首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Longitudinal dune fields characterized by nearly uniform interdune spacing are distinguished from longitudinal dune fields characterized by fairly variable interdune spacing and high frequencies of dune coalescence. The empirical and theoretical evidence indicating that the former may be due to helical air currents aligned with the dunes is reviewed. Hypotheses arguing that the latter may arise indirectly from horizontal pressure gradients or bidirectional wind regimes are discussed. Evenly spaced linear sand banks aligned with tidal currents may be shown mathematically to result from energy optimalization within two-dimensional, sand-transporting flow regimes, and a similar simple or non-rotational flow model is considered for the problem of desert longitudinal dunes. An initial complex or rotational flow analysis is undertaken to discern the likely significance of roll vortices in desert sediment transport. An ‘evolutionary timescale’ is estimated for the formation of desert longitudinal dune fields. A simple analysis is performed for the effect of regional sand mass change on longitudinal dune field ordering. Recommendations are made for future empirical and theoretical research.  相似文献   

2.
Monitoring surface change on a Namib linear dune   总被引:1,自引:0,他引:1  
In tackling the apparently intractable problem of linear dune initiation and maintenance there has been a move away from large-scale deductive models to smaller-scale field studies of individual dunes. This paper reports a study of surface change on a large, complex linear dune in the Namib Desert, southern Africa. The dune surface responds to a markedly seasonal wind regime. In summer westerly winds erode sand from the west flank of the dune and deposit it on the easterly lee side of the dune crest. In winter this pattern is reversed. Easterly winds erode sand from the east slope and deposit it on the west slope. The crest therefore moves back and forth some 15 m each year returning at the end of a year's cycle to its position at the beginning. The position of the base of the dune appears to remain fixed, even though sand is moving throughout the dune system. The dune does extend northward along some resultant of the westerly and easterly winds. Despite relatively high levels of activity, especially at the dune crest, there is no evidence of the breakdown of the linear dune form. The conclusion must therefore be that linear dunes can be maintained in bimodal wind regimes and are not necessarily related to unidirectional parallel regimes as others have suggested.  相似文献   

3.
In this work we analyze a dark erg on Mars that could be considered a mega‐dune (draa) where secondary dunes of different morphology are superposed over a main crescent‐shaped bedform (primary dune). The presence of a complex, multi‐directional wind regime is indicated as one of the main causes for the accumulation of a tall draa, presenting an analogy to the Great Sand Dunes in Colorado. In both cases, main regional winds from the SW blow in opposition to winds from the NE which are enhanced by the topography. Such a complex wind regime leads to the development of star and reversing dunes and is accurately predicted by atmospheric models on a regional and local scale. Signs of activity in the form of grainflow scars are also noted over the slip faces of many dunes, suggesting that easterly winds are actively shaping the study draa in the present‐day climatic setting. The presence of this draa on Mars suggests a complex interaction between regional and local topographically controlled flows and a consistent availability of sand. The future study of an analogue terrestrial site such as the Great Sand Dunes could be fundamental for understanding the evolution of similar Martian dune fields. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Wind regimes in the vicinity of the Namib Sand Sea are high energy unimodal near the coast, becoming bimodal or complex inland. There is an overall decrease in wind energy and sand transport rates from south to north and west to east, such that sand moves from coastal and southern source areas to accumulate in the northern and central parts of the sand sea. Such a pattern can explain much of the observed spatial variability in dune types, sizes, and sediment characteristics and lends support to a climatic model of sand sea formation in this region. Seasonal and daily cycles of wind velocity and direction give rise to episodic sand transport, most of which is generated by winds of moderate velocity and frequency.  相似文献   

5.
With both sides of the Taklimakan Desert highway line as the study area, three typical aeolian sand landforms, i.e. complex dune ridge, barchan dune and flat sand land, were selected as sand beds for the observation, analysis and research of the characteristics of aeolian sand movement such as aeolian sand stream structure, sand transport intensity, etc. in the Taklimakan Desert. The results show that there is a linear relation between the height and the log of sand transport rate over transverse dune chain, longitudinal dune ridge and flat sand land, i.e. the sand transport percentage decreases exponentially with increasing height. Sand transport rate within the 10 cm height above the bed surface accounts for 80%-95% of the total sand transport rate of the observed height (40 cm), while the sand transport rate in 20 cm occupies 98% of the total amount. Sand transport rate (g·cm-1·min-1) differs greatly with respect to different landform types and different topographic positions. Based on the investig  相似文献   

6.
The Gran Desierto Sand-Sea contains dunes of crescentic and star form in simple, compound, and complex varieties. The dunes have developed in bimodal to complex wind regimes of intermediate energy. Transitions from simple through compound to complex crescentic dunes are associated with regional changes in wind regimes. Growth of large star dunes takes place by merging of smaller crescentic and reversing dunes from southerly directions and reworking of sand by northerly and westerly winds. Although wind regimes appear to be the major control of dune morphology in this sand-sea, there is a close correlation between the spacing of simple crescentic dunes and the grain size of the coarse 20th percentile.  相似文献   

7.
Lateral migration of linear dunes in the Strzelecki desert,Australia   总被引:1,自引:0,他引:1  
Linear dunes in the Strzelecki Desert trend roughly south-north. Sand transport, which is toward the NNE, has caused the dunes to migrate eastward while they extend or migrate northward. Eastward lateral migration is evidenced by: (1) asymmetrical shape of the dunes; east-facing slopes are several times as steep as west-facing slopes; (2) asymmetrical accumulation of loose recently transported sand (relatively abundant on east-facing slopes); (3) asymmetrical outcropping of older semiconsolidated aeolian sand on the dune surface (more abundant on west-facing slopes); and (4) east-dipping foreset beds that underly the west-facing flanks of some dunes. Dunes in the Strzelecki Desert are still active in the sense that sand is transported along and across many dune crests. However, the dunes are composed primarily of Pleistocene strata, indicating that the trend of the dunes was established before the Holocene. The obliquity of the dunes to the transport direction is not merely an aberration of the wind regime of the last few decades. Preferential accumulation of sand on east-facing flanks indicates that the dunes migrated eastward several metres during the Holocene. Moreover, the west-facing flanks of some dunes have experienced a minimum of tens of metres of erosion. This asymmetric erosion and deposition were caused by dune obliquity and lateral migration that may have begun as early as the Pleistocene. Dunes in the Strzelecki Desert and in the adjacent Simpson Desert display a variety of grossly different internal structures. Computer graphics experiments demonstrate that many of these differences in structure can be explained by different angles of climb of the dunes.  相似文献   

8.
Aeolian sand landforms in the Yarlung Zangbo River valley can be divided into 4 classes and 21 types. The river valley has favourable environment conditions for the development of aeolian sand landforms. Simulation of MM4 mid-scale climate model showed that the near-surface flow field and wind vector field during the winter half year in the river valley are generally favourable for the aeolian sand deposition and as a whole they also affect the distribution mneu and sites of aeolian sand landforms. Sand dunes and sand dune grouup in the river valley developed mainly in three ways, namely windward retarding deposition, leeward back flow deposition and bend circumfluence deposition. Through alternating positive-reverse processes of sand dune formation under wind actions and sand dune vanishing under water actions, sand dunes developed fmm primary zone thmugh main-body zone then to vanishing zone where climbing dunes and falling dunes are declining and are even disappearing. Project supported by the National Natural Science Foundation of China (Grant No. 49471009) and Xi’an State Key Laboratory of Loess and Quaternary Geology (Grant No. 9401)  相似文献   

9.
The ASTER Global Digital Elevation Model (GDEM) has made elevation data at 30 m spatial resolution freely available, enabling reinvestigation of morphometric relationships derived from limited field data using much larger sample sizes. These data are used to analyse a range of morphometric relationships derived for dunes (between dune height, spacing, and equivalent sand thickness) in the Namib Sand Sea, which was chosen because there are a number of extant studies that could be used for comparison with the results. The relative accuracy of GDEM for capturing dune height and shape was tested against multiple individual ASTER DEM scenes and against field surveys, highlighting the smoothing of the dune crest and resultant underestimation of dune height, and the omission of the smallest dunes, because of the 30 m sampling of ASTER DEM products. It is demonstrated that morphometric relationships derived from GDEM data are broadly comparable with relationships derived by previous methods, across a range of different dune types. The data confirm patterns of dune height, spacing and equivalent sand thickness mapped previously in the Namib Sand Sea, but add new detail to these patterns. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The introduction of vegetation to bare barchan dunes can result in a morphological transformation to vegetated parabolic dunes. Models can mimic this planform inversion, but little is known about the specific processes and mechanisms responsible. Here we outline a minimalist, quantitative, and process‐based hypothesis to explain the barchan–parabolic transformation. The process is described in terms of variations in the stabilization of wind‐parallel cross‐sectional dune slices. We hypothesize that stabilization of individual ‘dune slices’ is the predictable result of feedbacks initiated from colonization of vegetation on the slipface, which can only occur when slipface deposition rates are less than the deposition tolerance of vegetation. Under a constant vegetation growth regime the transformation of a barchan dune into a parabolic dune is a geometric response to spanwise gradients in deposition rates. Initial vegetation colonization of barchan horns causes shear between the anchored sides and the advancing centre of the dune, which rotates the planform brinkline angle from concave‐ to convex‐downwind. This reduces slipface deposition rate and allows vegetation to expand inward from the arms to the dune centre. The planform inversion of bare barchans dunes into vegetated parabolic dunes ultimately leads to complete stabilization. Our hypothesis raises several important questions for future study: (i) are parabolic dunes transitional landforms between active and vegetation‐stabilized dune states? (ii) should stabilization modelling of parabolic dune fields be treated differently than linear dunes? and (iii) are stabilized parabolic dune fields ‘armoured’ against re‐activation? Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Field studies of protodunes (sand patches) on the northern margin of the Namib Sand Sea suggest that they are initiated in a zone of spatially and temporally fluctuating winds on the distal plinth of one of the south–north linear dunes and migrate northward across granule to gravel substrates. The sand patches disperse as surface roughness increases in the net migration distance. Dispersal of the sand patches is also constrained by sand supply. These studies suggest the importance of interactions between surface and aerodynamic roughness, transport thresholds, and sand supply in the initiation of dunes.  相似文献   

12.
GPR provides high resolution images of aeolian strata in frozen sand in the McMurdo Dry Valleys of Antarctica. The results have positive implications for potential GPR surveys of aeolian strata on Mars. Within the Lower Victoria Valley, seasonal changes in climate and a topographically-constrained wind regime result in significant wind reversals. As a consequence, dunes show reversing crest-lines and flattened dune crests. Ground-penetrating radar (GPR) surveys of the dunes reveal sets of cross-strata and low-angle bounding surfaces produced by reversing winds. Summer sand transport appears to be dominant and this is attributed to the seasonal increase in solar radiation. Solar radiation which heats the valley floor melts ice cements making sand available for transport. At the same time, solar heating of the valley floor generates easterly winds that transport the sand, contributing to the resultant westward dune migration. The location of the dune field along the northern edge of the Lower Victoria Valley provides some shelter from the powerful föehn and katabatic winds that sweep down the valley. Topographic steering of the winds along the valley and drag against the valley wall has probably aided the formation, migration and preservation of the dune field. Optically-stimulated luminescence (OSL) ages from dune deposits range from 0 to 1.3 kyr showing that the dune field has been present for at least 1000 yr. The OSL ages are used to calculate end-point migration rates of 0.05 to 1.3 m/yr, which are lower than migration rates reported from recent surveys of the Packard dunes and lower than similar-sized dunes in low-latitude deserts. The relatively low rates of migration are attributed to a combination of dune crest reversal under a bimodal wind regime and ice cement that reduces dune deflation and restricts sand entrainment.  相似文献   

13.
Sand columns, sand cones, sand mushrooms and other striking sand forms are frequently observed in the Dutch and German beach and dune sands. This paper aims to clarify the mechanism of sand column formation. Recently it has become evident that homogeneous beach and dune sands often become irregularly wetted by infiltrating rainwater. In otherwise dry sandy soils, wet preferential flow paths (‘fingers’) may develop. At two test sites the volumetric soil moisture content varied between 0·2 and 12·0 per cent. The wet fingers represent the premature state of sand columns. When the dry sand in between these fingers is blown away by the wind, the more resistant wet sand of the fingers will remain in its place and appear as sand columns at the surface. As a result of wind and erosive sand drifts, striking sand forms may be formed.  相似文献   

14.
A computer simulation model for transverse‐dune‐field dynamics, corresponding to a uni‐directional wind regime, is developed. In a previous formulation, two distinct problems were found regarding the cross‐sectional dune shape, namely the erosion in the lee of dunes and the steepness of the windward slopes. The first problem is solved by introducing no erosion in shadow zones. The second issue is overcome by introducing a wind speedup (shear velocity increase) factor, which can be accounted for by adding a term to the original transport length, which is proportional to the surface height. By incorporating these features we are able to model dunes whose individual shape and collective patterns are similar to those observed in nature. Moreover we show how the introduction of a non‐linear shear‐velocity‐increase term leads to the reduction of dune height, and this may result in an equilibrium dune field configuration. This is thought to be because the non‐linear increase of the transport length makes the sand trapping efficiency lower than unity, even for higher dunes, so that the incoming and the outgoing sand flux are in balance. To fully describe the inter‐dune morphology more precise dynamics in the lee of the dune must be incorporated. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
南海北部东沙海域巨型水下沙丘的分布及特征   总被引:3,自引:2,他引:1       下载免费PDF全文
本文基于多波束测深和高分辨率多道反射地震数据研究了东沙海域深水巨型水下沙丘的特征.巨型水下沙丘发育在230~830m水深的上陆坡范围内,呈斑块状分布.NW-SE向的近海底流体运动不仅冲蚀地层,形成了三条与水下沙丘间隔分布的冲蚀带,为水下沙丘提供了沉积物来源,同时也为水下沙丘的形成提供了动力源.研究区水下沙丘波长(L)范围55~510m,波高(h)范围1.5~20m,二者呈指数关系分布.沙丘的波长随水深增大而增大,波高则在500~700m水深范围内最大.水下沙丘NE—SW向展布的脊线和几何参数关系是与现今水动力条件相平衡的结果.  相似文献   

16.
In this work, we perform an analysis of large dark dunes within Moreux Crater and Herschel Crater on Mars using High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) data sets. These data allow us to conduct a detailed analysis of dune morphology and slip faces, concluding that the studied dune fields are influenced by topographically‐controlled complex wind directions. Our morphological analysis reveals that inside Moreux Crater in particular, the topographic setting dominates the wind flow direction, leading to the development of a sand transport pathway encircling the central peak of the crater. The dune fields in Herschel Crater are also affected by winds controlled by variable topography as suggested by the presence of complex dunes and dune fields. Our analysis indicate that the studied dune systems is not the result of paleo‐wind regimes. Furthermore, we perform thermal inertia measurements using thermal emission spectrometer (TES) data, which indicate that the studied dune fields consist of medium sand 250–500 µm in diameter. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.

The Tarim Desert Highway in Xinjiang, China, the longest one in the world, has a length of 562 km, about 80% of which runs across, from north to south, the Taklimakan Desert. Obviously, the main problem of the road maintenance is the blown sand disaster. The research results showed: (1) the physical environment along the desert highway is characterized by strong winds, fine and loose ground materials, different dunes and so on, which provides the dynamical condition and material source for the formation of blown sand disaster to the road and its shelter system. Meanwhile, the trend and cross-section of the road and the structure of the shelter system, as damage objects, play important roles in the formation process of blown sand disaster; (2) the blown sand disaster to the shelter system is original from the intrusion of the drift sands and mobile dunes outside the shelter system, and the wind erosion and sand deposit caused by the air stream changes on the ground in the shelter system. The main damage object in the Tarim Desert Highway is the shelter system presently. The damage forms include wind erosion, sand burying and dune covering; and (3) the damaged length of the blocking sand fences is 83.7%, 88.4%, 72.4%, 72.8% and 40.3% and the damaged area of the straw checkerboard belts is 73.1%, 58.2%, 44.5%, 35.4% and 36.6%, in turn, in 5 different landform units from north to south, and, the disasters to fences and the straw checkerboard belts are 79.5% and 57.6% in the compound dunes while they are 64.6% and 37.7% in the interdunes respectively.

  相似文献   

18.
Barchan dunes are common on Earth, Mars and Titan. Previous studies have shown that their formation, migration and evolution are influenced by the wind regime and other factors, but details vary among regions. Understanding barchan morphology and migration will both improve our understanding of dune geomorphology and provide a basis for describing the environmental conditions that affect the formation and development of these dunes on Earth and other planets. Here, we provide detailed measurements of barchan dune migration in China's Quruq Desert, in the lower reaches of the Tarim River. We monitored their migration direction and rate, and their morphological changes during migration, by comparing Google Earth images acquired in 2003 and 2014. The dunes migrated west-southwest, close to the local resultant drift direction. The migration rate averaged 8.9 to 32.1 m year−1, with obvious spatial variation. In addition to the wind regime, the migration rate depended on dune morphology, density and vegetation cover; the rate was negatively related to dune height, density and vegetation cover, but positively linearly related to the length/width ratio (LU/W) and to the decrease in this ratio from 2003 to 2014. We found correlations among the dune morphometric parameters, but the relationships were weaker than in previous research. Due to the complexity of the factors that affect the processes that underlie sand dune development and migration, the morphological changes during dune migration were also complex. Our measurements suggest that the aeolian environment played a dominant role in dune migration and its spatial variation in the Quruq Desert. These results will support efforts to control dune migration in the western Quruq Desert and improve our understanding of dune morphodynamics. © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
Concepts derived from previous studies of offshore winds on natural dunes are evaluated on a dune maintained for shore protection during three offshore wind events. The potential for offshore winds to form a lee‐side eddy on the backshore or transfer sediment from the dune and berm crest to the water are evaluated, as are differences in wind speed and sediment transport on the dune crest, berm crest and a pedestrian access gap. The dune is 18–20 m wide near the base and has a crest 4.5 m above backshore elevation. Two sand‐trapping fences facilitate accretion. Data were obtained from wind vanes on the crest and lee of the dune and anemometers and sand traps placed across the dune, on the beach berm crest and in the access gap. Mean wind direction above the dune crest varied from 11 to 3 deg from shore normal. No persistent recirculation eddy occurred on the 12 deg seaward slope. Wind speed on the berm crest was 85–89% of speed at the dune crest, but rates of sediment transport were 2.27 times greater during the strongest winds, indicating that a wide beach overcomes the transport limitation of a dune barrier. Limited transport on the seaward dune ramp indicates that losses to the water are mostly from the backshore, not the dune. The seaward slope gains sand from the landward slope and dune crest. Sand fences causing accretion on the dune ramp during onshore winds lower the seaward slope and reduce the likelihood of detached flows during offshore winds. Transport rates are higher in access gaps than on the dune crest despite lower wind speeds because of flatter slopes and absence of vegetation. Transport rates across dunes and through gaps can be reduced using vegetation and raised walkover structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Several previous attempts have been made to explain the apparent poor development of coastal dunes in the humid tropics in terms of lack of wind energy, failure of sand supply to the shoreline, excessive climatic wetness, salt crust formation on beaches, and the character of tropical back-beach vegetation. However, recent published reports indicate that coastal dune occurrences are more common in the humid tropics than was formerly thought, throwing suspicion on the idea that environmental conditions militate against dune formation in these areas as a whole. Evidence from the humid tropical sector of the North Queensland coast suggests that the poor development of dunes in this area primarily reflects poor sediment sorting in the beach and nearshore zone and low wind energy at the shoreline due to the nature of the coastal orientation and physiography in relation to the prevailing southeasterly winds. These limiting factors are not unique to humid tropical climates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号