首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermal treatments of anorthite carried out at up to 1,547° C show that the unit cell parameter changes as a function of the treatment temperature. The best fit curve found by non-linear least squares analysis is: =91.419-(0.327·10-6)T 2+(0.199·10-12)T 4-(0.391·10)T 6. The results obtained support significant Al,Si disorder (Al0.10, where Al=t 1(0)-1/3 [t 1(m)+t 2(0)+t 2(m)], Ribbe 1975), in anorthite equilibrated near the melting point and confirm a high temperature series differentiated from the low temperature series for calcic plagioclases in the An85–An100 range also. In the plot vs. An-content the high and low temperature curves intersect at An85 composition and progressively diverge in the An85–An100 range. The trends of the high and low temperature curves in this range are interpretable on the basis of the degree of Al, Si order in the average structures of calcic plagioclases.  相似文献   

2.
A thermodynamic analysis of the intermediate solid solution (Iss) of near-cubanite composition has been attempted by considering an Fe–Zn exchange equilibrium between Iss and sphalerite. The interchange free-energy parameter of Fe–Zn mixing in Iss (WIss) and the free energy of the exchange equilibrium (G1,T ) have been deduced at 500, 600, 700 and 723° C using the compositional data of sphalerite and Iss from phase equilibrium experiments and by the standard method of linear regression analysis. For sphalerite, two independent activity-composition models have been chosen. The extracted values of G1,T and WIss, using both models, are compared. Although the values match, the errors in the extracted parameters are relatively larger when Hutcheon's model is used. Both G1,T and WIss show linear variations with temperature, as given by the following relations: G1,T = –35.41 + 0.033 T in kcal (SE=0.229)WISS= 48.451 – 0.041 T in kcal (SE=0.565) Activity-composition relations and different mixing parameters have been calculated for the Iss phase. A large positive deviation from ideality is observed in Iss on the join CuFe2S3–CuZn2S3. No geothermometric application has been attempted in this study, even though Iss of cubanite composition (isocubanite) in association with sphalerite, pyrite and pyrrhotite is reported from seafloor hydrothermal deposits. This is due to the fact that: (a) the temperatures of formation of these deposits are significantly lower than 500° C, the lower limit of appropriate experimental data base; (b) microprobe data of the coexisting isocubanite and sphalerite in the relevant natural assemblages are not available.Symbols a J i activity of component i in phase J - G1, T standard free energy change of reaction (cal) - GIM free energy of ideal mixing (cal) - GEM free energy of excess mixing (cal) - G M ex free energy of mixing (cal) - G i excess free energy of mixing at infinite dilution (cal) - i J activity coefficient of component i in phase J - i J, 0 standard chemical potential of component i in phase J (cal) - ; i J chemical potential of component i in phase J (cal) - R universal gas constant (1.98717 cal/K·mol) - T temperature in degree (K) - WJ interchange free energy of phase J in (cal) - X J i mole fraction of component i in phase J  相似文献   

3.
In contrast to Ferry (1980) (X Ca)-values in garnet even lower than 0.1 have a significant effect on the calculated equilibrium temperature using the experimental calibration of the Fe and Mg paritioning between garnet and biotite. Garnet compositions and Mg/Fe — distribution coefficients from samples of the Eoalpine staurolite — in zone in the southern Ötztal are related by the quadratic regression equation: InK D= -1.7500 (±0.0226) + 2.978 (±0.5317)X Ca Gt -5.906(±2.359)(X Ca Gt )2 Temperatures derived by the Ferry and Spear (1978) calibration using chemistry — correctedK D values are petrologically realistic.Analysis of our data supports non ideal mixing of grossular with almandine — pyrope solid solution. The derived excess mixing energies are quite small for the almandine — pyrope solution (W FeMg= –133 cal/mole) and about +2775 cal/mole for the difference between pyrope-grossular and almandine-grossular solutions (W MgCaW FeCa) at metamorphic conditions of 570° C and 5,000 bar. The mixing parameters proposed by Ganguly and Saxena (1984) are not confirmed by our data as they would result in significantly lower temperatures.  相似文献   

4.
Zusammenfassung 1Tc-Strontiohilgardit (Ca, Sr)2 [B5O8(OH)2,Cl] mit Ca : Sr etwa 1 : 1 ist ein neues Mineral der Hilgarditgruppe. Fundpunkt: Reyersbausen (9° 59,7 E, 51° 36,6 N), Grube Königshall-Hindenburg, Flöz Staßfurt in sylvinitischer Ausbildung.Konstanten : triklin-pedial,a 0=6,38 Å,b 0=6,480 Å,c 0=6,608 Å, =75,4°,=61,2°, =60,5°; tafelige-gestreckte Links- und Re chtskristalle, farblos, wasserunlöslich, piezoelektrisch. Härte 5–7, Dichte 2,99 g cm–3;n =1,638,n =1,639,n =1,670; 2V =19°.Neue Daten für die Hilgarditgruppe : 2 M (Cc)-Calciumhilgardit (=Hilgardit) =4 Ca2[B5O3(OH)2Cl], Raumgruppe Cc.3Tc-Calciumhilgardit (=Parahilgardit) = 3 Ca2[B5O3(OH)2Cl]; trinklin-pedial, 0=6,31 Å,b =6,484 Å,c 0=17,50 Å; =84,0°,=79,6°, =60,9°.Die Polymorphiebeziehungen sind geometrisch deutbar durch eine spezielle Art der Polytropie (Stapelung von Links- und Rechtskristallen im Elementarbereich).  相似文献   

5.
Summary As suggested bySmith (1968) and supported by most structural data published since, in alkali feldspar the ** plot can be used for estimating (**), i. e. the difference in Al confent between 0 andm subsites. The present study investigates the topologically identical plot on the basis of the configuration of the alkali feldspar tetrahedral framework. Changes in Al content ofT-sites are functionally related to changes in cosines of and . While the total Al causing changes in cos is directly equal to the difference in Al content between 0 andm subsites, the total Al causing changes in cos is expressed by a complicated function which is equal with a very good approximation to three fourths of the difference in Al content betweenm and 0 subsites. This relation of quasiproportionality. like the feasible substitution in alkali feldspar of the diagram cos vs. cos by the plot, represents two simplifying assumptions which permit the difference in Al content to be calculated, as previously predicted.
Strukturelle Deutung für (**) aus dem */* der Alkalifeldspäte
Zusammenfassung Nach einem Vorschlag vonSmith (1968) und in Übereinstimmung mit den meisten seither publizierten Strukturdaten kann man in Alkalifeldspäten das */* zur Abschätzung von (**), also des Unterschiedes im Al-Gehalt auf der 0- undm-Position benützen. Die vorliegende Arbeit untersucht das topologisch idente /-Diagramm auf der Basis der Gestalt des Tetraederverbandes der Alkalifeldspäte. änderungen im Al-Gehalt derT-Position sind mit Änderungen im Kosinus von und korreliert. Während der die cos -änderungen verursachende Al-Gesamtgehalt unmittelbar dem Unterschied im Al-Gehalt derO-undm-Position entspricht, ist der die cos -Änderungen verursachende Al-Gesamtgehalt durch eine komplizierte Funktion ausgedrückt, die aber mit sehr guter Näherung drei Vierteln der Differenz im Al-Gehalt auf denm-und 0-Poisitionen entspricht. Diese quasi-Proportionalität und die Ersetzbarkeit des cos /cos -Diagrammes durch das /-Diagramm bei den Alkalifeldspäten stellen zwei Vereinfachungen bei der Berechnung des Al-Gehaltes dar.
  相似文献   

6.
The surface tension between silicate liquid and gas has been measured for four lava compositions (limburgite to andesite) from 1,200° to 1,500° C. The magnitude of surface tension () is in the range 350–370 dynes/cm. Variations found in as a function of liquid composition were small and had no obvious relation to liquid composition. was also found to vary little with furnace atmosphere — air, Ar, CO2, H2, CO and their mixtures. A relaxation time of hours to days, depending on temperature, is required before reproducible results can be obtained from originally crystalline starting material.The reproducible temperature dependence of for complex silicate liquid solutions was found to be small, positive, and a relatively simple function of liquid composition. To a first approximation, the dependence of d/dT on composition found by King (1953) for simple silicate binaries appears to extend to the complex solutions measured here. The extent of progressive dissociation of liquid constituents implied by the increase of with T appears to be principally determined by the average field strength (Z/R) of the network-modifying cations in the liquid and abundance of network-forming constituents . The actual amount of structural dissociation implied by these results reduces the molar volume of the average structural unit by at most 5% for a 100° C increase in temperature. Evidently the polymerization of coordination polyhedra is fairly stable over this temperature and composition range.  相似文献   

7.
Iron- and vanadium-bearing kyanites have been synthesized at 900 and 1100° C/20 kb in a piston-cylinder apparatus using Mn2O3/Mn3O4- and MnO/Mn-mixtures, respectively, as oxygen buffers. Solid solubility on the pseudobinary section Al2SiO5-Fe2SiO5(-V2SiO5) of the system Al2O3-Fe2O3(V2O3)-SiO2 extends up to 6.5 mole% (14mole %) of the theoretical end member FeSiO5(V2SiO5) at 900°C/20 kb. For bulk compositions with higher Fe2SiO5 (V2SiO5) contents the corundum type phases M2O3(M = Fe3+, V3+) are found to coexist with the Fe3+(V3+)-saturated kyanite solid solution plus quartz. The extent of solid solubility on the join Al2SiO5-Fe2SiO5 at 1 100°C was not found to be significantly higher than at 900° C. Microprobe analyses of iron bearing kyanites gave no significant indication of ternary solid solubility in these mixed crystals. Lattice constants a 0, b 0, c 0, and V0 of the kyanite solid solutions increase with increasing Fe2SiO5- and V2SiO5-contents proportionally to the ionic radii of Fe3+ and V3+, respectively, the triclinic angles ,, remain constant. Iron kyanites are light yellowish-green, vanadium kyanites are light green. Iron kyanites, (Al1.87 Fe 0.13 3+ )SiO5, were obtained as crystals up to 700 m in length.  相似文献   

8.
Sapphirine-1Tc, a polymorph of sapphirine, was found in granulites near Wilson Lake, Labrador. It is triclinic with unit cell data: a=10.04, b=10.38, c=8.65 Å, =107°33, =95°07, =123°55. The X-ray diffraction patterns of several crystals of sapphirine from Wilson Lake were investigated and evidence was found of solid state reactions that lead from the ordered polymorph-1Tc to a disordered arrangement of domains with the structure of sapphirine-2M, that is normal sapphirine.  相似文献   

9.
Partition of Fe2+ and Mg between coexisting (Mg, Fe)2SiO4 spinel and (Mg, Fe)SiO3 pyroxene was investigated at pressures 80 and 90 kbar and at temperatures 840 and 1050° C, using tetrahedral-anvil type of high pressure apparatus. Olivine-spinel solid solution equilibria in the system Mg2SiO4-Fe2SiO4 were discussed in the light of the partition reaction. Partition of Fe2+ and Mg in both olivine-spinel and pyroxene-spinel systems can not be regarded as that between ideal solid solutions. By applying the simple solution model for the partition of Fe2+ and Mg, sign of the heat of mixing was estimated to be positive for all olivine, spinel and pyroxene. Relative concentration of Fe2+ in spinel in the pyroxene-spinel system is likely to cause some change in the chemical composition of modified spinel () or spinel () in the transition zone of the mantle. A considerable change is also expected in the transition pressure of to ( + ) and ( + ) to .Presented at the symposium Recent Advances in the Studies of Rocks and Minerals at High Pressures and Temperatures held in Montreal, 1972. Jointly sponsored by the International Mineralogical Association and the Commission on Experimental Petrology.  相似文献   

10.
Giester  G. 《Mineralogy and Petrology》1995,53(1-3):165-171
Summary The crystal structure of synthetic KMn[SeO4]2 was determined by single crystal X-ray diffraction methods in space group , a = 4.827(2) Å, b = 4.988(2) Å, c = 7.981(3) Å, = 83.18(1)°, = 85.32(2)°, = 67.92(1)°, V = 176.66 Å3, Z = 1; 1564 unique data, measured up to 2 = 70° (MoK-radiation); R, R(I)w = 0.034, 0.074.KMn[SeO4]2 is closely related to monoclinic yavapaiite, KFe[SO4]2, and isotypic compounds. Jahn-Teller distorted MnO6 octahedra are alternately linked with KO10 polyhedra along [001]. The mean values of the Mn-O and Se-O distances are 2.007 Å and 1.637 Å, respectively.
Die Kristallstruktur vonKMn 3+[SeO4]-einem triklin verzerrten Vertreter der Yavapaiite-Familie
Zusammenfassung Die Kristallstruktur von synthetisch dargestelltem KMn[SeO4]2 wurde mittels Einkristallröntgenmethoden in der Raumgruppe bestimmt: a = 4.827(2) Å, b = 4.988(2) Å, c = 7.981(3) Å, = 83.18(1)°, = 85.32(2)°, = 67.92(1)°, V = 176.66 Å3, Z = 1; 1564 unabhängige Daten bis 2 = 70° (MoK-Strahlung); R, R(I)w = 0.034, 0.074.KMn[SeO4]2 ist eng mit dem monoklinen Mineral Yavapaiit, KFe[SO4]2 und einer Reihe damit isotyper Verbindungen verwandt. Jahn-Teller verzerrte MnO6 Oktaeder sind alternierend mit KO10 Polyedern parallel [001] verbunden. Die Mittelwerte der Mn-O und Se-O Abstände sind 2.007 Å bzw. 1.637 Å.


With 1 Figure  相似文献   

11.
Summary Integrated X-ray powder diffraction, scanning electron microscopy, electron probe, and transmission electron microscopy studies have identified the rare contact assemblage calaverite–sylvanite–hessite in a sample of gold ore from the Golden Mile deposit, Kalgoorlie, Australia. The presence of coexisting calaverite–hessite at Kalgoorlie is a non-equilibrium assemblage whereby the stable hessite-bearing assemblage is hessite–sylvanite, which formed from the breakdown of the -phase or -phase below 120°C, stützite+-phase, or sylvanite+stützite+-phase, as predicted by Cabri (1965).  相似文献   

12.
Single crystals of boehmite, up to 0.1 mm in size, were found in open cavities inside a corundum crystal from the Ratnapura area gem gravels in Ceylon. The unit cell parameters are (X-ray powder pattern): a 0=3.695 Å b 0=12.212 Å, c 0=2.867 Å. The crystallographic orientation is based on X-ray single-crystal precession photographs. The crystals show the faces (it010), (001), (101), and (221). Systematic extinctions agree with the space group Amam. Optical orientation: a, b, c. Refractive indices are given. The mineral is optically positive with a large optic axial angle.  相似文献   

13.
The equilibrium distribution of hydrous silicic melts in polycrystalline aggregates of quartz was characterized in a series of partial melting and melt distribution experiments in the systems quartz-albite-orthoclase-H2O and quartz-anorthite-H2O, at 650 to 1000 MPa and 800 to 900° C. Near-equilibrium textures in these experiments are characterized by very low quartz-quartz-melt wetting angles, and by a substantial number of thin melt films along grain boundaries. Wetting angles in the H2O-saturated experiments are as follows: 18° at 800° C-1000 MPa, and 12° at 900° C-1000 MPa in the granitic system; 18° at 850° C-650 MPa, 15° at 900° C-650 MPa, and 15° at 900° C-1000 MPa in the quartzanorthite system. In the granitic system at 900° C-1000 MPa, a decrease of H2O content in melt from 17 wt% (at saturation) to 6 wt%, results in a slight increase of wetting angle from 12° to 16°. These low wetting angles — and the observation that many grain boundaries are wetted by melt films-indicate that the ratio of quartz-quartz to quartz-melt interfacial energies (ss/s1) is high: 2. Secondary electron imaging of fracture surfaces of melt-poor samples provided a three-dimensional insight into the geometry of melt; at low melt fraction, melt forms an interconnected network of channels along grain edges, as predicted for isotropic systems with wetting angles below 60°. This high-permeability geometry suggests that the segregation of granitic melts is not as sluggish as previously anticipated; simple compaction calculations for a permeability range of 10-12 to 10-9 m2 indicate that segregation may operate at low to moderate melt fractions (below 30 vol. %), within relatively short time-scales, i.e., 105 to 106 years. Quartzmelt textures show significant deviations from the equilibrium geometries predicted for isotropic partially molten systems. The most consistent deviation is the pervasive development of crystallographically-controlled, planar faces of quartz; these faces provide definitive evidence for non-isotropic quartz-melt surface energy. For most silicates other than quartz, the grain-scale distribution of partial melts deviates even more significantly from equilibrium distributions in isotropic systems; accordingly, in order to describe adequately melt distributions in most natural source regions, the equilibrium model should be modified to account for anisotropy of solid-liquid interfacial energy.Contribution CNRS-INSU-DBT no 651  相似文献   

14.
The thermodynamic properties of non-ideal binary solutions were investigated. By using reduced temperatures (T/T critical mixing) and comparing the width of the solvi in very different binary systems, a uniform relation for several systems is obtained for which the concept of corresponding solvi is introduced.A graphical method is developed to determine Margules parameters from two-phase regions in solid solutions. Graphs are presented for binodal — as well as spinodal solvi. The Margules parameters obtained with these graphs are comparable with the calculated ones.In well investigated systems from the literature constant ratios of Margules parameters (W a /W b ) were recognized so far. Combining this observation with the concept of corresponding solvi, a tentative solvus can be constructed with a minimum of data.List of Symbols Used in the Calculations x Mole fraction of component B in solid solution - x 1 Mole fraction of component B in phase 1 - x 2 Mole fraction of component B in phase 2 - A 0 Chemical potential of 1 mole pure component A - B 0 Chemical potential of 1 mole pure component B - A(x), A Chemical potential of component A in solid solution - B(x), B Chemical potential of component B in solid solution - G Total Gibbs energy of the system - ¯G m (x), ¯Gm Molar Gibbs energy of solid solution - ¯G m E (x) Excess function - W a , W b Margules parameters - T Absolute temperature in K - P Pressure  相似文献   

15.
An analytical approach to the analysis of zoning profiles in minerals is presented that simultaneously accounts for all of the possible continuous reactions that may be operative in a given assemblage. The method involves deriving a system of simultaneous linear differential equations consisting of a Gibbs-Duhem equation for each phase, a set of linearly independent stoichiometric relations among the chemical potentials of phase components in the assemblage, and a set of equations describing the total differential of the slope of the tangent plane to the Gibbs free energy surface of solid solution phases. The variables are the differentials of T, P, chemical potentials of all phase components, and independent compositional terms of solid solution phases. The required input data are entropies, volumes, the compositions of coexisting phases at a reference P and T, and an expression for the curvature of the Gibbs functions for solid solution phases. Results derived are slopes of isopleths (dP/dT, dX/dT or dX/dP) which can be used to contour P-T diagrams with mineral composition.To interpret mineral zoning, T and P can be expressed as functions of n independent composition parameters, where n is the variance of the mineral assemblage. The total differentials of P and T are differential equations that can be solved by finite difference techniques using the derivatives obtained from the analytical formulation of phase equilibria.Results calculated from Zone I and Zone IV garnets of Tracy et al. (1976) indicate that Zone I garnets grew while T increased (T+72° C) and P decreased sharply (P–3 kb). Zone IV garnets zoned in response to decreasing T (T–17° C) and P (P–1 kb). A P-T path calculated for a zoned garnet from the Greinerschiefer series, western Tauern Window, Austria, also indicates growth during decompression (–3kb) and heating (T+15° C). A P-T path calculated for the Wissahickon schist (Crawford and Mark 1982) indicates growth during cooling and compression (T–25 C, P+2.2 kb). The calculated P-T paths differ according to structural environment and can be used to relate mineral growth to tectonic processes.  相似文献   

16.
Zusammenfassung Die Kristallstruktur des neuen Minerals Warikahnit, Zn3[(H2O)2|(AsO4)2], wurde mit Diffraktometerdaten bestimmt und bis zuR=0,038 für 3428 unabhängige Reflexe verfeinert.Warikahnit ist triklin, , mita=6,710(1),b=8,989(2),c=14,533(2) Å, =105,59(1), =93,44(1), =108,68(1)°,Z=4.Die Kristallstruktur des Warikahnits enthält sechs unterschiedliche Koordinationspolyeder des Zinks mit den Koordinationszahlen 6, 5 und 4 und mit fünf verschiedenen Ligandenkombinationen. Die Wasserstoffbrückenbindungen werden mit Hilfe der Ladungsbilanz und des IR-Spektrums diskutiert.
The crystal structure of warikahnite, Zn3[(H2O)2|(AsO4)2]
Summary The crystal structure of the new mineral warikahnite, Zn3[(H2O)2|(AsO4)2], was determined from diffractometer data and refined toR=0,038 for 3428 observed independent reflections.Warikahnit is triclinic, , witha=6.710(1),b=8.989(2),c=14.533(2) Å, =105.59(1), =93.44(1), =108.68(1)°,Z=4.The crystal structure of warikahnite contains 6 different coordination polyhedra of zinc with the coordination numbers 6,5 and 4 and with 5 different combinations of ligand. The hydrogen bonds are discussed on the basis of charge balance and IR spectra.


Mit 3 Abbildungen  相似文献   

17.
We have measured the mixing properties of Mn-Mg olivine and Mn-Mg garnet at 1300° C from a combination of interphase partitioning experiments involving these phases, Pt-Mn alloys and Mn-Mg oxide solid solutions. Activity coefficients of Mn dilute in Pt-Mn alloys at 1300° C/1 atm were measured by equilibrating the alloy with MnO at known f O 2. Assuming that the log f O 2 of the Mn-MnO equilibrium under these conditions is-17.80 (Robie et al. 1978), we obtain for Mn: logMn = –5.25 + 3.67 XMn + 11.41X2 Mn Mixing properties of (Mn,Mg)O were determined by reversing the Mn contents of the alloys in equilibrium with oxide at known f O 2. Additional constraints were obtained by measuring the maximum extent of immiscibility in (Mn,Mg)O at 800 and 750° C. The data are adequately described by an asymmetric (Mn,Mg)O solution with the following upper and lower limits on nonideality: (a) WMn = 19.9kj/Mol; WMg = 13.7kj/Mol; (b) WMn = 19.9kj/Mol; WMg = 8.2kj/Mol; Olivine-oxide partitioning was tightly bracketed at 1300° C and oxide properties used to obtain activity-composition relations for Mn-Mg olivine. Despite strong M2 ordering of Mn in olivine, the macroscopic properties are adequately described by a symmetric model with: Wol = 5.5 ± 2.5 kj/mol (1-site basis) Using these values for olivine, garnet-olivine partitioning at 27 kbar/1300° C leads to an Mn-Mg interaction parameter in garnet given by: Wgt = 1.5 ± 2.5kJ/mol (1-site basis) Garnet-olivine partitioning at 9 kbar/1000° C is consistent with the same extent of garnet nonideality and the apparent absence of excess volume on the pyrope-spessartine join indicates that any pressure-dependence of WGt must be small. If olivine and garnet properties are both treated as unknown and the garnet-olivine partitioning data alone used to derive WOl and WGt, by multiple linear regression, best-fit values of 6.16 and 1.44 kJ/mol. are obtained. These are in excellent agreement with the values derived from metal-oxide, oxide-olivine and olivine-garnet equilibria.  相似文献   

18.
The second-order elastic constants up to 30 GPa, which encompass the stability field of the spinel forms, their pressure derivatives and the third-order elastic constants of both hydrous and anhydrous -Mg2SiO4 have been obtained theoretically. A combination of deformation theory and finite strain elasticity theory has been employed to arrive at the expressions for second-order and third-order elastic constants from the strain energy of the lattice. The strain energy is calculated by taking into account the interactions up to second nearest neighbours in the -Mg2SiO4 lattice. This is then compared with the strain-dependent lattice energy from continuum model approximation to obtain the expression of elastic constants. The second-order elastic constants Cij compare favourably with the measurements in the case of anhydrous as well as hydrous -Mg2SiO4 and with other calculations on the anhydrous phase. All the third-order elastic constants of both the compounds are negative. The third-order elastic constant C144(–52.41 and –45.07 GPa for anhydrous and hydrous -Mg2SiO4, respectively) representing the anisotropy of shear mode has a smaller value than C111 (–2443.94 and –2101.25 GPa for anhydrous and hydrous phases, respectively), which corresponds to the longitudinal mode. The pressure-induced variations in the longitudinal elastic constants (i.e.,dC11/dp) are relatively large (4.08 and 4.09 for dry and hydrous ringwoodite, respectively) compared with those for the shear (0.22 and 0.32 for dry and hydrous ringwoodite, respectively) and off-diagonal constants (1.40 and 1.41 for dry and hydrous ringwoodite, respectively). The variation of the shear moduli Cs and anisotropy factor A with pressure have also been studied. The average value of elastic anisotropy is 0.835 in the case of anhydrous -Mg2SiO4 and 0.830 in the hydrous phase. The reversal of sign of the Cauchy pressure C12 – C44, which describes the angular character of atomic bonding in metals and other compounds, at around 21 GPa for both the compounds may be a precursor to the phase transition from ringwoodite to periclase and perovskite at an elevated temperature. The aggregate elastic properties like the adiabatic bulk modulus K (175.4 and 150.2 GPa for anhydrous and hydrous phases, respectively), and the isotropic compressional (P) and shear (S) wave velocities were calculated and the mode Grüneisen Parameters (GPs) of the acoustic waves were determined based on the quasi-harmonic approximation. The low temperature limit of both hydrous and anhydrous phases of -Mg2SiO4 are positive (1.69 and 1.78, respectively, for hydrous and anhydrous phases) and hence we expect the thermal expansion to be positive down to absolute zero. The Anderson–Grüneisen parameter obtained for hydrous as well as anhydrous phases of -Mg2SiO4 from the second-order and third-order elastic constants are 2.30 and 2.29, respectively.  相似文献   

19.
Mean and turbulent velocity measurements of supersonic mixing layers   总被引:1,自引:0,他引:1  
The behavior of supersonic mixing layers under three conditions has been examined by schlieren photography and laser Doppler velocimetry. In the schlieren photographs, some largescale, repetitive patterns were observed within the mixing layer; however, these structures do not appear to dominate the mixing layer character under the present flow conditions. It was found that higher levels of secondary freestream turbulence did not increase the peak turbulence intensity observed within the mixing layer, but slightly increased the growth rate. Higher levels of freestream turbulence also reduced the axial distance required for development of the mean velocity. At higher convective Mach numbers, the mixing layer growth rate was found to be smaller than that of an incompressible mixing layer at the same velocity and freestream density ratio. The increase in convective Mach number also caused a decrease in the turbulence intensity ( u /U).List of Symbols a speed of sound - b total mixing layer thickness betweenU 1 – 0.1U andU 2 + 0.1U - f normalized third moment ofu-velocity,f u 3/(U)3 - g normalized triple product ofu 2 v,g u 2 v/(U)3 - h normalized triple product ofu v 2, h uv' 2/(U)3 - l u axial distance for similarity in the mean velocity - l u axial distance for similarity in the turbulence intensity - M Mach number - M c convective Mach number (for 1=2),M c (U 1U 2)/(a 1+a 2) - P static pressure - r freestream velocity ratio,rU 2/U 1 - Re unit Reynolds number,Re U/ - s freestream density ratio,s 2/ 1 - T t total temperature - u instantaneous streamwise velocity - u deviation ofu-velocity,u u–U - U local mean streamwise velocity - U 1 primary freestream velocity - U 2 secondary freestream velocity - U average of freestream velocities, ¯U (U 1 +U 2)/2 - U freestream velocity difference,U U 1U 2 - v instantaneous transverse velocity - v deviation ofv-velocity,v v – V - V local mean transverse velocity - x streamwise coordinate - y transverse coordinate - y 0 transverse location of the mixing layer centerline - ensemble average - ratio of specific heats - boundary layer thickness (y-location at 99.5% of free-stream velocity) - similarity coordinate, (yy 0)/b - compressible boundary layer momentum thickness - viscosity - density - standard deviation - dimensionless velocity, (UU 2)/U - 1 primary stream - 2 secondary stream A version of this paper was presented at the 11th Symposium on Turbulence, October 17–19, 1988, University of Missouri-Rolla  相似文献   

20.
The Xihuashan stock (South Jiangxi, China) is composed of cogenetic granitic units (granites Xe, a, c, d and b) and emplaced during the Yanshanian orogeny (153±0.2 Ma). They are two feldspars, Fe-rich biotite±garnet and slightly peraluminous granites. Primary accessory minerals are apatite 1, monazite, zircon, uranothorite±xenotime in granites Xe and a, zircon, uranothorite, uraninite, betafite, xenotime 1; hydrothermal minerals are monazite altered into parisite and apatite 2, Y-rich parisite, yttroparisite, Y-rich fluorite and xenotime 2 in granites c and b. Petrographic observations, major element, REE, Y and Rb–Sr isotropic data point to a magmatic suite (granites Xe and a granites c and d granite b) distinct from hydrothermal Na-or K-alteration of b. From granite Xe to granite b, LREE, Eu, Th and Zr content are strongly depleted, while HREE, Y and U content increase. During K-alteration of b, these variations are of minor importance. Major and accessory mineral evidences, geochemical and fluid inclusion results indicate two successive alteration fluids interacting with b, (1) a late-magmatic F and CO2–rich fluid and (2) a post-magmatic, aqueous and slightly saline fluid. The depletion of LREE and Th content and the increase in HREE, Y and U content correspond, in the magmatic suite to the early fractionation of monazite in the granites where there is no hydrothermal alteration (granites Xe and e) and to the hydrothermal alteration of monazite into parisite and secondary apatite, intense new formation of yttroparisite, Y enrichment and U loss in the uranothorite and late crystallization of uraninite in the granites c and b. Moreover, simulated crystallization of monazite and temperature of monazite saturation show early fractionation of monazite from the magma in the less evolved granites (Xe and e) and prevailing hydrothermal leaching of monazite in the most evolved granites (c-d and b) related to a late-magmetic event. The slight variations of REE, Y, Th and U content in the K-altered granites compared to granite b emphazes the distinct chemical nature of the successive hydrothermal fluids. Rb–Sr and Sm–Nd isotopic results point to a 30 Ma period of time between the late-magmatic and the post-magmatic fluid circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号