified ionization histories produced by primordial magnetic field evolution and constrain their strength.  相似文献   

12.
H2 formation in metal-free gas occurs via the intermediate  H  or  H+2  ions. Destruction of these ions by photodissociation therefore serves to suppress  H2  formation. In this paper, I highlight the fact that several processes that occur in ionized primordial gas produce photons energetic enough to photodissociate  H  or  H+2  and outline how to compute the photodissociation rates produced by a particular distribution of ionized gas. I also show that there are circumstances of interest, such as during the growth of H  ii regions around the first stars, in which this previously overlooked form of radiative feedback is of considerable importance.  相似文献   

13.
14.
A Population III/Population II transition from massive to normal stars is predicted to occur when the metallicity of the star-forming gas crosses the critical range   Z cr= 10−5±1 Z  . To investigate the cosmic implications of such a process, we use numerical simulations which follow the evolution, metal enrichment and energy deposition of both Population II and Population III stars. We find that: (i) due to inefficient heavy element transport by outflows and slow 'genetic' transmission during hierarchical growth, large fluctuations around the average metallicity arise; as a result, Population III star formation continues down to   z = 2.5  , but at a low peak rate of  10−5 M yr−1 Mpc−3  occurring at   z ≈ 6  (about 10−4 of the Population II one); and (ii) Population III star formation proceeds in an 'inside–out' mode in which formation sites are progressively confined to the periphery of collapsed structures, where the low gas density and correspondingly long free-fall time-scales result in a very inefficient astration. These conclusions strongly encourage deep searches for pristine star formation sites at moderate  (2 < z < 5)  redshifts where metal-free stars are likely to be hidden.  相似文献   

15.
We investigate the properties of the first galaxies at   z ≳ 10  with highly resolved numerical simulations, starting from cosmological initial conditions and taking into account all relevant primordial chemistry and cooling. A first galaxy is characterized by the onset of atomic hydrogen cooling, once the virial temperature exceeds  ≃104 K  , and its ability to retain photoheated gas. We follow the complex accretion and star formation history of a  ≃5 × 107 M  system by means of a detailed merger tree and derive an upper limit on the number of Population III (Pop III) stars formed prior to its assembly. We investigate the thermal and chemical evolution of infalling gas and find that partial ionization at temperatures  ≳104 K  catalyses the formation of  H2  and hydrogen deuteride, allowing the gas to cool to the temperature of the cosmic microwave background. Depending on the strength of radiative and chemical feedback, primordial star formation might be dominated by intermediate-mass Pop III stars formed during the assembly of the first galaxies. Accretion on to the nascent galaxy begins with hot accretion, where gas is accreted directly from the intergalactic medium and shock heated to the virial temperature, but is quickly accompanied by a phase of cold accretion, where the gas cools in filaments before flowing into the parent halo with high velocities. The latter drives supersonic turbulence at the centre of the galaxy and could lead to very efficient chemical mixing. The onset of turbulence in the first galaxies thus likely marks the transition to Pop II star formation.  相似文献   

16.
A model of supernova feedback in galaxy formation   总被引:3,自引:0,他引:3  
A model of supernova feedback during disc galaxy formation is developed. The model incorporates infall of cooling gas from a halo, and outflow of hot gas from a multiphase interstellar medium (ISM). The star formation rate is determined by balancing the energy dissipated in collisions between cold gas clouds with that supplied by supernovae in a disc marginally unstable to axisymmetric instabilities. Hot gas is created by thermal evaporation of cold gas clouds in supernova remnants, and criteria are derived to estimate the characteristic temperature and density of the hot component and hence the net mass outflow rate. A number of refinements of the model are investigated, including a simple model of a galactic fountain, the response of the cold component to the pressure of the hot gas, pressure-induced star formation and chemical evolution. The main conclusion of this paper is that low rates of star formation can expel a large fraction of the gas from a dwarf galaxy. For example, a galaxy with circular speed 50 km s1 can expel 6080 per cent of its gas over a time-scale of 1 Gyr, with a star formation rate that never exceeds 0.1 M yr1. Effective feedback can therefore take place in a quiescent mode and does not require strong bursts of star formation. Even a large galaxy, such as the Milky Way, might have lost as much as 20 per cent of its mass in a supernova-driven wind. The models developed here suggest that dwarf galaxies at high redshifts will have low average star formation rates and may contain extended gaseous discs of largely unprocessed gas. Such extended gaseous discs might explain the numbers, metallicities and metallicity dispersions of damped Lyman systems.  相似文献   

17.
Three independent observational studies have now detected a narrow  (Δ z ≃ 0.5)  dip centred at   z = 3.2  in the otherwise smooth redshift evolution of the Lyα forest effective optical depth. This feature has previously been interpreted as an indirect signature of rapid photoheating in the intergalactic medium (IGM) during the epoch of He  ii reionization. We examine this interpretation using a semi-analytic model of inhomogeneous He  ii reionization and high-resolution hydrodynamical simulations of the Lyα forest. We instead find that a rapid  (Δ z ≃ 0.2)  boost to the IGM temperature  (Δ T ≃ 104 K)  beginning at   z = 3.4  produces a well understood and generic evolution in the Lyα effective optical depth, where a sudden reduction in the opacity is followed by a gradual, monotonic recovery driven largely by adiabatic cooling in the low-density IGM. This behaviour is inconsistent with the narrow feature in the observational data. If photoheating during He  ii reionization is instead extended over several redshift units, as recent theoretical studies suggest, then the Lyα opacity will evolve smoothly with redshift. We conclude that the sharp dip observed in the Lyα forest effective optical depth is instead most likely due to a narrow peak in the hydrogen photoionization rate around   z = 3.2  , and suggest that it may arise from the modulation of either reprocessed radiation during He  ii reionization, or the opacity of Lyman limit systems.  相似文献   

18.
This paper describes submm, 12CO (J = 2–1) observations of the interacting pair of galaxies NGC 4490 and 4485, and together with high resolution H  i and multifrequency radio continuum data we investigate the evolution of the ISM in this system. We find the following. (i) The smaller member of the pair, NGC 4485, has had the atomic, molecular and dust components of its ISM stripped via ram pressure during its recent passage through the extended H  i distribution of NGC 4490. A bow-shock is identified in the H  i ahead of the stripped gas. (ii) Within the disc of NGC 4490 we find a very low H2-to-H  i ratio as well as a strong correlation between thermal emission and mass of H2 suggesting that the star formation rate is limited in this case by the conversion of H  i to H2. (iii) 12CO emission from an H  i and radio-continuum bridge between the two galaxies is detected.  相似文献   

19.
Recent theoretical investigations have suggested that the formation of the very first stars, forming out of metal-free gas, was fundamentally different from the present-day case. The question then arises which effect was responsible for this transition in the star formation properties. In this paper, we study the effect of metallicity on the evolution of the gas in a collapsing dark matter mini-halo. We model such a system as an isolated 3 σ peak of mass     that collapses at     , using smoothed particle hydrodynamics. The gas has a supposed level of pre-enrichment of either     or 10−3 Z. We assume that H2 has been radiatively destroyed by the presence of a soft UV background. Metals therefore provide the only viable cooling at temperatures below 104 K. We find that the evolution proceeds very differently for the two cases. The gas in the lower metallicity simulation fails to undergo continued collapse and fragmentation, whereas the gas in the higher metallicity case dissipatively settles into the centre of the dark matter halo. The central gas, characterized by densities     , and a temperature,     , that closely follows that of the cosmic microwave background, is gravitationally unstable and undergoes vigorous fragmentation. We discuss the physical reason for the existence of a critical metallicity,     , and its possible dependence on redshift. Compared with the pure H/He case, the fragmentation of the     gas leads to a larger relative number of low-mass clumps.  相似文献   

20.
Observations of turbulent velocity dispersions in the H  i component of galactic discs show a characteristic floor in galaxies with low star formation rates and within individual galaxies the dispersion profiles decline with radius. We carry out several high-resolution adaptive mesh simulations of gaseous discs embedded within dark matter haloes to explore the roles of cooling, star formation, feedback, shearing motions and baryon fraction in driving turbulent motions. In all simulations the disc slowly cools until gravitational and thermal instabilities give rise to a multiphase medium in which a large population of dense self-gravitating cold clouds are embedded within a warm gaseous phase that forms through shock heating. The diffuse gas is highly turbulent and is an outcome of large-scale driving of global non-axisymmetric modes as well as cloud–cloud tidal interactions and merging. At low star formation rates these processes alone can explain the observed H  i velocity dispersion profiles and the characteristic value of  ∼10 km s−1  observed within a wide range of disc galaxies. Supernovae feedback creates a significant hot gaseous phase and is an important driver of turbulence in galaxies with a star formation rate per unit area  ≳10−3 M yr−1 kpc−2  .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号