首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The response of a viscoelastic Earth to the melting of the Late Pleistocene ice sheets has been the subject of a number of investigations employing PREM. In PREM, a non-adiabatic density gradient (NADG) exists in the upper mantle, and to understand the implications of this model it is thus important to examine the effects of this NADG on the Earth's response to surface loads. This paper is based on the assumption that the contribution to the depth dependence of the density that is not due to self-compression is due to compositional change. This contribution is referred to as 'non-adiabatic'. We evaluate the effects of a non-adiabatic density jump (NADJ) for the 670  km discontinuity and the NADG in the upper mantle by adopting a compressible earth model with both a compositional density gradient and a density jump. Numerical calculations based on these models indicate that the magnitude of the Earth's response associated with the NADG is much smaller than that associated with the NADJ at 670  km depth. It is also confirmed that the higher modes associated with the NADJ and the NADG are much more sensitive to the existence of an elastic lithosphere than the fundamental modes associated with the density jumps at the surface and core–mantle boundary.  相似文献   

2.
Observations of ice movements across the British Isles and of sea-level changes around the shorelines during Late Devensian time (after about 25 000 yr BP) have been used to establish a high spatial and temporal resolution model for the rebound of Great Britain and associated sea-level change. The sea-level observations include sites within the margins of the former ice sheet as well as observations outside the glaciated regions such that it has been possible to separate unknown earth model parameters from some ice-sheet model parameters in the inversion of the glacio-hydro-isostatic equations. The mantle viscosity profile is approximated by a number of radially symmetric layers representing the lithosphere, the upper mantle as two layers from the base of the lithosphere to the phase transition boundary at 400 km, the transition zone down to 670 km depth, and the lower mantle. No evidence is found to support a strong layering in viscosity above 670 km other than the high-viscosity lithospheric layer. Models with a low-viscosity zone in the upper mantle or models with a marked higher viscosity in the transition zone are less satisfactory than models in which the viscosity is constant from the base of the lithosphere to the 670 km boundary. In contrast, a marked increase in viscosity is required across this latter boundary. The optimum effective parameters for the mantle beneath Great Britain are: a lithospheric thickness of about 65 km, a mantle viscosity above 670 km of about (4-5) 1020 Pa s, and a viscosity below 670 km greater than 4 × 1021 Pa s.  相似文献   

3.
The degree-one deformation of the Earth (and the induced discrepancy between the figure centre and the mass centre of the Earth) is computed using a theoretical approach (Love numbers formalism) at short timescales (where the Earth has an elastic behaviour) as well as at long timescales (where the Earth has a viscoelastic or quasi-fluid behaviour). For a Maxwell model of rheology, the degree-one relaxation modes associated with the viscoelastic Love numbers have been investigated: the Mo mode does not exist and there is only one transition mode (instead of two) generated by a viscosity discontinuity.
The translations at each interface of the incompressible layers of the earth model [surface, 670 km depth discontinuity, core-mantle boundary (CMB) and inner-core boundary (ICB)] are computed. They are elastic with an order of magnitude of about 1 mm when the excitation source is the atmospheric continental loading or a magnetic pressure acting at the CMB. They are viscoelastic when the earth is submitted to Pleistocene deglaciation, with an order of magnitude of about 1 m. In a quasi-fluid approximation (Newtonian fluid) because of the mantle density heterogeneity their order of magnitude is about 100 m (except for the ICB, which is in quasi-hydrostatic equilibrium at this timescale).  相似文献   

4.
Summary. We give the analytical formulation for calculating the transient displacement of fields produced by earthquakes in a stratified, selfgravitating, incompressible, viscoelastic earth. We have evaluated the potential of viscous creep in the asthenosphere in exciting the Chandler wobble by a four-layer model consisting of an elastic lithosphere, a two-layer Maxwell viscoelastic mantle, and an inviscid core. The seismic source is modelled as an inhomogeneous boundary condition, which involves a jump condition of the displacement fields across the fault in the lithosphere. The response fields are derived from the solution of a two-point boundary value problem, using analytical propagator matrices in the Laplace-transformed domain. Transient flows produced by post-seismic rebound are found to be confined within the asthenosphere for local viscosity values less than 1020P. The viscosity of the mantle below the low-viscosity channel is kept at 1022P. For low-viscosity zones with widths greater than about 100 km and asthenospheric viscosities less than 1018P, we find that viscoelasticity can amplify the perturbations in the moment of inertia by a factor of 4–5 above the elastic contribution within the time span of the wobble period. We have carried out a comparative study on the changes of the inertia tensor from forcings due to surface loading and to faulting. In general the global responses from faulting are found to be much more sensitive to the viscosity structure of the asthenosphere than those produced from surface loading.  相似文献   

5.
For two decades leading to the late 1980s, the prevailing view from studies of glacial isostatic adjustment (GIA) data was that the viscosity of the Earth's mantle increased moderately, if at all, from the base of the lithosphere to the core–mantle boundary. This view was first questioned by Nakada & Lambeck , who argued that differential sea-level (DSL) highstands between pairs of sites in the Australian region preferred an increase of approximately two orders of magnitude from the mean viscosity of the upper to the lower mantle, in accord with independent inferences from observables related to mantle convection. We use non-linear Bayesian inference to provide the first formal resolving power analysis of the Australian DSL data set. We identify three radial regions, two within the upper mantle (110–270 km and 320–570 km depth) and one in the lower mantle (1225–2265 km depth), over which the average of viscosity is well constrained by the data. We conclude that: (1) the DSL data provide a resolution in the inference of upper mantle viscosity that is better than implied by forward analyses based on isoviscous regions above and below the 670 km depth discontinuity and (2) the data do not strongly constrain viscosity at either the base or top of the lower mantle. Finally, our inversions also quantify the significant bias that may be introduced in inversions of the DSL highstands that do not simultaneously estimate the thickness of the elastic lithosphere.  相似文献   

6.
Using the viscoelastic correspondence principle, we utilize the surface coseismic spheroidal deformation fields (i.e. vertical displacements, potential perturbations and gravity changes) of SNREI earth models caused by four typical types of point dislocation, derived by Sun & Okubo (1993 ), to deduce the fundamental formulas for spheroidal fields relevant to viscoelastic earth models. In computations, we employ a strike-slip dislocation on a vertical plane buried at the bottom of the lithosphere to estimate the maximal viscous relaxation responses to this kind of source that possibly exist on the surface of the earth. We take the seismic moment as 1022  N  m, which is characteristic of an average large earthquake. The numerical results demonstrate that, if we take the viscosity as 1019  Pa  s in the asthenosphere, and 1021  Pa  s in the other mantle layers, the rates of surface vertical displacements and gravity changes within about 2.5° for the 10 postseismic years are respectively 1.5–8.1  cm  yr−1 and 4.0–14.9  μgal  yr−1 : the viscous relaxation for this mantle viscosity profile proceeds much faster than for a constant mantle viscosity of 1021  Pa  s.  相似文献   

7.
Summary. Recent results from the analysis of postglacial rebound data suggest that the viscosity of the Earth's mantle increases through the transition region. Models which fit both relative sea-level and free air gravity data have viscosities which increase from a value near 1022 poise in the upper mantle beneath the lithosphere to a value of about 1023 poise in the lower mantle. In this paper we analyse the effect of deglaciation upon the Earth's rotation and thereby show that the observed secular trend (polar wander) evident in the ILS—IPMS pole path, and measurements of the non-tidal acceleration of the length of day, are both consistent with the viscosity profile deduced from postglacial rebound. The two analyses are therefore mutually reinforcing.  相似文献   

8.
Analytical approach for the toroidal relaxation of viscoelastic earth   总被引:1,自引:0,他引:1  
This paper is concerned with post-seismic toroidal deformation in a spherically symmetric, non-rotating, linear-viscoelastic, isotropic Maxwell earth model. Analytical expressions for characteristic relaxation times and relaxation strengths are found for viscoelastic toroidal deformation, associated with surface tangential stress, when there are two to five layers between the core–mantle boundary and Earth's surface. The multilayered models can include lithosphere, asthenosphere, upper and lower mantles and even low-viscosity ductile layer in the lithosphere. The analytical approach is self-consistent in that the Heaviside isostatic solution agrees with fluid limit. The analytical solution can be used for high-precision simulation of the toroidal relaxation in five-layer earths and the results can also be considered as a benchmark for numerical methods. Analytical solution gives only stable decaying modes—unstable mode, conjugate complex mode and modes of relevant poles with orders larger than 1, are all excluded, and the total number of modes is found to be just the number of viscoelastic layers between the core–mantle boundary and Earth's surface—however, any elastic layer between two viscoelastic layers is also counted. This confirms previous finding where numerical method (i.e. propagator matrix method) is used. We have studied the relaxation times of a lot of models and found the propagator matrix method to agree very well with those from analytical results. In addition, the asthenosphere and lithospheric ductile layer are found to have large effects on the amplitude of post-seismic deformation. This also confirms the findings of previous works.  相似文献   

9.
Previous investigations of the causal relationship between postglacial rebound and earthquakes in eastern Canada have focused on the mode of failure and the observed timing of the pulse of earthquake/faulting activity following deglaciation. In this study, the observational database has been extended to include observed orientations of the contemporary stress field and the rotation of stress since deglacial times. It is shown that many of these observations can be explained by a realistic ice history and a viscoelastic earth with a uniform 1021 Pa s mantle.
The effects of viscosity structure on the above predictions are also examined. It is shown that, since most of the above observations are found within the ice margin, they are not very sensitive to lithospheric thickness. Also, the inclusion of a 25 or 50 km ductile layer within the lithosphere will not decouple the seismogenic upper crust. High viscosity (1022 Pa s) in the lower mantle is rejected by the stress orientation and rotation observations. A low-viscosity (6 times 1020Pa s) upper mantle with 1.6 times 1021 Pa s in the upper part of the lower mantle and 3 times 1021 Pa s in the lower part of the lower mantle below 1200 km depth has been found to give predictions that are in general agreement with the observations.  相似文献   

10.
The 2004 M = 9.2 Sumatra–Andaman earthquake profoundly altered the state of stress in a large volume surrounding the ∼1400 km long rupture. Induced mantle flow fields and coupled surface deformation are sensitive to the 3-D rheology structure. To predict the post-seismic motions from this earthquake, relaxation of a 3-D spherical viscoelastic earth model is simulated using the theory of coupled normal modes. The quasi-static deformation basis set and solution on the 3-D model is constructed using: a spherically stratified viscoelastic earth model with a linear stress–strain relation; an aspherical perturbation in viscoelastic structure; a 'static' mode basis set consisting of Earth's spheroidal and toroidal free oscillations; a "viscoelastic" mode basis set; and interaction kernels that describe the coupling among viscoelastic and static modes. Application to the 2004 Sumatra–Andaman earthquake illustrates the profound modification of the post-seismic flow field at depth by a slab structure and similarly large effects on the near-field post-seismic deformation field at Earth's surface. Comparison with post-seismic GPS observations illustrates the extent to which viscoelastic relaxation contributes to the regional post-seismic deformation.  相似文献   

11.
Geological studies show evidence for temporal clustering of large earthquakes on individual fault systems. Since post-seismic deformation due to the inelastic rheology of the lithosphere may result in a variable loading rate on a fault throughout the interseismic period, it is reasonable to expect that the rheology of the non-seismogenic lower crust and mantle lithosphere may play a role in controlling earthquake recurrence times. We study this phenomenon using a 2-D, finite element method continuum model of the lithosphere containing a single strike-slip fault. This model builds on a previous study using a 1-D spring-dashpot-slider analogue of a single fault system to study the role of Maxwell viscoelastic relaxation in producing non-periodic earthquakes. In our 2-D model, the seismogenic portion of the fault slips when a predetermined yield stress is exceeded; stress accumulated on the seismogenic fault is shed to the viscoelastic layers below and recycled back to the seismogenic fault through viscoelastic relaxation. We find that random variation of the fault yield stress from one earthquake to the next can cause the earthquake sequence to be clustered; the amount of clustering depends on a non-dimensional number, W , called the Wallace number defined as the standard deviation of the randomly varied fault yield stress divided by the effective viscosity of the system times the tectonic loading rate. A new clustering metric based on the bimodal distribution of interseismic intervals allows us to investigate clustering behaviour of systems over a wide range of model parameters and those with multiple viscoelastic layers. For models with   W ≥ 1  clustering increases with increasing W , while those with   W ≤ 1  are unclustered, or quasi-periodic.  相似文献   

12.
Inference of mantle viscosity from GRACE and relative sea level data   总被引:12,自引:0,他引:12  
Gravity Recovery And Climate Experiment (GRACE) satellite observations of secular changes in gravity near Hudson Bay, and geological measurements of relative sea level (RSL) changes over the last 10 000 yr in the same region, are used in a Monte Carlo inversion to infer-mantle viscosity structure. The GRACE secular change in gravity shows a significant positive anomaly over a broad region (>3000 km) near Hudson Bay with a maximum of ∼2.5 μGal yr−1 slightly west of Hudson Bay. The pattern of this anomaly is remarkably consistent with that predicted for postglacial rebound using the ICE-5G deglaciation history, strongly suggesting a postglacial rebound origin for the gravity change. We find that the GRACE and RSL data are insensitive to mantle viscosity below 1800 km depth, a conclusion similar to that from previous studies that used only RSL data. For a mantle with homogeneous viscosity, the GRACE and RSL data require a viscosity between  1.4 × 1021  and  2.3 × 1021  Pa s. An inversion for two mantle viscosity layers separated at a depth of 670 km, shows an ensemble of viscosity structures compatible with the data. While the lowest misfit occurs for upper- and lower-mantle viscosities of  5.3 × 1020  and  2.3 × 1021  Pa s, respectively, a weaker upper mantle may be compensated by a stronger lower mantle, such that there exist other models that also provide a reasonable fit to the data. We find that the GRACE and RSL data used in this study cannot resolve more than two layers in the upper 1800 km of the mantle.  相似文献   

13.
Summary. This paper explores the middle ground between complex thermally-coupled viscous flow models and simple corner flow models of island arc environments. The calculation retains the density-driven nature of convection and relaxes the geometrical constraints of corner flow, yet still provides semianalytical solutions for velocity and stress. A novel aspect of the procedure is its allowance for a coupled elastic lithosphere on top of a Newtonian viscous mantle. Initially, simple box-like density drivers illustrate how vertical and horizontal forces are transmitted through the mantle and how the lithosphere responds by trench formation. The flexural strength of the lithosphere spatially broadens the surface topography and gravity anomalies relative to the functional form of the vertical flow stresses applied to the plate base. I find that drivers in the form of inclined subducting slabs cannot induce self-driven parallel flow; however, the necessary flow can be provided by supplying a basal drag of 1–5 MPa to the mantle from the oceanic lithosphere. These basal drag forces create regional lithospheric stress and they should be quantifiable through seismic observations of the neutral surface. The existence of a shallow elevated phase transition is suggested in two slab models of 300 km length where a maximum excess density of 0.2 g cm−3 was needed to generate an acceptable mantle flow. A North New Hebrides subduction model which satisfies flow requirements and reproduces general features of topography and gravity contains a high shear stress zone (75 MPa) around the upper slab surface to a depth of 150 km and a deviatoric tensional stress in the back arc to a depth of 70 km. The lithospheric stress state of this model suggests that slab detachment is possible through whole plate fracture.  相似文献   

14.
Most previous earth models used to calculate viscoelastic relaxation after the removal of the Late Pleistocene ice loads implicitly assume that there is no exchange of mass across the mantle density discontinuities on periods of tens of thousands of years (the material boundary formulation). In the present study, simple incompressible models are used to determine the Earth's behaviour in the case where the density discontinuity remains at a constant pressure rather than deforming with the material (the isobaric boundary formulation). The calculation of the movement of the boundary is more rigorous than in earlier studies and uses the local incremental pressure calculated at the depth of the boundary and allows for the vertical deformation caused by the change in volume as material changes phase. It is shown that the buoyancy modes associated with the density discontinuities decrease in strength and increase in relaxation time analogous to what results when the density contrast is reduced. Also, two viscoelastic modes arise from an isobaric boundary, which is also predicted when there is a contrast in rigidity or viscosity across a material boundary. The difference in predicted radial deformation between the isobaric boundary model and the material boundary model is largest for long-wavelength loads for which the material incremental pressure at depth is largest. If the isobaric boundary model is appropriate for the treatment of the mineral phase changes in the mantle on glacial rebound timescales, then previous inferences of the deep-mantle to shallow-mantle viscosity ratio based on large-scale deformation (spherical harmonic degree < 10) of the Earth and including data from the early part of the glacio-isostatic uplift are too small.  相似文献   

15.
Continental drift and true polar wandering   总被引:1,自引:0,他引:1  
Summary . Evidence in the form of 75 yr of ILS data is accumulating which suggests that true polar wander may be currently taking place. It seems likely that true wander of some magnitude must always accompany plate motions, but the extrapolated ILS rate is an order of magnitude larger than the rate of true polar wander deduced from palaeomagnetic data over the past 55 Myr. The conflict between palaeomagnetic and latitude data provides the motivation for investigating one possible excitation of polar wander, the mass redistribution which accompanies continental drift.
The mass redistribution arises mainly because of the contrasting density structure of oceanic and continental regions. The change in the inertia tensor resulting from 106yr of plate motions is found to be negligibly small; even consideration of episodic plate movements, anelasticity, or a decoupled lithosphere cannot boost the effect to the ILS rate of polar wander. These conclusions are strengthened by the fact that any one of several absolute plate velocity models, based on extremely diverse assumptions, yields the same results.
In contrast, preliminary findings regarding the effect of Pleistocene deglaciation activities on the inertia tensor reveal that such non-isostatic phenomena may have a large influence on polar wander.  相似文献   

16.
Viscous and viscoelastic models for a subduction zone with a faulted lithosphere and internal buoyancy can self-consistently and simultaneously predict long-wavelength geoid highs over slabs, short-wavelength gravity lows over trenches, trench-forebulge morphology, and explain the high apparent strength of oceanic lithosphere in trench environments. The models use two different free-surface formulations of buoyancy-driven flows (see, for example, Part I): Lagrangian viscoelastic and pseudo-free-surface viscous formulations. The lower mantle must be stronger than the upper in order to obtain geoid highs at long wavelengths. Trenches are a simple consequence of the negative buoyancy of slabs and a large thrust fault, decoupling the overriding from underthrusting plates. The lower oceanic lithosphere must have a viscosity of less than to24 Pa s in order to be consistent with the flexural wavelength of forebulges. Forebulges are dynamically maintained by viscous flow in the lower lithosphere and mantle, and give rise to apparently stiffer oceanic lithosphere at trenches. With purely viscous models using a pseudo-free-surface formulation, we find that viscous relaxation of oceanic lithosphere, in the presence of rapid trench rollback, leads to wider and shallower back-arc basins when compared to cases without viscous relaxation. Moreover, in agreement with earlier studies, the stresses necessary to generate forebulges are small (∼ 100 bars) compared to the unrealistically high stresses needed in classic thin elastic plate models.  相似文献   

17.
Summary. We determine the variation of effective viscosity η across the lower mantle from models of the Gibb's free energy of activation G * and the adiabatic temperature profile. The variation of G * with depth is calculated using both an elastic strain energy model, in which G * is related to the seismic velocities, and a model which assumes G * is proportional to the melting temperature. The melting temperature is assumed to follow Lindemann's equation. The adiabatic temperature profile is calculated from a model for the density dependence of the Grüneisen parameter. Estimates of η depend on whether the lower mantle is a Newtonian or power law fluid. In the latter case separate estimates of η are obtained for flow with constant stress, constant strain rate, and constant strain energy dissipation rate. For G * based on the melting temperature, increases in η with depth range from a factor of about 100 for Newtonian deformation or power-law flow with constant stress to about 5 for non-Newtonian deformation with constant strain rate. For G * based on elastic defect energy, increases in η with depth range from a factor of about 1500 for Newtonian deformation or power-law flow with constant stress to about 10 for non-Newtonian deformation with constant strain rate. Among these models, only a non-Newtonian lower mantle convecting with constant strain rate or constant strain energy dissipation rate is consistent with recent estimates of mantle viscosity from post-glacial rebound and true polar wander data.  相似文献   

18.
We present an analytical form of the layer propagator matrix for the response of a locally incompressible, layered, linear‐viscoelastic sphere to an external load assuming that the initial density stratification ϱ 0( r ) within each layer is parametrized by Darwin's law. From this, we show that the relaxation of a sphere consisting of locally incompressible layers is governed by a discrete set of viscous modes. The explicit dependence of the layer propagator matrix on the Laplace transform variable allows us to determine the amplitudes of the viscous modes analytically. Employing Darwin's parametrization, we construct three simplified earth models with different initial density gradients that are used to compare the effects of the local incompressibility constraint, div ( ϱ 0 u )=0, and the material incompressibility constraint, div  u =0, on viscoelastic relaxation. We show that a locally incompressible earth model relaxes faster than a materially incompressible model. This is a consequence of the fact that the perturbations of the initial density are zero during viscoelastic relaxation of a locally incompressible medium, so that there are no internal buoyancy forces associated with the continuous radial density gradients, only the buoyancy forces generated by internal density discontinuities. On the other hand, slowly decaying internal buoyancy forces in a materially incompressible earth model cause it to reach the hydrostatic equilibrium after a considerably longer time than a locally incompressible model. It is important to note that the approximation of local incompressibility provides a solution for a compressible earth model that is superior to the conventional solutions for a compressible earth with homogeneous layers because it is based on an initial state that is consistent with the assumption of compressibility.  相似文献   

19.
Apparent polar wander in the mean-lithosphere (= no-net-rotation = no-net-torque uniform drag) reference frame is compared with apparent polar wander in the hotspot reference frame over the past 100 Myr. Palaeo-magnetic poles and plate rotations previously used to determine an apparent polar wander path for the hotspot reference frame are here used to determine an apparent polar wander path in the mean-lithosphere reference frame. We find that the two paths are similar, especially for Late Cretaceous time, when a 10°–20° shift of the pole occurred. To first-order the hotspots and lithosphere (as a whole) moved in unison relative to the palaeomagnetic axis during Late Cretaceous time. A non-dipole field explanation for the apparent shift can probably be excluded. However, either motion of the time-averaged geomagnetic axis relative to the spin axis or polar wandering could have caused this shift, the latter being the more likely explanation.  相似文献   

20.
The   M w γ 9.0  2004 December 26 Sumatra-Andaman and   M w = 8.7  2005 March 28 Nias earthquakes, which collectively ruptured approximately 1800 km of the Andaman and Sunda subduction zones, are expected to be followed by vigorous viscoelastic relaxation involving both the upper and lower mantle. Because of these large spatial dimensions it is desirable to fully account for gravitational coupling effects in the relaxation process. We present a stable method of computing relaxation of a spherically-stratified, compressible and self-gravitating viscoelastic Earth following an impulsive moment release event. The solution is cast in terms of a spherical harmonic expansion of viscoelastic normal modes. For simple layered viscoelastic models, which include a low-viscosity oceanic asthenosphere, we predict substantial post-seismic effects over a region several 100s of km wide surrounding the eastern Indian Ocean. We compare observed GPS time-series from ten regional sites (mostly in Thailand and Indonesia), beginning in 2004 December, with synthetic time-series that include the coseismic and post-seismic effects of the 2004 December 26 and 2005 March 28 earthquakes. A viscosity structure involving a biviscous (Burgers body) rheology in the asthenosphere explains the pattern and amplitude of post-seismic offsets remarkably well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号