首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bank strength due to vegetation dominates the geometry of small stream channels, but has virtually no effect on the geometry of larger ones. The dependence of bank strength on channel scale affects the form of downstream hydraulic geometry relations and the meandering‐braiding threshold. It is also associated with a lateral migration threshold discharge, below which channels do not migrate appreciably across their floodplains. A rational regime model is used to explore these scale effects: it parameterizes vegetation‐related bank strength using a dimensionless effective cohesion, Cr*. The scale effects are explored primarily using an alluvial state space defined by the dimensionless formative discharge, Q*, and channel slope, S, which is analogous to the Q–S diagrams originally used to explore meandering‐braiding thresholds. The analyses show that the effect of vegetation on both downstream hydraulic geometry and the meandering‐braiding threshold is strongest for the smallest streams in a watershed, but that the effect disappears for Q* > 106. The analysis of the migration threshold suggests that the critical discharge ranges from about 5 m3/s to 50 m3/s, depending on the characteristic rooting depth for the vegetation. The analysis also suggests that, where fires frequently affect riparian forests, channels may alternate between laterally stable gravel plane‐bed channels and laterally active riffle‐pool channels. These channels likely do not exhibit the classic dynamic equilibrium associated with alluvial streams, but instead exhibit a cyclical morphologic evolution, oscillating between laterally stable and laterally unstable end‐members with a frequency determined by the forest fire recurrence interval. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
As a response to channelization projects undertaken near the turn of the 20th century and in the late 1960s, upstream reaches and tributaries of the Yalobusha River, Mississippi, USA, have been rejuvenated by upstream‐migrating knickpoints. Sediment and woody vegetation delivered to the channels by mass failure of streambanks has been transported downstream to form a large sediment/debris plug where the downstream end of the channelized reach joins an unmodified sinuous reach. Classification within a model of channel evolution and analysis of thalweg elevations and channel slopes indicates that downstream reaches have equilibrated but that upstream reaches are actively degrading. The beds of degrading reaches are characterized by firm, cohesive clays of two formations of Palaeocene age. The erodibility of these clay beds was determined with a jet‐test device and related to critical shear stresses and erosion rates. Repeated surveys indicated that knickpoint migration rates in these clays varied from 0·7 to 12 m a?1, and that these rates and migration processes are highly dependent upon the bed substrate. Resistant clay beds of the Porters Creek Clay formation have restricted advancement of knickpoints in certain reaches and have caused a shift in channel adjustment processes towards bank failures and channel widening. Channel bank material accounts for at least 85 per cent of the material derived from the channel boundaries of the Yalobusha River system. Strategies to reduce downstream flooding problems while preventing upstream erosion and land loss are being contemplated by action agencies. One such proposal involves removal of the sediment/debris plug. Bank stability analyses that account for pore‐water and confining pressures have been conducted for a range of hydrologic conditions to aid in predicting future channel response. If the sediment/debris plug is removed to improve downstream drainage, care should be taken to provide sufficient time for drainage of groundwater from the channel banks so as not to induce accelerated bank failures. Published in 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Our objective is to understand general causes of different river channel patterns. In this paper we compare an empirical stream power‐based classification and a physics‐based bar pattern predictor. We present a careful selection of data from the literature that contains rivers with discharge and median bed particle size ranging over several orders of magnitude with various channel patterns and bar types, but no obvious eroding or aggrading tendency. Empirically a continuum is found for increasing specific stream power, here calculated with pattern‐independent variables: mean annual flood, valley gradient and channel width predicted with a hydraulic geometry relation. ‘Thresholds’, above which certain patterns emerge, were identified as a function of bed sediment size. Bar theory predicts nature and presence of bars and bar mode, here converted to active braiding index (Bi). The most important variables are actual width–depth ratio and nonlinearity of bed sediment transport. Results agree reasonably well with data. Empirical predictions are somewhat better than bar theory predictions, because the bank strength is indirectly included in the empirical prediction. In combination, empirical and theoretical prediction provide partial explanations for bar and channel patterns. Increasing potential‐specific stream power implies more energy to erode banks and indeed correlates to channels with high width–depth ratio. Bar theory predicts that such rivers develop more bars across the width (higher Bi). At the transition from meandering to braiding, weakly braided rivers and meandering rivers with chutes are found. Rivers with extremely low stream power and width–depth ratios hardly develop bars or dynamic meandering and may be straight or sinuous or, in case of disequilibrium sediment feed, anastomosing. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

Among various factors that have influence on the meandering of an alluvial channel, the most significant are valley slope, discharge, bed material, and time. The necessary condition for the origin and development of meandering of an alluvial channel is the erosion of bed material and deposition of the eroded material downstream. The criterion for the development of the meandering is that the discharge must be equal to or greater than the critical discharge (i.e., discharge corresponding to critical shear velocity). The initial channel section has an effect on the development of meandering. The meandering in the V-shaped channels starts from the center (deepest point) of the channel and works inside the banks (inside meandering) before it windens the banks, While the meandering in the rectangular channels starts with the widening of the banks (outside meandering). Maender width increases with the increase in the increase discharge and slope, and decreases with the increase in size of bed material. The meander development continues with time the meander reaches the final stage and equilibrium condition.  相似文献   

5.
Rivers may dramatically change course on a fluvial plain. Such an avulsion temporarily leads to two active channels connected at a bifurcation. Here we study the effect of dynamic meandering at the bifurcation and the effect of channel width adjustment to changing discharge in both downstream branches on the evolution of a bifurcation and coexisting channels. As an example, we reconstructed the last major avulsion at the Rhine delta apex. We combined historical and geological data to reconstruct a slowly developing avulsion process spanning 2000 years and involving channel width adjustment and meandering at the bifurcation. Based on earlier idealised models, we developed a one‐dimensional model for long‐term morphodynamic prediction of upstream channel and bifurcates connected at the bifurcation node. The model predicts flow and sediment partitioning at the node, including the effect of migrating meanders at the bifurcation and channel width adjustment. Bifurcate channel width adaptation to changing discharge partitioning dramatically slows the pacing of bifurcation evolution because the sediment balance for width adjustment and bed evolution are coupled. The model further shows that meandering at the bifurcation modulates channel abandonment or enlargement periodically. This explains hitherto unrecognised reactivation signals in the sedimentary record of the studied bifurcation meander belts, newly identified in our geological reconstruction. Historical maps show that bifurcation migration due to meander bend dynamics increases the bifurcation angle, which increases the rate of closure of one bifurcate. The combination of model and reconstruction identifies the relevant timescales for bifurcation evolution and avulsion duration. These are the time required to fill one downstream channel over one backwater length, the time to translate one meander wavelength downstream and, for strong river banks, the adaptation timescale to adjust channel width. The findings have relevance for all avulsions where channel width can adjust to changing discharge and where meandering occurs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Previous studies have demonstrated that riparian vegetation leads to channel transformation from a multi-bar to a single-thread channel planform. However, it still remains unclear how the presence of pioneer and mature vegetation affects the morphodynamics of single-thread meandering rivers. In this study, we therefore investigated the effects of vegetation strength on the morphodynamic evolution of an experimental meandering channel. Three physical laboratory experiments were conducted using alfalfa sprouts in different life stages – no vegetation, immature vegetation, and mature vegetation – to simulate different floodplain vegetation strengths. Our results demonstrate that vegetation plays a key role in mediating bank erosion and point-bar accretion, and that this is reflected in both the evolution of the channel bed as well as the sediment flux. The presence of mature vegetation maintained a deep, single-thread channel by reducing bank erosion, thereby limiting both channel widening and sediment storage capacity. Conversely, an unvegetated floodplain led to channel widening and high sediment storage capacity. Channel evolution in the unvegetated scenario showed that the active sediment supply from outer bank erosion led to slightly delayed point-bar accretion on the inner banks due to helical flow, deflecting the surface flow toward the outer banks and causing further erosion. In contrast, in the immature vegetation scenario, the outer banks were also initially eroded, but point-bar accretion did not clearly progress. This led to a greater width-to-depth ratio, resulting in a transition from a single- to a multi-thread channel with minor flow paths on the floodplain. The experimental results suggest that the eco-morphodynamic effects of young (low-strength) and mature (high-strength) vegetation are different. Notably, low-strength, early-stage vegetation increases channel complexity by accelerating both channel widening and branching, and therefore might promote the coexistence of multi-bars and pioneer vegetation.  相似文献   

7.
The Okavango wetland in northern Botswana is one of the world's largest inland deltas. The delta is a dynamic environment with shifting channel routes, causing growth and decay of ?anking wetlands, and giving birth to islands. Primary island nuclei are formed by ?uvial processes and bioengineering, and subsequently grow into secondary larger islands of irregular shape by clastic and chemical sedimentation, and later by coalescence. This article presents classi?cations and quantitative estimations of channels, wetlands and islands of the Okavango Delta. Islands were classi?ed dependent on composition, pattern of composition, shape and juxtaposition. 90 per cent of all islands in the entire wetland were identi?ed, with a classi?cation accuracy of 60 to 85 per cent. Smaller islands of the nucleus types dominate the upper parts of the delta, whereas larger secondary islands are more common in the distal part, a re?ection of the age of the islands. Islands in the entry valley of the delta, the Panhandle, are larger in the top end – the primary region of recent clastic sedimentation. The overall size distribution of islands in the delta, however, shows no clumps, indicating that island growth is a uniform process over time and space. The total area ?ooded at least every decade is approximately 14 000 km2, of which 9000 km2 is classi?ed as actual wetland. Channel meandering decreases from the Panhandle to the distal part of the delta, with the abandoned Thaoge channel as an exception. Occurrence of ?uvially formed islands in the distal delta indicates that the water ?ow and area of inundation must once have been much larger. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Channel instability has occurred in the Bell River in the form of meander cutoffs, a number of which have occurred since 1952. Increased sediment loading from widespread gully erosion in the catchment has been proposed as the trigger for this instability. Willow species of the Salix family, in particular S. caprea, have been planted along the banks in an effort to prevent further channel shifting. This study reports the results of an investigation into the effect of vegetation on channel form and stability over a 17 km stretch of channel. Results indicate that riparian vegetation has significant effects on channel form which have implications for channel stability. Riparian vegetation increases bank stability and reduces channel cross-sectional area, thereby inducing stability at flows less than bankfull. Evidence indicates that narrow stable stretches are associated with relatively high levels of riparian vegetation. Wider, unstable channels are associated with relatively less riparian vegetation. The effectiveness of riparian vegetation relative to bank sediments was investigated. A dense growth of willows was found to have an equivalent effect to banks with a silt-clay ratio of about 70 per cent. The channel narrowing induced by vegetation may contribute to channel shifting at high flows. The reduced channel capacity is thought to result in more frequent overbank flooding which may ultimately lead to channel avulsion. Thus where increased sediment loading is pushing the channel towards instability, vegetation may be effective in imparting local stability, but it is unable to prevent long-term channel shifts, and may rather help to push the system towards more frequent avulsions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Results from computational morphodynamics modeling of coupled flow–bed–sediment systems are described for 10 applications as a review of recent advances in the field. Each of these applications is drawn from solvers included in the public-domain International River Interface Cooperative (iRIC) software package. For mesoscale river features such as bars, predictions of alternate and higher mode river bars are shown for flows with equilibrium sediment supply and for a single case of oversupplied sediment. For microscale bed features such as bedforms, computational results are shown for the development and evolution of two-dimensional bedforms using a simple closure-based two-dimensional model, for two- and three-dimensional ripples and dunes using a three-dimensional large-eddy simulation flow model coupled to a physics-based particle transport model, and for the development of bed streaks using a three-dimensional unsteady Reynolds-averaged Navier–Stokes solver with a simple sediment-transport treatment. Finally, macroscale or channel evolution treatments are used to examine the temporal development of meandering channels, a failure model for cantilevered banks, the effect of bank vegetation on channel width, the development of channel networks in tidal systems, and the evolution of bedrock channels. In all examples, computational morphodynamics results from iRIC solvers compare well to observations of natural bed morphology. For each of the three scales investigated here, brief suggestions for future work and potential research directions are offered. © 2019 The Authors Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd  相似文献   

10.
The Three Gorges Dam (TGD) has altered downstream flow–sediment regimes and led to significant changes in the morphodynamic processes in the Middle Yangtze River (MYR). However, due to the complexity of this large river, the driving forces and implication of the morphodynamic processes remain insufficiently understood. This study selected two typical meandering and bar-braided reaches, the Zhicheng (ZC) and Shashi (SS) reach, to examine their responses to the TGD operation. The results showed that in the post-dam period significant channel erosion occurred with a higher erosion rate in the ZC reach (closer to the TGD) compared with the SS reach. The area of the Guanzhou mid-channel bar (ZC reach) and the Sanba mid-channel bar (SS reach) shrank by 30 and 90% from 2003 to 2015, respectively. The increased fluvial erosion intensity due to the reduction in suspended sediment concentration (SSC) drove the shrinkage of the mid-channel bars, as demonstrated by empirical relationships between bar geometry and fluvial erosion intensity. An increase of 22 days per year in the frequency of post-dam medium-to-high discharges (10 000–25 000 m3 s−1), and associated with the reduction in SSC, jointly led to the greater erosion at the convex (inner) banks than the concave (outer) banks, which has negatively affected the designed navigation channels at the concave banks by decreasing their discharge partitioning ratios. The post-dam water level at a given high discharge (>25 000 m3 s−1) showed no evident change, but the water level at a given low discharge (<10 000 m3 s−1) decreased. The reduction in water levels at low flows can affect water supply and riverine ecosystems in the MYR. © 2019 John Wiley & Sons, Ltd.  相似文献   

11.
Rill bank collapse is an important component in the adjustment of channel morphology to changes in discharge and sediment flux. Sediment inputs from bank collapse cause abrupt changes in flow resistance, flow patterns and downstream sediment concentrations. Generally, bank retreat involves gradual lateral erosion, caused by flow shear stress, and sudden bank collapse, triggered by complex interactions between channel flow and bank and soil water conditions. Collapse occurs when bank height exceeds the critical height where gravitational forces overcome soil shear strength. An experimental study examined conditions for collapse in eroding rill channels. Experiments with and without a deep water table were carried out on a meandering rill channel in a loamy sand and sandy loam in a laboratory flume under simulated rainfall and controlled runon. Different discharges were used to initiate knickpoint and rill incision. Soil water dynamics were monitored using microstandpipes, tensiometers and time domain reflectometer probes (TDR probes). Bank collapse occurred with newly developed or rising pre‐existing water tables near rill banks, associated with knickpoint migration. Knickpoint scour increased effective bank height, caused positive pore water pressure in the bank toe and reduced negative pore pressures in the unsaturated zone to near zero. Matric tension in unsaturated parts of the bank and a surface seal on the ‘interrill’ zone behind the bank enhanced stability, while increased effective bank height and positive pore water pressure at the bank toe caused instability. With soil water contents >35 per cent (sandy loam) and >23 per cent (loamy sand), critical bank heights were 0·11–0·12 m and 0·06–0·07 m, respectively. Bank toe undercutting at the outside of the rill bends also triggered instability. Bank displacement was quite different on the two soils. On the loamy sand, the failed block slid to the channel bed, revealing only the upper half of the failure plane, while on the sandy loam the failed block toppled forwards, exposing the failure plane for the complete bank height. This study has shown that it is possible to predict location, frequency and magnitude of the rill bank collapse, providing a basis for incorporation into predictive models for hillslope soil loss or rill network development. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
When studying the evolution of landscape, it is difficult to discriminate the influence of anthropogenic from natural causes, or recognise changes caused by different sources of human action. This is especially challenging when the influence of certain sources is overprinted. For instance, although dam closure is the most common method of altering river courses, dam construction is often preceded by hydro‐technical works such as channel straightening, embankment construction or sediment mining. Both dam construction and the hydro‐technical works that precede dam closure can result in changes in the balance between sediment supply and transport capacity, and often, changes in river planform. The main objective of this study was to verify whether the works preceding dam closure are an important driver of river planform changes on the lower Drava River (Hungary). The case study is based on geological and geophysical surveys, as well as the analysis of historical maps covering an anabranching, 23 km long valley section. We show that channel straightening conducted prior to dam closure resulted in a transition from a meandering to sinuous planform with channel bars. Dam construction itself then caused enhanced incision, exposure of bar surfaces, vegetation encroachment and the formation of an anabranching planform. Based on this study, we developed models of alluvial island and channel planform evolution downstream of dams. Dam construction enhances channel incision, narrowing, and the reduction of flow caused by earlier hydro‐technical works. Many rivers downstream of dams experience episodes of anabranching or wandering, with a multi‐thread pattern replacing sinuous, braided and meandering courses. When incision continues, river patterns evolve from anabranching to sinuous via the attachment of alluvial islands to floodplains. However, the timing and sequence of these changes depend on hydrological and sediment supply regimes, geomorphic settings and anthropogenic actions accompanying dam construction. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
Hydraulic interactions between rivers and floodplains produce off‐channel chutes, the presence of which influences the routing of water and sediment and thus the planform evolution of meandering rivers. Detailed studies of the hydrologic exchanges between channels and floodplains are usually conducted in laboratory facilities, and studies documenting chute development are generally limited to qualitative observations. In this study, we use a reconstructed, gravel‐bedded, meandering river as a field laboratory for studying these mechanisms at a realistic scale. Using an integrated field and modeling approach, we quantified the flow exchanges between the river channel and its floodplain during an overbank flood, and identified locations where flow had the capacity to erode floodplain chutes. Hydraulic measurements and modeling indicated high rates of flow exchange between the channel and floodplain, with flow rapidly decelerating as water was decanted from the channel onto the floodplain due to the frictional drag provided by substrate and vegetation. Peak shear stresses were greatest downstream of the maxima in bend curvature, along the concave bank, where terrestrial LiDAR scans indicate initial floodplain chute formation. A second chute has developed across the convex bank of a meander bend, in a location where sediment accretion, point bar development and plant colonization have created divergent flow paths between the main channel and floodplain. In both cases, the off‐channel chutes are evolving slowly during infrequent floods due to the coarse nature of the floodplain, though rapid chute formation would be more likely in finer‐grained floodplains. The controls on chute formation at these locations include the flood magnitude, river curvature, floodplain gradient, erodibility of the floodplain sediment, and the flow resistance provided by riparian vegetation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
This paper provides comprehensive evidence that sediment routing around pools is a key mechanism for pool‐riffle maintenance in sinuous upland gravel‐bed streams. The findings suggest that pools do not require a reversal in energy for them to scour out any accumulated sediments, if little or no sediments are fed into them. A combination of clast tracing using passive integrated transponder (PIT) tagging and bedload traps (positioned along the thalweg on the upstream riffle, pool entrance, pool exit and downstream riffle) are used to provide information on clast pathways and sediment sorting through a single pool‐riffle unit. Computational fluid dynamics (CFD) is also used to explore hydraulic variability and flow pathways. Clast tracing results provide a strong indication that clasts are not fed through pools, rather they are transported across point bar surfaces, or around bar edges (depending upon previous clast position, clast size, and event magnitude). Spatial variations in bedload transport were found throughout the pool‐riffle unit. The pool entrance bedload trap was often found to be empty, when the others had filled, further supporting the notion that little or no sediment was fed into the pool. The pool exit slope trap would occasionally fill with sediment, thought to be sourced from the eroding outer bank. CFD results demonstrate higher pool shear stresses (τ ≈ 140 N m–2) in a localized zone adjacent to an eroding outer bank, compared to the upstream and downstream riffles (τ ≈ 60 N m–2) at flows of 6 · 2 m3 s–1 (≈ 60% of the bankfull discharge) and above. There was marginal evidence for near‐bed velocity reversal. Near‐bed streamlines, produced from velocity vectors indicate that flow paths are diverted over the bar top rather than being fed through the thalweg. Some streamlines appear to brush the outer edge of the pool for the 4 · 9 m3 s–1 to 7 · 8 m3 s–1 (between 50 and 80% of the bankfull discharge) simulations, however complete avoidance was found for discharges greater than this. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The alluvial cover in channels with non-alluvial beds is a major morphologic feature in these rivers and has important geomorphic and ecologic functions. Although controls on the extent of the alluvial cover have been previously researched, little is known about the role of channel meanders in shaping the three-dimensional morphology and bedload transport rates in these rivers. Flume experiments were conducted in a fixed-bed sinuous channel scaled from an engineered urban river. A fully graded sediment supply mixture was fed into the bare channel at rates ranging between 0.3 and 1.2 times the estimated channel capacity under constant discharge. The three-dimensional morphology and surface texture of the alluvial cover were captured using photogrammetry, and the sediment output was periodically measured and sieved. A stable alluvial cover was achieved under all sediment supply conditions that coincided with a sediment transport equilibrium. The sediment supply rate controlled the final areal extent, mass and volume of the alluvial cover, while cover developed as a periodic series of stable bars ‘fixed’ by the channel planform. The alluvial cover development followed consistent trajectories relative to angular position around bends but developed to a greater degree and higher elevation with increasing sediment supply. The stable cover extent had a logarithmic relationship with the relative sediment supply, while the final mass, volume and bar height had linear relationships. The final channel morphology was characterized by fine-textured point bars with flat tops and steep margins connected by coarse riffle features. The outside of banks between bend apexes remained bare, even at sediment supply conditions exceeding the channel capacity. The length of the exposed outer banks followed predictable linear relationships with the total cover extent. Insights from this study can provide guidance for the management of channels with non-alluvial boundaries and provide validation for models of sinuous bedrock channel abrasion. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
River restoration and bank stabilization programs often use vegetation for improving stream corridor habitat, aesthetic and function. Yet no study has examined the use of managed vegetation plantings to transform a straight, degraded stream corridor into an ecologically functional meandering channel. Experimental data collected using a distorted Froude‐scaled flume analysis show that channel expansion and widening, thalweg meandering and riffle and pool development are possible using discrete plantings of rigid, emergent vegetation, and the magnitudes of these adjustments depend on the shape of the vegetation zone and the density of the vegetation. These experimental results were verified and validated using a recently developed numerical model, and model output was then used to discuss mechanistically how rivers respond to the introduction of in‐stream woody vegetation. Finally, a hybrid method of meander design is proposed herein where managed vegetation plantings are used to trigger or force the desired morphologic response, transforming a straight, degraded reach into a more functional meandering corridor. It is envisioned that such numerical models could become the primary tool for designing future stream restoration programs involving vegetation and assessing the long‐term stability of such activities. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Meandering channels and valleys are dominant landscape features on Earth. Their morphology and remnants potentially indicate past base-level fluctuations and changing regional slopes. The prevailing presence of meandering segments in low-slope areas somewhat confuses the physically based relationships between slope and channel meandering. This relationship underlies a fundamental debate: do incised sinuous channels actively develop during steepening of a regional slope, or do they inherit the planform of a preexisting sinuous channel through vertical incision? This question was previously explored through reconstructed evolution of meandering rivers, numerical simulations, and controlled, scaled-down laboratory experiments. Here, we study a rare, field-scale set of a dozen adjacent perennial channels, evolving in recent decades in a homogeneous erodible substrate in response to the Dead Sea level fall (> 30 m over 40 years). These channels are fed by perennial springs and have no drainage basin or previous fluvial history; they initiated straight and transformed into incising meandering channels following the emergence of the preexisting lake bathymetry, which resulted in increased channel lengths and regional slopes at different rates for each channel. This field setting allows testing the impact of changing regional slope on the sinuosity of a stream in the following cases: (a) relatively long and low-gradient shelf-like margins, (b) a sharp increase in the basinward gradient at the shelf-slope transition, and (c) gradually steepening slopes. Under a stable and low valley slope, the channels mainly incise vertically, inheriting a preexisting sinuous pattern. When the regional slope steepens, the channels start to meander, accompanying the vertical incision. The highest sinuosity evolved in the steepest channel, which also developed the deepest and widest valley. These results emphasize the amplifying impact of steepening regional slope on sinuosity. This holds when the flow is confined and chute cutoffs are scarce.  相似文献   

18.
Urbanization can lead to accelerated stream channel erosion, especially in areas experiencing rapid population growth, unregulated urban development on erodible soils, and variable enforcement of environmental regulations. A combination of field surveys and Structure‐from‐Motion (SfM) photogrammetry techniques was used to document spatial patterns in stream channel geometry in a rapidly urbanizing watershed, Los Laureles Canyon (LLCW), in Tijuana, Mexico. Ground‐based SfM photogrammetry was used to map channel dimensions with 1 to 2 cm vertical mean error for four stream reaches (100–300 m long) that were highly variable and difficult to survey with a differential GPS. Regional channel geometry curves for LLCW had statistically larger slopes and intercepts compared with regional curves developed for comparable, undisturbed reference channels. Cross‐sectional areas of channels downstream of hardpoints, such as concrete reaches or culverts, were up to 64 times greater than reference channels, with enlargement persisting, in some cases, up to 230 m downstream. Percentage impervious cover was not a good predictor of channel enlargement. Proximity to upstream hardpoint, and lack of riparian and bank vegetation paired with highly erodible bed and bank materials may account for the instability of the highly enlarged and unstable cross‐sections. Channel erosion due to urbanization accounts for approximately 25–40% of the total sediment budget for the watershed, and channel erosion downstream of hardpoints accounts for one‐third of all channel erosion. Channels downstream of hardpoints should be stabilized to prevent increased inputs of sediment to the Tijuana Estuary and local hazards near the structures, especially in areas with urban settlements near the stream channel. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Sediment supply to the lower Jingjiang River will be subject to substantial reduction after the impoundment of the Three Gorges Reservoir, which could result in an excess of carrying capacity and serious bank erosions in the downstream alluvial channel, threatening the bank protection works and the safety of the Jingjiang Dyke. This paper presents a summary of research works concerning the fluvial processes in the lower Jingjiang River and the possible impact of the Three Gorges Reservoir impoundment on the variation of its channel pattern. Three different predictions have been put forward by researchers: 1) the Jingjiang River will evolve towards a more sinuous, meandering channel pattern, with extensive bank erosion taking place along the river; 2) the river channel will be straightened and broadened because no point bar can be formed due to reduced sediment supply while bank erosion develops in the concave bank, and 3) this river reach will maintain its present channel pattern without significant change, although the sinuosity may be slightly reduced, since: a) the Three Gorges Reservoir mainly intercept sediment particles with sizes larger than 0.025mm, and b) the complex interaction between the Yangtze River and the Dongting Lake helps to reduce the negative effect of channel erosion through certain self-adjusting mechanism in fluvial processes. Discrepancy between these predictions shows that further research efforts are needed to understand the impact of Three Gorges Reservoir operation on the downstream fluvial processes. Meanwhile, there is an urgent need to closely monitor future development in the fluvial processes of the Jingjiang River and its influence on the safety of the Jingjiang Dykes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号