首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During the Late Paleozoic, the Gondwana supercontinent was affected by multiple glacial and deglacial episodes known as “The Late Paleozoic Ice Age” (LPIA). In Brazil, the evidence of this episode is recorded mainly by widespread glacial deposits preserved in the Paraná Basin that contain the most extensive record of glaciation (Itararé Group) in Gondwana. The Pennsylvanian to early Permian glaciogenic deposits of the Itararé Group (Paraná Basin) are widely known and cover an extensive area in southern Brazil. In the Doutor Pedrinho area (Santa Catarina state, southern Brazil), three glacial cycles of glacier advance and retreat were described. The focus of this article is to detail the base of the second glacial episodes or Sequence II. The entire sequence records a deglacial system tract that is represented by a proximal glacial grounding-line system covered by marine mudstones and shales associated with a rapid flooding of the proglacial area. This study deals with the ice proximal grounding-line systems herein interpreted according to lab model named plane-wall jet with jump. Detailed facies analysis allowed the identification of several facies ranging from boulder-rich conglomerates to fine-grained sandstones. No fine-grained deposits such as siltstone or shale were recorded. According to this model, the deposits are a product of a supercritical plane-wall outflow jet that changes to a subcritical jet downflow from a hydraulic jump. The hydraulic jump forms an important energy boundary that is indicated by an abrupt change in grain size and cut-and-fill structures that occur at the middle-fan. The sedimentary facies and facies associations show a downflow trend that can be subdivided into three distinct stages of flow development: (1) a zone of flow establishment (ZFE), (2) a zone of transition (ZFT), and (3) an established zone (ZEF). The proximal discharge is characterized by hyperconcentrated-to-concentrated flow due to the high energy and sediment-laden nature of the flows. At the transitional zone, a hydraulic jump produces a rapid shift of conglomeratic to sandy facies with associated scour features. Towards the distal zones, the jet detaches to originate a vertical turbulent jet characterized by more diluted flows. Discussion of fan facies and architecture within a framework of jet-efflux dynamics provides an improved understanding of grounding-line fans systems that produce coarse-grained strata commonly enclosed by fine-grained rocks. The results have clear implication in terms of prediction of facies tract and geometry of oil and gas reservoirs deposited under similar conditions. And also can be useful to identifying the position of a glacial terminus through time.  相似文献   

2.
The Eocene Nanka Formation of the Anambra basin in southern Nigeria consists, in its type area, of four sand subunits each 50–90 m thick, separated by three gypsiferous glauconitic shales each about 2.5 m thick. The sand subunits are unconsolidated, uncemented quartzarenites, planar and trough cross-stratified, flaser and lenticular bedded, and burrowed (Ophiomorpha and Skolithos). Texturally the sands are medium to coarse, moderately sorted, positively skewed and leptokurtic. Two parallel belts, each with a distinctive paleocurrent pattern, are identified: one lying along the present eastern and northern margin of the formation, characterised by a shore-normal paleocurrent pattern; and the other lying on the west, distinguished by a shore-parallel orientation.An integrated analysis of stratigraphic, petrographic, textural, and structural data of the formation enabled reconstruction of an environmental model for the sand body. The model depicts sedimentation in a tidally influenced marine shoreline environment in which an intertidal and a subtidal zone can be delineated. Each zone is characterised by an assemblage of several sedimentary features. Interlaminations of shale and thin sand lenses, gypsiferous and glauconitic shale beds, flaser and lenticular bedding, herringbone structures, and shore-normal paleocurrent pattern are among the features that delineate the intertidal facies. The abundantly cross-stratified, coarse elastic sand-bars with rapid fining-upward sequences, burrowed pebbly horizons overlain by fine sand, and shoreparallel paleocurrent are the distinguishing features of the subtidal facies. The sandflat facies of the intertidal zone and the sandbar facies of the subtidal zone are, however, inseparable in most cases.  相似文献   

3.
Within the Kinsale Formation (Lower Carboniferous) of southern Ireland are pebbly sandstones and conglomerates contained in what is known locally as the Garryvoe conglomerate facies. In this facies there are three main groups of lithologies: (a) heterolithic mudrocks and sandstones characterized by a wide variety of wave-produced structures; (b) sandstones dominated by swaley cross-stratification (SCS), parallel lamination, and rare hummocky cross-stratification (HCS); and (c) pebbly sandstones and conglomerates occurring as discrete beds or as gravel clasts dispersed through SCS sets. Successions of the facies comprise units of heterolithic mudrock and rippled sandstone alternating repeatedly with coarsening-upward units of SCS pebbly sandstone capped by top-surface granule and pebble lags. The Garryvoe conglomerate facies accumulated in a system of offshore bars on a muddy shallow-marine shelf that was dominated by waves and currents generated by storms. Sands and gravels were bypassed from a contemporaneous northerly coastal zone to the shelf, where they were moulded by the storm-generated flow into low, broad, sand ridges (offshore bars). The elongate bars were spaced kilometres apart, oriented obliquely to the coast, and separated by muddy interbar troughs. Their surfaces were largely covered by hummocky and swaley forms. Long-term, gradual seaward migration of the offshore bars concentrated gravels on landward flanks from the dispersed pebbly sands that were on the crests and seaward flanks. Exceptionally intense storms could form laterally extensive winnowed gravel lags above thinned bar sequences. Such storms could also flush gravel-bearing turbidity currents into muddy interbar trough areas.  相似文献   

4.
This study provides an insight into the impact of probably the largest flood ever to have been identified in mainland Britain by examining new sedimentary evidence from the Auchteraw terrace, Fort Augustus, Scotland. Study of three sections reveals a succession consisting of: (1) sheet gravels; (2) large trough-shaped depressions infilled with cross-stratified sands and gravels; (3) smaller-scale, finer-grained cross-strata; and (4) sheet-like, occasionally channelized, bimodal sand and gravel beds. This study shows that both the sedimentology and morphology of the Auchteraw terrace are consistent with jökulhlaup deposition and reveal a greater variety of lithofacies types than identified in previous studies of jökulhlaups from ice-dammed lakes. The fine-grained nature of the sediment discussed in this study emphasizes the importance of sediment supply for the formation of distinctive jökulhlaup successions. The sedimentary evidence recorded here provides a valuable tool for the interpretation of the magnitude and frequency of proglacial meltwater flows associated with Pleistocene ice sheets worldwide.  相似文献   

5.
Strata of the Bardas Blancas Formation (lower Toarcian–lower Bajocian) are exposed in northern Neuquén Basin. Five sections have been studied in this work. Shoreface/delta front to offshore deposits predominate in four of the sections studied exhibiting a high abundance of hummocky cross-stratified, horizontally bedded and massive sandstones, as well as massive and laminated mudstones. Shell beds and trace fossils of the mixed Skolithos-Cruziana ichnofacies appear in sandstone beds, being related with storm event deposition. Gravel deposits are frequent in only one of these sections, with planar cross-stratified, normal graded and massive orthoconglomerates characterizing fan deltas interstratified with shoreface facies. A fifth outcrop exhibiting planar cross-stratified orthoconglomerates, pebbly sandstones with low-angle stratification and laminated mudstones have been interpreted as fluvial channel deposits and overbank facies. The analysis of the vertical distribution of facies and the recognition of stratigraphic surfaces in two sections in Río Potimalal area let recognized four transgressive–regressive sequences. Forced regressive events are recognized in the regressive intervals. Comparison of vertical distribution of facies also shows differences in thickness in the lower interval among the sections studied. This would be related to variations in accommodation space by previous half-graben structures. The succession shows a retrogradational arrangement of facies related with a widespread transgressive period. Lateral variation of facies let recognize the deepening of the basin through the southwest.  相似文献   

6.
The upper part of the Lower Cambrian succession in northeast Kangaroo Island comprises three interbedded facies associations. The fine-grained association is composed of siltstone, mudstone and minor sandstone. It contains flat lamination and abundant ripple cross-lamination which shows bipolar palaeocurrents, and occurs in combinations of flaser bedding, lenticular bedding and wavy lamination. Although body fossils are relatively rare, trilobite traces and desiccation cracks are common, and the association is interpreted as a predominantly subtidal to intertidal deposit. The conglomerate facies association contains horizontally bedded cobble to boulder conglomerate, with subordinate trough cross-stratified coarse sandstone to granule/pebble conglomerate. Fabrics and structures in the coarse conglomerates are consistent with alluvial transport (stream and debris flow), but not beach deposition. The conglomerate association is attributed to tectonic uplift and erosion of a Precambrian-Lower Cambrian succession developed adjacent to the present north coast of Kangaroo Island. Southward progradation of an alluvial fan complex occurred across east-west oriented tidal flats on which limited wave activity reworked sand and fine gravel, but not coarser material. The sandstone facies association mainly comprises trough cross-stratified and plane-laminated sandstone, the latter with current lineation predominantly sub-parallel to the east-west shoreline. Trough cross-stratification is ascribed to onshore waves and longshore currents, and current lineation to predominantly shore-parallel tidal currents, augmented by longshore drift and storm surge. Tectonic movements gave rise to cycles of transgression and regression as tidal and alluvial processes dominated alternately.  相似文献   

7.
This paper presents a detailed analysis of the high‐resolution facies architecture of the Middle Pleistocene Porta subaqueous ice‐contact fan and delta complex, deposited on the northern margin of glacial Lake Weser (North‐west Germany). A total of 10 sand and gravel pits and more than 100 wells were examined to document the complex facies architecture. The field study was supplemented with a ground‐penetrating radar survey and a shear‐wave seismic survey. All collected sedimentological and geophysical data were integrated into a high‐resolution three‐dimensional geological model for reconstructing the spatial distribution of facies associations. The Porta subaqueous fan and delta complex consist of three fan bodies deposited on a flat lake‐bottom surface at the margin of a retreating ice lobe. The northernmost fan complex is up to 55 m thick, 6·2 km wide and 6·5 km long. The incipient fan deposition is characterized by high‐energy flows of a plane‐wall jet. Very coarse‐grained, highly scoured jet‐efflux deposits with an elongate plan shape indicate a high Froude number, probably >5. These jet‐efflux sediments are deposited in front of a large ~3·2 km long, up to 1·2 km wide, and up to 25 m deep flute‐like scour, indicating the most proximal erosion and bypass area of the jet that widens and deepens with distance downstream to the region of maximum turbulence (approximately five times the conduit diameter). Evidence for subsequent flow splitting is given by the presence of two marginal gravel fan lobes, deposited in front of 1·3 to 2·5 km long flute‐like scours, that are 0·8 to 1 km wide and 7 to 20 m deep. In response to continued aggradation, small jets developed at the periphery of these bar‐like deposits and filled in the low areas adjacent to the original superelevated regions, locally raising the depositional surface and characterized by large‐scale trough cross‐stratified sand and pebbly sand. The incision of an up to 1·2 km wide and up to 35 m deep channel into the evolving fan is attributed to a catastrophic drainage event, probably related to a lake outburst and lake‐level fall in the range of 40 to 60 m. At the mouth of this channel, highly scoured jet‐efflux deposits formed under hydraulic‐jump conditions during flow expansion. Subsequently, Gilbert‐type deltas formed on the truncated fan margin, recording a second lake‐level drop in the range of 30 to 40 m. These catastrophic lake‐level falls were probably caused by rapid ice‐lobe retreat controlled by the convex‐up bottom topography of the ice valley.  相似文献   

8.
Ancient stream-dominated (‘wet’) alluvial fan deposits have received far less attention in the literature than their arid/semi-arid counterparts. The Cenozoic basin fills along the Denali fault system of the northwestern Canadian Cordillera provide excellent examples of stream-dominated alluvial fan deposits because they developed during the Eocene-Oligocene temperate climatic regime in an active strike-slip orogen. The Amphitheatre Formation filled several strike-slip basins in Yukon Territory and consists of up to 1200 m of coarse siliciclastic rocks and coal. Detailed facies analysis, conglomerate: sandstone percentages (C:S), maximum particle size (MPS) distribution, and palaeocurrent analysis of the Amphitheatre Formation in two of these strike-slip basins document the transition from proximal, to middle, to distal and fringing environments within ancient stream-dominated alluvial-fan systems. Proximal fan deposits in the Bates Lake Basin are characterized by disorganized, clast-supported, boulder conglomerate and minor matrix(mud)-supported conglomerate. Proximal facies are located along the faulted basin margins in areas where C:S = 80 to 100 and where the average MPS ranges from 30 to 60 cm. Proximal fan deposits grade into middle fan, channelized, well organized cobble conglomerates that form upward fining sequences, with an average thickness of 7 m. Middle fan deposits grade basinward into well-sorted, laterally continuous beds of normally graded sandstone interbedded with trough cross-stratified sandstone. These distal fan deposits are characteristic of areas where C:S = 20 to 40 and where the average MPS ranges from 5 to 15 cm. Fan fringe deposits consist of lacustrine and axial fluvial facies. Palaeogeographic reconstruction of the Bates Lake Basin indicates that alluvial-fan sedimentation was concentrated in three parts of the basin. The largest alluvial-fan system abutted the strike-slip Duke River fault, and prograded westward across the axis of the basin. Two smaller, coarser grained fans prograded syntaxially northward from the normal-faulted southern basin margin. Facies analysis of the Burwash Basin indicates a similar transition from proximal to distal, stream-dominated alluvial fan environments, but with several key differences. Middle-fan deposits in the Burwash Basin define upward coarsening sequences 50 to 60 m thick composed of fine-grained lithofacies and coal in the lower part, trough cross-stratified sandstone in the middle, and conglomerate in the upper part of the sequence. Upward-coarsening sequences, 90–140 m thick, also are common in the fan fringe lacustrine deposits. These sequences coarsen upward from mudstone, through fine grained, ripple-laminated sandstone, to coarse grained trough cross-stratified sandstone. The upward-coarsening sequences are basinwide, facies independent, and probably represent progradation of stream-dominated alluvial-fan depositional systems. Coal distribution in the Amphitheatre Formation is closely coupled with predominant depositional processes on stream-dominated alluvial fans. The thickest coal seams occur in the most proximal part of the basin fill and in marginal lacustrine deposits. Coal development in the intervening middle and distal fan areas was suppressed by the high frequency of unconfined flow events and lateral channel mobility.  相似文献   

9.
Late Pleistocene morainic sequences around Dundalk Bay, eastern Ireland, were deposited in a variety of shallow, glaciomarine environments at the margins of a grounded ice lobe. The deposits are essentially ice-proximal delta-fan and -apron sequences and are divided into two lithofacies associations. Lithofacies association 1 occurs as a series of morainal banks formed at the southern margin of the ice lobe in a body of water open to influences from the Irish Sea. The morainal banks consist mainly of diamictic muds deposited from turbid plumes and by ice-rafting with minor occurrences of turbidites, cross-bedded gravels (subaqueous outwash) and massive boulder gravels (high-density debris flows). Lithofacies association 2 was deposited in a narrow arm of the sea at the north-eastern margin of the ice lobe. The deposits consist mainly of a series of coalescing, ice-proximal Gilbert-type fan deltas which are interbedded distally with tabular and lens-shaped subaqueous deposits. The latter are mainly ice-rafted diamictons, debris-flow deposits and subaqueous sands and gravels. Both lithofacies associations are draped by diamictons formed by a combination of rain-out, debris flow and traction-current activity. At a few localities the upper parts of the sequence have been sheared by minor oscillations of the ice sheet margin. These sequences form part of an extensive belt of glaciomarine deposits which border the drumlin swarms of east-central Ireland. Lithostratigraphic variability is partially related to the arrival of large volumes of debris at the ice lobe margin when the main lowland ice sheet surged during drumlin formation. Complex depositional continua of this type lack any major erosional breaks and should not be used either as climatic proxies or for stratigraphic correlations.  相似文献   

10.
“Coarsening upward” successions typical of subtidal sand bars have been recognised in the NE-trending linear sandstone bodies which occur within marine shale in the Eze-Aku Formation (Upper Cretaceous) of southeastern Nigeria.The ideal succession, 15–20 m thick, consists of the following units from bottom to top: (1) bioturbated grey siltstone (offshore mud); (2) wave-ripple-laminated, fine-grained well-sorted sandstone (offshore sands); (3) trough and tabular, cross-bedded medium-grained sandstone with channelled base (subtidal channel complex); (4) trough cross-bedded, medium-grained sandstone with bimodal-bipolar paleocurrent pattern (subtidal bar); (5) coarse, pebbly trough cross-bedded sandstone with wave-rippled top, rare burrows and a bimodal-bipolar paleocurrent pattern (subtidal bar). A sixth facies, not a part of the normal sequence, consists of coarse, carbonate-cemented pebbly sandstone grading into pure shell-limestone (bar margin).The sand bars seem to have grown on a shallow mud-bottomed, wave-worked inland sea inhabited by burrowers. A model for the stages of the vertical growth of the bar is presented.  相似文献   

11.
Four sand units deposited by tsunamis and one sand unit deposited by storm surge(s) were identified in a muddy marsh succession in a narrow coastal lowland along the Pacific coast of central Japan. Tsunamis in ad 1498, 1605, 1707 and 1854 that were related to large subduction‐zone earthquakes along the Nankai Trough, and storm surges in 1680 and/or 1699 were responsible for the deposition of these sand units. These sand units are distinguished by lithofacies, sedimentary structures, grain‐size and mineral composition, and radiocarbon ages; their ages are supported by events in local historical records. The tsunami deposits in the study area are massive or parallel‐laminated sands, with associated intraclasts, gravels, draping mud layers and, rarely, a return‐flow subunit. The storm surge deposits are devoid of these characteristics, and are composed of groups of thin, current ripple‐laminated sand layers. The differences in sedimentary structures between the tsunami and storm surge deposits are attributed to the different characteristics of tsunami and storm waves.  相似文献   

12.
The Coppenbrügge subaqueous ice‐contact fan complex of early Saalian age is about 10 km long and up to 10 km wide and is composed of offset‐stacked fan clinothems that are transgressive‐regressive sequences formed during an overall lake level rise. The individual fan bodies consist of coarse gravel in the ice‐proximal part, passing distally into sandy facies and showing large‐scale foreset bedding. The iceberg scour recognized in an open‐pit outcrop is up to 1.5m deep, up to 2m wide and cut in undisturbed mid‐fan deposits. The scour‐fill can be traced laterally for about 15m and consists of sheared sand and, in the frontal zone, of downbent overlying strata surrounded by a zone of deformed sediments. The deformed sediment produced by the iceberg keel's shearing of the trough walls is a sand mass containing angular soft‐sediment clasts that show internal folds and fractures. The basal surface of the deformed sediment is a nearly horizontal shear plane, steepening up laterally as a discrete thrust and showing a flat‐ramp‐flat geometry. The scour was formed by the iceberg keel's ploughing the substrate and pushing the sediment sideways and frontally, forming a ridge of deformed sediments at the trough end. This ridge was concurrently eroded by an accompanying meltwater underflow which apparently developed a horseshoe system of scouring vortices around the grounded iceberg. The current's scour was filled with massive, non‐stratified sand deposited rapidly from turbulent suspension. The iceberg eventually broke up and its keel part was buried. As these ice fragments gradually melted, the space was closed by normal faulting and downbending of overlying strata. The collapsing scour‐fill became partly liquified, and the resulting water‐escape structures cut the normal faults and the overlying deposits. Though produced chiefly by tangential shear strain, iceberg‐ploughing features are readily distinguishable from other glaciotectonic deformations. They can serve as a diagnostic criterion for glaciolacustrine or glaciomarine environments and the distinguishing of ice‐contact subaqueous fans from ice‐contact deltas in the stratigraphic record.  相似文献   

13.
Near Williams Lake, in the central interior of British Columbia, the Fraser River exposes long sections of late Pleistocene glaciolacustrine sediments selectively preserved within a bedrock trough. The dominant facies types are thick, normally graded gravels and sands that occupy steeply dipping multistorey channels up to 300 m wide and several tens of metres deep. Channels appear to have been simultaneously cut and filled by high density turbidity currents in a glacial lake floored by stagnant ice. Fining upward sediment gravity flow sequences up to 50 m thick may be the product of quasi-continuous ‘surging’ turbidity flows triggered by catastrophic meltwater discharges into the trough or retrogressive failure of ice-cored sediments. Large-scale post-depositional deformation structures, such as synclinal folds, normal faults, sedimentary dyke swarms and dewatering structures, record gravitational foundering of sediment and pore-water expulsion caused by the melt of underlying glacier ice. Melting of buried ice masses along the floor of the trough appears to have controlled the flow paths of turbidity currents by producing sub-basins within the overlying sediment pile. An idealized model of ‘supraglacial’ lacustrine sedimentation is developed that may be applicable to other glaciated areas with similar bedrock topography.  相似文献   

14.
Coastal exposures of Late Pleistocene sediments deposited after 19 000 yr BP near Dublin, Ireland, provide a window into the infill of a subglacially-cut tunnel valley. Exposures close to the steeply dipping bedrock wall of the valley show boulder gravels within multi-storey U-shaped channels cut and filled by subglacial meltwaters driven by a high hydrostatic head. Gravels are truncated by poorly sorted ice-proximal glaciomarine sediments that record the pumping of large volumes of subglacial debris along the tunnel valley to a tidewater ice sheet margin. The sedimentary succession is dominated by sediment gravity flow facies comprising interbedded diamict and massive, poorly sorted gravel facies interpreted as subaqueous debris flow deposits. Gravel beds show local inverse and normal coarse-tail graded facies recording the restricted development of turbulent flow. Sediment gravity flow deposits fill broad (<2 km) shallow (10 m) and overlapping channels. Penetrative deformation structures (e.g. dykes) are common at the base of channels. The same subglacially-eroded topography and glaciomarine infill stratigraphy can be identified on high resolution seismic profiles across nearly 600 km2 of the western Irish Sea. Tunnel valleys are argued to have been exposed to glaciomarine processes by the rapid retreat of a calving tidewater ice sheet margin in response to marine flooding caused by glacio-isostatic downwarping below the last British Ice Sheet. The facies associations described in this paper comprise an event stratigraphy that may be found on other glaciated continental shelves.  相似文献   

15.
ABSTRACT In the northern parts of the Needwood and Stafford/Eccleshall Basins, England, the Pebble Beds of the Sherwood Sandstone Group contain thick successions of texturally mature, fluvial pebble/cobble conglomerates which are organized into either horizontal or cross-stratified sets. The horizontally lying sets, generally coarser grained and more poorly sorted than the cross-bedded sets, are usually disorganized and either matrix- or clast-supported, although thin lenses of well-sorted, occasionally openwork units, interpreted as falling stage phenomena, are often present. The cross-stratified conglomerates have foresets exhibiting remarkable textural organization, with a coarse, bimodal (sometimes matrix-supported) part grading upwards or being abruptly overlain by a finer, well-sorted (occasionally openwork) part and finally capped by sandstone. These rhythmic textural changes are attributed partly to an avalanche process at high stage and partly to falling stage conditions. The most common types of vertical association are thick successions of horizontally bedded conglomerates (up to 20 m) and sequences of an upwards coarsening nature (2-12 m) in which cross-stratified sets are overlain by flat-lying sets. The environment of deposition of the gravels is interpreted as one in which water depths at high stage were greater than depths in most modern braided stream plains (proglacial or alluvial fan) but shallower than depths associated with the Pleistocene catastrophic floods from which texturally mature, giant gravel bars have been recorded. Recent braided streams with relatively confined channels and considerable bar/channel relief are better analogues. In particular, medial or mid-channel bars with a two-tier structure (subaqueous and partly emergent portions) may explain the upward-coarsening sequences in which horizontally lying conglomerates overlie cross-stratified conglomerates. The thicker sequences of horizontally stratified conglomerates represent proximal, longitudinal bar deposits. Sheets of pebbly sandstone and argillaceous sandstone lying between the conglomerates, and commonly occurring towards the top of the succession, largely represent deposition from sandwaves and dunes. Finer, interbedded, argillaceous sandstones, siltstones and mudstones are interpreted as overbank and waning-flood deposits. Basin-forming tectonism of increasing intensity probably caused the initial coarsening upwards of the lower part of the succession, whilst more stable tectonic conditions and decreasing relief on the margins of the basins and in the areas of provenance in the Midlands and the Hercynides, account for the upwards-fining of the upper part of the succession.  相似文献   

16.
The efficiency of subglacial drainage is known to have a profound influence on subglacial deformation and glacier dynamics with, in particular, high meltwater contents and/or pressures aiding glacier motion. The complex sequence of Middle Pleistocene tills and glacial outwash sediments exposed along the north Norfolk coast (Eastern England) were deposited in the ice-marginal zone of the British Ice Sheet and contain widespread evidence for subglacial deformation during repeated phases of ice advance and retreat. During a phase of easterly directed ice advance, the glacial and pre-glacial sequences were pervasively deformed leading to the development of a thick unit of glacitectonic mélange. Although the role of pressurised meltwater has been recognised in facilitating deformation and mélange formation, this paper provides evidence for the subsequent development of a channelised subglacial drainage system beneath this part of the British Ice Sheet filled by a complex assemblage of sands, gravels and mass flow deposits. The channels are relatively undeformed when compared to the host mélange, forming elongate, lenticular to U-shaped, flat-topped bodies (up to 20–30 m thick) located within the upper part of this highly deformed unit. This relatively stable channelised system led to an increase in the efficiency of subglacial drainage from beneath the British Ice Sheet and the collapse of the subglacial shear zone, potentially slowing or even arresting the easterly directed advance of the ice sheet.  相似文献   

17.
The 3·2 km long Rose Creek fan delta of west‐central Nevada is prograding from an active rift margin into the 32 m deep Walker Lake. A case study of the forms, processes and facies of this fan delta reveals that the proximal and medial zones mainly are of sub‐aerial origin, and the distal zone is of lacustrine origin. Pebbly to bouldery rock‐avalanche mounds >100 m thick (Facies A) and muddy to bouldery debris flow levées 0·5 to 2·0 m thick (Facies B) dominate the proximal zone, whereas mostly matrix‐supported cobbly pebbly debris flow lobes 0·1 to 1·0 m thick (Facies C) typify the medial zone. Surficial pebble lags and gully fills (Facies D) are widespread in both zones but, in exposures, comprise only partings or lenticles between debris flow units. The distal fan delta mainly consists of lakeshore to lake‐bottom tracts formed by extensive wave reworking of debris flow facies. Nearshore deposits include erosional cobbly boulder lag beaches (Facies E), pebbly constructional beaches attached at headcuts or on barrier spits (Facies F), pebbly upper shoreface (Facies G) and sandy lower shoreface (Facies H) tracts positioned lakeward of the beach, and pebbly landward‐dipping foresets (Facies I) and backshore‐pond sand and mud (Facies J) present landward of the spits. Erosional lag beaches fringe the windward north side of the fan‐delta front, attached constructional beaches characterize the central zone, and southward‐elongating barrier spits typify the leeward south side, extending from the zone of greatest projection of the fan delta into the lake. Shoreline facies asymmetry results from largely unidirectional longshore drift caused by high fetch to the north and minimal fetch to the south, combined with the arcuate shape of the fan‐delta front. The spits overlie a platform deposited below common wave base consisting of south‐east‐trending cones of pebbly Gilbert foresets (Facies K) and sandy toesets (Facies L). Typically slumped silt and mud (Facies M) fringe both this platform and lower shoreface sand in deeper water. This case demonstrates facies types and patterns that are inconsistent with the widely promoted fan‐delta facies model having a front consisting of an apron of radially directed Gilbert foresets deposited where sub‐aerial flows enter the lake. The Rose Creek fan‐delta front instead features a sharp contact between sub‐aerial and lakeshore facies formed where waves erode, sort and redistribute heterogeneous debris flow sediment into the various shallow‐to‐deep lake facies. Gilbert foresets are present only in the lee of the fan delta where sediment moving by longshore drift reaches the brink of the spit front. This facies scenario results from the infrequency of fan‐building events versus nearly constant wind‐induced waves, a scenario that, in contrast to the popular Gilbert model, probably is the norm for fan deltas. The level of Walker Lake, and thus the position of wave reworking on the Rose Creek fan delta, fluctuated over a range of ~157 m during the last 18 kyr, producing complex interfingering between sub‐aerial and lakeshore facies across a 1700 m wide radial belt, typifying a wave‐modified, freestand lacustrine fan delta.  相似文献   

18.
The Middle Devonian Malbaie Formation of Eastern Gaspé, Canada, comprises sharply alternating conglomerate and sandstone units. Their petrography suggests derivation from the same source, but palaeocurrents indicate different dispersal systems for the sand and gravel. The principal conglomerate facies is horizontally stratified, with well-developed imbrication, characteristic of deposition on a high-energy, proximal braidplain. Minor cross-stratified conglomerate shows well-defined size sorting, attributed to avalanching down foresets and sorting within minor bedforms on bar tops. The sandstone units mainly comprise erosion surfaces overlain by mudstone intraclasts, alternating with lineated low-angle to horizontally stratified sandstone or trough cross-stratified sandstone. The sandstone units were deposited on a proximal braidplain with highly variable discharge, but the absence of calcrete indicates that dry periods were not prolonged. The Malbaie is the coarsest, uppermost formation of a Devonian clastic wedge formed during the Acadian Orogeny. The uniformity of facies association and palaeocurrents, particularly in conglomerate units, indicates derivation from a broad upwarp to the south. This implies that the Acadian uplands resulted from straight compression, in contrast to the localized uplifts formed by strike-slip faulting during the Carboniferous.  相似文献   

19.
Meltwater flows emanating from the Pyrenees during the Pleistocene constructed a braided outwash plain in the Ebro Basin and led to the karstification of the Neogene gypsum bedrock. Synsedimentary evaporite dissolution locally increased subsidence rates and generated dolines and collapses that enabled the accumulation and preservation of outwash gravels and associated windblown deposits that were protected from erosion by later meltwater flows. In these localized depocentres, maximum rates of wind deceleration resulted from airflow expansion, enabling the accumulation of cross‐stratified sets of aeolian strata climbing at steep angles and thereby preserving up to 5 m thick sets. The outwash plain was characterized by longitudinal and transverse fluvial gravel bars, channels and windblown facies organized into aeolian sand sheets, transverse and complex aeolian dunes, and loess accumulations. Flat‐lying aeolian deposits merge laterally to partly deformed aeolian deposits encased in dolines and collapses. Synsedimentary evaporite dissolution caused gravels and aeolian sand deposits to subside, such that formerly near‐horizontal strata became inclined and generated multiple internal angular unconformities. During episodes when the wind was undersaturated with respect to its potential sand transporting capacity, deflation occurred over the outwash plain and coarse‐grained lags with ventifacts developed. Subsequent high‐energy flows episodically reached the aeolian dune field, leading to dune destruction and the generation of hyperconcentrated flow deposits composed in part of reworked aeolian sands. Lacustrine deposits in the distal part of the outwash plain preserve rhythmically laminated lutites and associated Gilbert‐type gravel deltas, which developed when fluvial streams reached proglacial lakes. This study documents the first evidence of an extensive Pleistocene proglacial aeolian dune field located in the Ebro Basin (41˙50° N), south of what has hitherto been considered to be the southern boundary of Pleistocene aeolian deposits in Europe. A non‐conventional mechanism (evaporite karst‐related subsidence) for the preservation of aeolian sands in the stratigraphic record is proposed.  相似文献   

20.
The Late Miocene lacustrine Acıgöl Basin, SW Turkey, formed as an orogen-top, extensional half-graben, with the subaqueous accommodation controlled by the lake level and the bulk accommodation provided by active subsidence along a WSW-trending normal fault at the basin's southern margin. The basin-fill sedimentary succession consists of terminal alluvial-fan facies overlain by ephemeral lake-margin facies and perennial lake facies, with widespread fluvial facies at the top. The distal alluvial-fan facies include massive to stratified sandstones and massive mudstones with intervening nodular dolostones and incipient pedogenic horizons. The lake-margin facies are micritic magnesites passing laterally into peloidal, irregularly laminated magnesites towards the palaeolake margin and overlain by marlstones and dolostones, all with abundant evidence of episodic subaerial exposure (desiccation cracks, pedogenic features, and tepee structures). The perennial lake facies are micritic magnesites passing upwards into clayey dolostones and dolomitic or clayey marlstones. The fluvial facies capping the succession include planar cross-stratified conglomerates (channel-fill deposits), planar parallel-stratified, planar cross-stratified and rippled cross-laminated sandstones (crevasse-fill and crevasse splay deposits), and assemblages of mudstones intercalated with thin sandstone beds (overbank floodplain deposits).The sedimentological, mineralogical and geochemical data reveal large variations in the basin's hydrological regime, including short-term oscillations and bulk rise of the lake level, periodical changes in the Mg/Ca ratio and terrigenous mud supply, and a negative covariance of δ18O and δ13C fluctuations. The composition of terrigenous sediment and the chemistry of water supplied to the lake were controlled by the weathering, chemical leaching and erosion of the ultramafic–dolomitic bedrock in the catchment area. The bedrock yielded Mg-rich carbonate solutions that caused the deposition of Mg-carbonates in the lake.Despite short-term lake-level fluctuations, the lake's net water budget remained positive. It is suggested that the region's present-day climate and Mg-rich alkaline lakes can serve as an analogue for the climatic and hydrological conditions in the Late Miocene Acıgöl Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号