首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Late Devensian (<20 ka BP) glacial geology of the Irish Sea Basin (4000 km2) is an event stratigraphy recording the entry of marine waters into a glacio-isostatically-depressed basin, and the rapid retreat of the Irish Sea Glacier as a tidewater ice margin. Marine limits occur up to 140 m O.D. Across much of the central basin, the ice margin was uncoupled from its bed exposing a subglacially-scoured topography to glaciomarine processes. The Irish Sea Glacier was a major drainage conduit of the last British Ice Sheet; calving of the marine ice margin resulted in fast flow (surging) of ice streams recorded by drumlin fields around the northern basin margin and tunnel valleys. Rapid evacuation of the basin may have stranded large areas of dead ice in peripheral zones (e.g. Cheshire/Shropshire Lowlands) and initiated the collapse of the ice sheet.Thick wedges of ice-contact glaciomarine sediments were deposited during ice retreat as morainal bank complexes by successive tidewater ice margins stabilized at pinning points around the Irish Sea coast. Where morainal banks occur on the seaward side of drumlin swarms there is a clear sequential relationship between rapid ice loss from calving ice margins, the development of fast flowing ice streams, drumlinization and the pumping of subglacial sediment to tidewater. Raised delta complexes are locally associated with marine limits along the high relief coastal margins of Wales, east central Ireland, and the Lake District. Associated valley infill complexes record downslope resedimentation of heterogenous sediments into the marine environment during ice retreat. Co-eval offshore deposits are represented by well-stratified glaciomarine complexes that infill a subglacially-scoured topography that shows networks of tunnel valleys. Glaciomarine mud drapes occur well to the south of the maximum limit of grounded ice in the basin (e.g. North Devon, Scilly Islands, Southern Ireland). The age of these distal sediments, previously mapped as pre-Devensian tills, is constrained by amino acid ratios.Basin rebound following deglaciation was rapid, with over 100 m recovery in 3 ka, and was followed by a low marine still stand. Peat, accumulating in offshore areas now as much as 55 m below sea level has been drowned by the postglacial eustatic rise in sea level.The glacio-sedimentary model identified in this paper, involving rapid ice retreat and related sedimentation triggered by rising relative sea level, suggests that isotatic downwarping is an important mechanism for deglaciating continental shelves.  相似文献   

2.
Four phases of cross‐cutting tunnel valleys imaged on 3‐D seismic datasets are mapped within the Middle–Late Pleistocene succession of the central North Sea basin (Witch Ground area). In plan the tunnel valleys form complex anastomosing networks, with tributary valleys joining main valleys at high angles. The valleys have widths ranging from 250 to 2300 m, and base to shoulder relief varying between 30 and 155 m, with irregular long‐axis profiles characteristic of erosion by water driven by glaciostatic pressures. The youngest phase of tunnel valleys are smaller and have a thinner infill than the older generations. The fill of the larger valleys comprises three seismic facies, the lowermost of which has high amplitudes and is discontinuous. The middle facies consists of wedge‐shaped packages of low‐angle dipping reflectors and is overlain by a facies characterised by sub‐horizontal reflectors, which onlap the valley margins. The seismic character, and comparison with lithologies identified in other northwest European Pleistocene tunnel valleys both onshore and offshore, suggests that the lower two seismic facies are most likely sand and gravel‐dominated, while the uppermost facies consists of glaciolacustrine and marine muds. The 3‐D morphology of the valley margins combined with the geometry of the infill packages suggest that episodic discharge of subglacial meltwater was responsible for incising the valleys and depositing at least some of the infill. Proglacial glaciofluvial deposits are inferred to account for some of the fill overlying the subglacial deposits. Glaciolacustrine and marine muds filled remaining valley topography as the ice sheet retreated. The preserved valley margins are shown to be time‐transgressive erosion surfaces that record changes in geometry of the tunnel valley system as it evolved through time, implying that valleys associated with each ice‐sheet advance/retreat cycle were dynamic and probably long‐lived. Within the constraints of the existing stratigraphy the oldest tunnel valleys in the Witch Ground area of the central North Sea are most likely to be Marine Isotope Stage (MIS) 12 (Elsterian, ca. 470 ka) in age and the youngest pre‐MIS 5e (last interglacial, ca. 120 ka). If each tunnel valley phase was formed during the retreat of a major ice sheet then four glaciations with ice coverage of the central North Sea are recorded in the pre‐Weichselian, Middle–Late Pleistocene stratigraphy. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
通过详细测制西藏申扎县扎扛-木纠错石炭二叠系剖面,查明了拉嘎组的岩石类型、组合及沉积环境。申扎地区的拉嘎组是以暗色粉砂岩、泥岩等细碎屑岩背景下,发育若干板状、长透镜状及透镜状粗碎屑岩为特征。大部分粗碎屑岩及部分细碎屑岩的分选及磨圆很差,成熟度极低,岩性显示为杂砾岩、杂砂岩,局部地区见有花岗岩漂砾。研究认为,拉嘎组形成于冰缘解冻并后退状态下的近岸冰海沉积环境,其沉积相类型可以分为分支水道与间湾、水下冰水扇、冰碛物与冰筏、滨岸与内陆棚。鉴于其时代可能为早二叠世Sakmarian期,因此,拉嘎组可能是晚古生代冰期消融的产物。拉嘎组沉积相的识别分析对拉萨地块晚古生代的古环境和古地理有重要意义。  相似文献   

4.
Core 2011804‐0010 from easternmost Lancaster Sound provides important insights into deglacial timing and style at the marine margin of the NE Laurentide Ice Sheet (LIS). Spanning 13.2–11.0 cal. ka BP and investigated for ice‐rafted debris (IRD), foraminifera, biogenic silica and total organic carbon, the stratigraphy comprises a lithofacies progression from proximal grounding line and sub‐ice shelf environments to open glaciomarine deposition; a sequence similar to deposits from Antarctic ice shelves. These results are the first marine evidence of a former ice shelf in the eastern Northwest Passage and are consistent with a preceding phase of ice streaming in eastern Lancaster Sound. Initial glacial float‐off and retreat occurred >13.2 cal. ka BP, followed by formation of an extensive deglacial ice shelf during the Younger Dryas, which acted to stabilize the retreating margin of the NE LIS until 12.5 cal. ka BP. IRD analyses of sub‐ice shelf facies indicate initial high input from source areas on northern Baffin Island delivered to Lancaster Sound by a tributary ice stream in Admiralty Inlet. After ice shelf break‐up, Bylot Island became the dominant source area. Foraminifera are dominated by characteristic ice‐proximal glaciomarine benthics (Cassidulina reniforme, Elphidium excavatum f. clavata), complemented by advected Atlantic water (Cassidulina neoteretis, Neogloboquadrina pachyderma) and enhanced current indicators (Lobatula lobatula). The biostratigraphy further supports the ice shelf model, with advection of sparse faunas beneath the ice shelf, followed by increased productivity under open water glaciomarine conditions. The absence of Holocene sediments in the core suggests that the uppermost deposits were removed, most likely due to mass transport resulting from the site's proximity to modern tidewater glacier margins. Collectively, this study presents important new constraints on the deglacial behaviour of the NE Laurentide Ice Sheet, with implications for past ice sheet stability, ice‐rafted sediment delivery, and ice−ocean interactions in this complex archipelago setting.  相似文献   

5.
This study offers new insights into the origin and depositional history of the mixture of sediments infilling one of the largest offshore, northward‐orientated, clinoform‐structured, tunnel valleys (TVs) of Elsterian age in the southern North Sea (SNS). Specifically, the study sheds light on the provenance of TV deposits based on K‐Ar dating of illite, QEMSCAN® heavy mineral assemblage study, and U‐Pb and fission track dating on single grains of apatite. Early Pleistocene substrate and the TV infill demonstrate provenance from the Scandinavian and Baltic realms as well as from Renish central Europe and the Alps. Prior to Elsterian glaciation fluvial transport to the SNS increasingly switched from Baltic sources to a more central European influence. However, based on similar provenance of both the substrate and TV infill, the episode of subglacial tunnel valley formation interrupted this central European influence. Glacial erosional processes associated with the expansion of the Elsterian ice sheet to the SNS reworked a large amount of sediment from the Early Pleistocene deposits of the SNS. The sediment was eventually deposited as the tunnel valley infill. Taking into account a high uncertainty related to the facies of TV sedimentary infill, which thus far has been inferred from seismic reflection surveys only, this study offers the first comprehensive set of data on the composition and provenance of the offshore Elsterian TV sediment.  相似文献   

6.
Subglacial meltwater plays a significant yet poorly understood role in the dynamics of the Antarctic ice sheets. Here we present new swath bathymetry from the western Amundsen Sea Embayment, West Antarctica, showing meltwater channels eroded into acoustic basement. Their morphological characteristics and size are consistent with incision by subglacial meltwater. To understand how and when these channels formed we have investigated the infill of three channels. Diamictons deposited beneath or proximal to an expanded grounded West Antarctic Ice Sheet are present in two of the channels and these are overlain by glaciomarine sediments deposited after deglaciation. The sediment core from the third channel recovered a turbidite sequence also deposited after the last deglaciation. The presence of deformation till at one core site and the absence of typical meltwater deposits (e.g., sorted sands and gravels) in all three cores suggest that channel incision pre-dates overriding by fast flowing grounded ice during the last glacial period. Given the overall scale of the channels and their incision into bedrock, it is likely that the channels formed over multiple glaciations, possibly since the Miocene, and have been reoccupied on several occasions. This also implies that the channels have survived numerous advances and retreats of grounded ice.  相似文献   

7.
A sequence of Middle Pleistocene (approximately early 'Cromerian Complex') sediments has been subdivided into subglacial, proximal glaciomarine, distal glaciomarine and marine facies. The subglacial facies represents lodgement till deposited during the final stages of ice-sheet advance. At the onset of ice-sheet retreat, streams deposited their load into a shallow-water; glaciomarine environment; gravelly sediments immediately in front of the ice-grounding line and finer material, in suspension, to more distal areas. Ice-rafting, slumping and traction currents were also active within the glaciomarine environment. The lithofacies characteristics of this sequence are consistent with deposition from a grounded tidewater ice-sheet. The glacigenic succession is restricted to the Forth Approaches area, which implies that the ice-sheet had a limited offshore extent.  相似文献   

8.
A pit located near Ballyhorsey, 28 km south of Dublin (eastern Ireland), displays subglacially deposited glaciofluvial sediments passing upwards into proglacial subaqueous ice‐contact fan deposits. The coexistence of these two different depositional environments at the same location will help with differentiation between two very similar and easily confused glacial lithofacies. The lowermost sediments show aggrading subglacial deposits indicating a constrained accommodation space, mainly controlled by the position of an overlying ice roof during ice‐bed decoupling. These sediments are characterized by vertically stacked tills with large lenses of tabular to channelized sorted sediments. The sorted sediments consist of fine‐grained laminated facies, cross‐laminated sand and channelized gravels, and are interpreted as subglaciofluvial sediments deposited within a subglacial de‐coupled space. The subglaciofluvial sequence is characterized by glaciotectonic deformation structures within discrete beds, triggered by fluid overpressure and shear stress during episodes of ice/bed recoupling (clastic dykes and folds). The upper deposits correspond to the deposition of successive hyperpycnal flows in a proximal proglacial lake, forming a thick sedimentary wedge erosively overlying the subglacial deposits. Gravel facies and large‐scale trough bedding sand are observed within this proximal wedge, while normally graded sand beds with developed bedforms are observed further downflow. The building of the prograding ice‐contact subaqueous fan implies an unrestricted accommodation space and is associated with deformation structures related to gravity destabilization during fan spreading (normal faults). This study facilitates the recognition of subglacial/submarginal depositional environments formed, in part, during localized ice/bed coupling episodes in the sedimentary record. The sedimentary sequence exposed in Ballyhorsey permits characterization of the temporal framework of meltwater production during deglaciation, the impact on the subglacial drainage system and the consequences on the Irish Sea Ice Stream flow mechanisms.  相似文献   

9.
Deep, elongated incisions, often referred to as tunnel valleys, are among the most characteristic landforms of formerly glaciated terrains. It is commonly thought that tunnel valleys were formed by meltwater flowing underneath large ice sheets. The sedimentary infill of these features is often highly intricate and therefore difficult to predict. This study intends to improve the comprehension of the sedimentology and to establish a conceptual model of tunnel‐valley infill, which can be used as a predictive tool. To this end, the densely sampled, Pleistocene tunnel valleys in Hamburg (north‐west Germany) were investigated using a dataset of 1057 deep wells containing lithological and geophysical data. The stratigraphic correlations and the resulting three‐dimensional lithological model were used to assess the spatial lithological distributions and sedimentary architecture. The sedimentary succession filling the Hamburg area tunnel valleys can be subdivided into three distinct units, which are distinguished by their inferred depositional proximity to the ice margin. The overall trend of the succession shows a progressive decrease in transport energy and glacial influence through time. The rate of glacial recession appears to have been an important control on the sedimentary architecture of the tunnel‐valley fill. During periods of stagnation, thick ice‐proximal deposits accumulated at the ice margin, while during rapid recession, only a thin veneer of such coarse‐grained sediments was deposited. Ice‐distal and non‐glaciogenic deposits (i.e. lacustrine, marine and terrestrial) fill the remaining part of the incision. The infill architecture suggests formation and subsequent infill of the tunnel valleys at the outer margin of the Elsterian ice sheet during its punctuated northwards recession. The proposed model shows how the history of ice‐sheet recession determines the position of coarse‐grained depocentres, while the post‐glacial history controls the deposition of fines through a progressive infill of remnant depressions.  相似文献   

10.
11.
Four major sedimentary facies are present in coarse-grained, ice-marginal deposits from central East Jylland, Denmark. Facies A and B are matrix-supported gravels deposited by subaerial sediment gravity flows as mudflows (facies A) and debris flows (facies B). Facies C consists of clast-supported, water-laid gravels and facies D are cross-bedded sand and granules. The facies can be grouped into three facies associations related to the supraglacial and proglacial environments: (1) the flow-till association is made up of alternating beds of remobilized glacial mixton (facies A) and well-sorted cross-bedded sand (facies D); (2) the outwash apron association resembles the sediments of alluvial fans in containing coarse-grained debris-flow deposits (facies B), water-laid gravel deposited by sheet floods (facies C) and cross-bedded sand and granules (facies D) from braided distributaries; (3) the valley sandur association comprises water-laid gravel (facies C) interpreted as sheet bars and longitudinal bars interbedded with cross-bedded sand and granules (facies D) deposited in channels between bars in a braided environment.The general coarsening-upward trend of the sedimentary sequences caused by the transition of bars and channel-dominated facies to debris-flow-dominated facies indicate an increasing proximality of the outwash deposits, picturing the advance and still stand of a large continental lowland ice-sheet. The depositional properties suggest that sedimentation was caused by melting along a relatively steep, active glacier margin as a first step towards the final vanishing of the Late Weichselian icesheet (the East Jylland ice) covering eastern Denmark.  相似文献   

12.
The extent and behaviour of the southeast margin of the Laurentide Ice Sheet in Atlantic Canada is of significance in the study of Late Wisconsinan ice sheet-ocean interactions. Multibeam sonar imagery of subglacial, ice-marginal and glaciomarine landforms on German Bank, Scotian Shelf, provides evidence of the pattern of glacial-dynamic events in the eastern Gulf of Maine. Northwest-southeast trending drumlins and megaflutes dominate northern German Bank. On southern German Bank, megaflutes of thin glacial deposits create a distinct northwest-southeast grain. Lobate regional moraines (>10km long) are concave to the northwest, up-ice direction and strike southwest-northeast, normal to the direction of ice flow. Ubiquitous, overlying De Geer moraines (<10 km long) also strike southwest-northeast. The mapped pattern of moraines implies that, shortly after the last maximum glaciation, the tidewater ice sheet began to retreat north from German Bank, forming De Geer moraines at the grounding line with at least one glacial re-advance during the general retreat. The results indicate that the Laurentide Ice Sheet extended onto the continental shelf.  相似文献   

13.
Quaternary sedimentary successions are described from the Linda Valley, a small valley in western Tasmania that was dammed by ice during Early and Middle Pleistocene glaciations. Mapping and logging of exposures suggest that an orderly sequence of deposits formed during ice incursion, occupation and withdrawal from tributary valleys. Four principal sediment assemblages record different stages of ice occupation in the valley. As the glacier advanced, a proglacial, lacustrine sediment assemblage dominated by laminated silts and muds deposited from suspension accumulated in front of the glacier. A subglacial sediment assemblage consisting of deformed lacustrine deposits and lodgement till records the overriding of lake-bottom sediments as the glacier advanced up the valley into the proglacial lake. As the glacier withdrew from the valley, a supraglacial sediment assemblage of diamict, gravel, sand and silt facies formed on melting ice in the upper part of the valley. A lacustrine regression in the supraglacial assemblage is inferred on the basis of a change from deposits mainly resulting from suspension in a subaqueous setting to relatively thin and laterally discontinuous laminated sediments, occurrence of clastic dykes, and increasing complexity of the geometry of deposits that indicate deposition in a subaerial setting. A deltaic sediment assemblage deposited during the final stage of ice withdrawal from the valley consists of steeply dipping diamict and normally graded gravel facies formed on delta foresets by subaqueous sediment gravity flows. The sediment source for the delta, which prograded toward the retreating ice margin, was the supraglacial sediment assemblage previously deposited in the upper part of the valley. A depositional model developed from the study of the Linda Valley may be applicable to other alpine glaciated areas where glaciers flowed through or terminated in medium- to high-relief topography.  相似文献   

14.
The glacial sediment succession exposed close to the southern margin of the Late Weichselian Scandinavian Ice Sheet in Poland reveals a mosaic consisting of isolated patches of heavily deformed deposits separated by areas lacking any visible evidence of deformation. In the studied outcrop, the subglacial deforming spots composed of outwash deposits intercalated with till stringers are about 2–10 m wide and 20–60 cm thick. They rest on outwash sediments and are covered by a basal till. Based on structural and textural characteristics, the deforming spots are interpreted as previous R‐channels filled with meltwater deposits. Lack of deformation in outwash sediment immediately beneath the deforming spots and in the intervening areas between the channels suggests that the ice‐bed was frozen and the deformation of the channel infill was facilitated by high pore‐water pressure arising because water drainage into the bed was impeded by permafrost. Channel infill deposits and the till immediately above were coevally deformed to a strain of less than 9. This study documents the possible co‐existence of deforming and stable areas under an ice sheet, generated by spatially varying thermal and hydrological conditions affecting sediment rheology.  相似文献   

15.
Subglacial landsystems in and around Okanagan Valley, British Columbia, Canada are investigated in order to evaluate landscape development, subglacial hydrology and Cordilleran Ice Sheet dynamics along its southern margin. Major landscape elements include drumlin swarms and tunnel valleys. Drumlins are composed of bedrock, diamicton and glaciofluvial sediments; their form truncates the substrate. Tunnel valleys of various scales (km to 100s km length), incised into bedrock and sediment, exhibit convex longitudinal profiles, and truncate drumlin swarms. Okanagan Valley is the largest tunnel valley in the area and is eroded >300 m below sea level. Over 600 m of Late Wisconsin-age sediments, consisting of a fining-up sequence of cobble gravel, sand and silt fill Okanagan Valley. Landform–substrate relationships, landform associations, and sedimentary sequences are incompatible with prevailing explanations of landsystem development centred mainly on deforming beds. They are best explained by meltwater erosion and deposition during ice sheet underbursts.During the Late-Wisconsin glaciation, Okanagan Valley functioned as part of a subglacial lake spanning multiple connected valleys (few 100s km) of southern British Columbia. Subglacial lake development started either as glaciers advanced over a pre-existing sub-aerial lake (catch lake) or by incremental production and storage of basal meltwater. High geothermal heat flux, geothermal springs and/or subglacial volcanic eruptions contributed to ice melt, and may have triggered, along with priming from supraglacial lakes, subglacial lake drainage. During the underburst(s), sheetflows eroded drumlins in corridors and channelized flows eroded tunnel valleys. Progressive flow channelization focused flows toward major bedrock valleys. In Okanagan Valley, most of the pre-glacial and early-glacial sediment fill was removed. A fining-up sequence of boulder gravel and sand was deposited during waning stages of the underburst(s) and bedrock drumlins in Okanagan Valley were enhanced or wholly formed by this underburst(s).Subglacial lake development and drainage had an impact on ice sheet geometry and ice volumes. The prevailing conceptual model for growth and decay of the CIS suggests significantly thicker ice in valleys compared to plateaus. Subglacial lake development created a reversal of this ice sheet geometry where grounded ice on plateaus thickened while floating valley ice remained thinner (due to melting and enhanced sliding, with significant transfer of ice toward the ice sheet margin). Subglacial lake drainage may have hastened deglaciation by melting ice, lowering ice-surface elevations, and causing lid fracture. This paper highlights the importance of ice sheet hydrology: its control on ice flow dynamics, distribution and volume in continental ice masses.  相似文献   

16.
Tunnel valleys are major features of glaciated margins and they enable meltwater expulsion from underneath a thick ice cover. Their formation is related to the erosion of subglacial sediments by overpressured meltwater and direct glacial erosion. Yet, the impact of pre-existing structures on their formation and morphology remains poorly known. High-quality 3D seismic data allowed the mapping of a large tunnel valley that eroded underlying preglacial delta deposits in the southern North Sea. The valley follows the N–S strike of crestal faults related to a Zechstein salt wall. A change in downstream tunnel valley orientation towards the SE accompanies a change in the strike direction of salt-induced faults. Fault offsets indicate important activity of crestal faults during the deposition of preglacial deltaic sediments. We propose that crestal faults facilitated tunnel valley erosion by acting as high-permeability pathways and allowing subglacial meltwater to reach low-permeability sediments in the underlying Neogene deltaic sequences, ultimately resulting in meltwater overpressure build-up and tunnel valley excavation. Active faults probably also weakened the near-surface sediment to allow a more efficient erosion of the glacial substrate. This control of substrate structures on tunnel valley morphology is considered as a primary factor in subglacial drainage pattern development in the study area.  相似文献   

17.
Late Pleistocene morainic sequences around Dundalk Bay, eastern Ireland, were deposited in a variety of shallow, glaciomarine environments at the margins of a grounded ice lobe. The deposits are essentially ice-proximal delta-fan and -apron sequences and are divided into two lithofacies associations. Lithofacies association 1 occurs as a series of morainal banks formed at the southern margin of the ice lobe in a body of water open to influences from the Irish Sea. The morainal banks consist mainly of diamictic muds deposited from turbid plumes and by ice-rafting with minor occurrences of turbidites, cross-bedded gravels (subaqueous outwash) and massive boulder gravels (high-density debris flows). Lithofacies association 2 was deposited in a narrow arm of the sea at the north-eastern margin of the ice lobe. The deposits consist mainly of a series of coalescing, ice-proximal Gilbert-type fan deltas which are interbedded distally with tabular and lens-shaped subaqueous deposits. The latter are mainly ice-rafted diamictons, debris-flow deposits and subaqueous sands and gravels. Both lithofacies associations are draped by diamictons formed by a combination of rain-out, debris flow and traction-current activity. At a few localities the upper parts of the sequence have been sheared by minor oscillations of the ice sheet margin. These sequences form part of an extensive belt of glaciomarine deposits which border the drumlin swarms of east-central Ireland. Lithostratigraphic variability is partially related to the arrival of large volumes of debris at the ice lobe margin when the main lowland ice sheet surged during drumlin formation. Complex depositional continua of this type lack any major erosional breaks and should not be used either as climatic proxies or for stratigraphic correlations.  相似文献   

18.
Late Devensian/Midlandian glacial deposits on the southeast Irish coast contain a record of sedimentation at the margins of the Irish Sea ice stream (ISIS). Exposures through the Screen Hills reveal a stratigraphy that documents the initial onshore flow of the ISIS ('Irish Sea Till') followed by ice stream recession and readvances that constructed glacitectonic ridges. Ice-contact fans (Screen Member) were deposited in association with subglacial deformation tills and supraglacial/subaqueous mass flow diamicts. In SE Ireland, the ISIS moved onshore over proglacial lake sediments which were intensely folded, thrust and cannibalized producing a glacitectonite over which laminated and massive diamictons were deposited as glacitectonic slices. Ice marginal recession and oscillations are documented by: (a) ice-proximal, subaqueous diamict-rich facies; (b) isolated ice-contact glacilacustrine deltas; (c) syn-depositional glacitectonic disturbance of glacilacustrine sediments and overthrusting of ice-contact outwash; (d) offshore moraine ridges; and (e) changing ice flow directions and facies transitions. Diagnostic criteria for the identification of dynamic, possibly surging, ice-stream margins onshore include thrust-block moraines, tectonized pitted outwash and stacked sequences of glacitectonites, deformation tills and intervening stratified deposits. In addition, the widespread occurrence of hydrofracture fills in sediments overridden and locally reworked by the ISIS indicate that groundwater pressures were considerably elevated during glacier advance. The glacigenic sediments and landforms located around the terrestrial margins of the ISIS are explained as the products of onshore glacier flow that cannibalized and tectonically stacked pre-existing marine and glacilacustrine sediments. Localized tectonic thickening of subglacially deformed materials at the former margins of glaciers results in zones of net erosion immediately up-ice of submarginal zones of net accretion of subglacial till. The more stable the ice-stream margin the thicker and more complex the submarginal sedimentary stack.  相似文献   

19.
JOHN SHAW 《Sedimentology》1987,34(1):103-116
Glacigenic sediments exposed in pits around Villeneuve, near Edmonton, Alberta, are subdivided into facies based on grain size, sedimentary structure, glacially-induced deformation and faulting, and groove marks. Two diamicton facies are recognised, one of which is interpreted as a primary till, deposited directly from glacier ice, and the other as a product of mass-movement. The diamicton facies are closely associated with current bedded facies interpreted as fluvioglacial deposits. The stratigraphic sedimentological and tectonic aspects of these fluvial deposits suggest subglacial deposition in channels and cavities. At any one place the glacier appears to have alternated between being attached to the bed, causing thrusting and sole marking, and being separated from the bed by a cavity in which fluvial and mass-movement sediments accumulated. The net result is a highly complex and laterally variable stratigraphy produced by a single glacial advance. The correct interpretation of such sequences is essential if lithostratigraphy is to be used to establish glacial history. In addition, the interpretations presented here have implications regarding the formation of soft zones in ‘till’. They indicate that the soft zones are beds of sorted sediment redeposited by mass-movement.  相似文献   

20.
Clast-supported boulder gravel in outwash-fans along the glacial-maximum margin of the Laurentide Ice Sheet in Wisconsin indicates the occurrence of outburst floods. These sediments, with clast intermediate axes of up to 2 m, are located downstream of tunnel channels and were deposited shortly before cessation of glaciofluvial activity on each fan. Since tunnel channels with fans are widespread along the ice-sheet margin in the western Great Lakes region, these outburst floods were probably common. Paleodischarge estimates derived from the boulder deposits are poorly constrained, but values of at least several hundred m3 s−1 are likely. Four potential water sources for the floods exist: an extreme surface-melt event, an extreme precipitation event, drainage of supraglacial lakes, or drainage of stored subglacial meltwater. We focus on the storage of subglacial meltwater behind the ice-sheet margin, as proglacial permafrost was present as ice advanced to its maximum extent, and a frozen-bed zone upstream from the margin probably impeded drainage through groundwater aquifers. Decay of this permafrost ‘seal’ would have eventually allowed trapped water to drain through the tunnel channels. We suggest that the 2-m boulders were entrained in an outburst of subglacial water that enlarged a pre-existing channel cut by ablation-derived flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号