首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In order to assess the controlling factors on the evolution of a shelf margin and the timing of sediment transfer to deep waters, a seismic stratigraphic investigation was carried out in the Eocene interval of northern Santos Basin, offshore Brazil. The studied succession configures a complex of prograding slope clinoforms formed in a passive margin and encompasses five seismic facies and their respective depositional settings: shelf-margin deltas/shorefaces, oblique slope clinoforms, sigmoidal slope clinoforms, continental to shelfal deposits and mass-transport deposits. These are stratigraphically arranged as seven depositional sequences recording a total shelf-edge progradation of about 35 km and a progradation rate of 1,75 km/My. Two main types of sequences can be recognized, the first one (type A) being dominated by oblique slope clinoforms and shelf-margin deltas/shorefaces in which shelf-edge trajectories were essentially flat to descending and extensive sandy turbidites were deposited on the foreset to bottomset zones. Sequences of this type are dominated by forced-regressive units deposited during extensive periods of relative sea-level fall. Type B comprises an upper part represented by aggradational shelfal deposits and a lower part composed of mass-transport deposits and high-relief sigmoidal clinoforms with descending shelf-edge trajectory. Steep slump scars deeply cut the shelfal strata and constitutes the boundary between the two intervals observed in type B sequences. Sandy turbidites occur at the same frequency in both forced- and normal-regressive units but are more voluminous within forced-regressive clinoforms associated with shelf-margin deltas/shorefaces. Major slope failures and mass-transport deposits, by the other hand, occurred exclusively in type B sequences during the onset of sea-level fall and their volume are directly related to the thickness of the shelfal sediments formed during the pre-failure normal regressions.  相似文献   

2.
Multibeam bathymetry, high (sleeve airguns) and very high resolution (parametric system-TOPAS-) seismic records were used to define the morphosedimentary features and investigate the depositional architecture of the Cantabrian continental margin. The outer shelf (down to 180–245 m water depth) displays an intensively eroded seafloor surface that truncates consolidated ancient folded and fractured deposits. Recent deposits are only locally present as lowstand shelf-margin deposits and a transparent drape with bedforms. The continental slope is affected by sedimentary processes that have combined to create the morphosedimentary features seen today. The upper (down to 2000 m water depth) and lower (down to 3700–4600 m water depth) slopes are mostly subject to different types of slope failures, such as slides, mass-transport deposits (a mix of slumping and mass-flows), and turbidity currents. The upper slope is also subject to the action of bottom currents (the Mediterranean Water — MW) that interact with the Le Danois Bank favouring the reworking of the sediment and the sculpting of a contourite system. The continental rise is a bypass region of debris flows and turbidity currents where a complex channel-lobe transition zone (CLTZ) of the Cap Ferret Fan develops.The recent architecture depositional model is complex and results from the remaining structural template and the great variability of interconnected sedimentary systems and processes. This margin can be considered as starved due to the great sediment evacuation over a relatively steep entire depositional profile. Sediment is eroded mostly from the Cantabrian and also the Pyrenees mountains (source) and transported by small stream/river mountains to the sea. It bypasses the continental shelf and when sediment arrives at the slope it is transported through a major submarine drainage system (large submarine valleys and mass-movement processes) down to the continental rise and adjacent Biscay Abyssal Plain (sink). Factors controlling this architecture are tectonism and sediment source/dispersal, which are closely interrelated, whereas sea-level changes and oceanography have played a minor role (on a long-term scale).  相似文献   

3.
Five depositional bodies occur within the Quaternary deposits of the northwestern Alboran Sea: Guadalmedina-Guadalhorce prodelta, shelf-edge wedges, progradational packages, Guadiaro channel-levee complex, and debris flow deposits. The sedimentary structure reflects two styles of margin growth characterized: 1) by an essentially sediment-starved outer, shelf and upper slope and by divergent slope seismic facies; 2) by a prograding sediment outer shelf, and parallel slope seismic facies. Eustatic oscillations, sediment supply, and tectonic tilting have controlled the type of growth pattern, and the occurrence of the depositional bodies. Debris flows were also controlled locally by diapirism.  相似文献   

4.
Emplacement of post-glacial turbidites is commonly controlled by rapid changes in sea level or by seismicity. On the continental rise of the Gulf of Lions (Western Mediterranean), an aseismic area, we identified turbiditic beds deposited during the rising stage and highstand of sea level. Swath bathymetry, sediment cores, in situ Cone Penetrating Tests (CPTU), heavy mineral associations and radiocarbon dating determined the source, composition, distribution and age of the turbiditic beds. Turbidites are composed of homogeneous to positively graded silts to medium sand with quartz (up to 90%), shell debris and shelfal benthic faunas. Their distribution on the sea floor is very patchy and controlled by abundant inherited erosional bedforms. Their source is found in relict regressive sands at the outershelf. Their deposition occurred just after the onset of the post-glacial sea level rise and the concomitant sediment starvation of the Rhône deep sea turbiditic system until recently. Whilst canyons are fed with sand by strong seasonal hydro-sedimentary dynamics on the outershelf, the emplacement of post-glacial turbidites is not controlled by sea level changes but probably by the periodic flushing of the canyons. Our study revealed that this low energy aseismic margin undergoes significant transport of sand, down to the base of slope, during the sea-level rise and the Holocene highstand.  相似文献   

5.
This study reports novel findings on the Pliocene?CQuaternary history of the northern Gulf of Cadiz margin and the spatiotemporal evolution of the associated contourite depositional system. Four major seismic units (P1, P2, QI and QII) were identified in the Pliocene?CQuaternary sedimentary record based on multichannel seismic profiles. These are bounded by five major discontinuities which, from older to younger, are the M (Messinian), LPR (lower Pliocene revolution), BQD (base Quaternary discontinuity), MPR (mid-Pleistocene revolution) and the actual seafloor. Unit P1 represents pre-contourite hemipelagic/pelagic deposition along the northern Gulf of Cadiz margin. Unit P2 reflects a significant change in margin sedimentation when contourite deposition started after the Early Pliocene. Mounded elongated and separated drifts were generated during unit QI deposition, accompanied by a general upslope progradation of drifts and the migration of main depocentres towards the north and northwest during both the Pliocene and Quaternary. This progradation became particularly marked during QII deposition after the mid-Pleistocene (MPR). Based on the spatial distribution of the main contourite depocentres and their thickness, three structural zones have been identified: (1) an eastern zone, where NE?CSW diapiric ridges have controlled the development of two internal sedimentary basins; (2) a central zone, which shows important direct control by the Guadalquivir Bank in the south and an E?CW Miocene palaeorelief structure in the north, both of which have significantly conditioned the basin-infill geometry; and (3) a western zone, affected in the north by the Miocene palaeorelief which favours deposition in the southern part of the basin. Pliocene tectonic activity has been an important factor in controlling slope morphology and, hence, influencing Mediterranean Outflow Water pathways. Since the mid-Pleistocene (MPR), the sedimentary stacking pattern of contourite drifts has been less affected by tectonics and more directly by climatic and sea-level changes.  相似文献   

6.
Contourite deposits in the central sector of the middle slope of the Gulf of Cadiz have been studied using a comprehensive acoustic, seismic and core database. Buried, mounded, elongated and separated drifts developed under the influence of the lower core of the Mediterranean Outflow Water are preserved in the sedimentary record. These are characterised by depositional features in an area where strong tectonic and erosive processes are now dominant. The general stacking pattern of the depositional system is mainly influenced by climatic changes through the Quaternary, whereas changes in the depositional style observed in two, buried, mounded drifts, the Guadalquivir and Huelva Drifts, are evidence of a tectonic control. In the western Guadalquivir Drift, the onset of the sheeted drift construction (aggrading QII unit) above a mounded drift (prograding QI unit) resulted from a new Lower Mediterranean Core Water hydrodynamic regime. This change is correlated with a tectonic event coeval with the Mid Pleistocene Revolution (MPR) discontinuity that produced new irregularities of the seafloor during the Mid- to Late-Pleistocene. Changes in the Huelva Drift from a mounded to a sheeted drift geometry during the Late-Pleistocene, and from a prograding drift (QI and most part of QII) to an aggrading one (upper seismic unit of QII), highlight a new change in oceanographic conditions. This depositional and then oceanographic change is associated with a tectonic event, coeval with the Marine Isotope Stage (MIS) 6 discontinuity, in which a redistribution of the diapiric ridges led to the development of new local gateways, three principal branches of the Mediterranean Lower Core Water, and associated contourite channels. As a result, these buried contourite drifts hold a key palaeoceanographic record of the evolution of Mediterranean Lower Core Water, influenced by both neotectonic activity and climatic changes during the Quaternary. This study is an example of how contourite deposits and erosive elements in the marine environment can provide evidence for the reconstruction of palaeoceanographic and recent tectonic changes.  相似文献   

7.
This paper presents evidence for the presence of shallow-water contourite drifts on the south-western shelf and shelf edge off Mallorca in water depths between 150 and 275?m. These are called the Mallorca contourite depositional system (CDS). The elongate-mounded shallow-water CDS in this area is ascribed to an offshoot of the Balearic Current, which flows north to south through the Mallorca Channel as part of the overall thermohaline circulation in the Mediterranean Sea. Drift geometry suggests that the north?Csouth current is deflected into an east?Cwest flow pattern by interaction with a marked seafloor bathymetry, associated with major fault displacement. Four seismic units separated by three prominent discontinuities can be identified. The three internal discontinuities are correlated to large-scale basin-wide events: the lower Pliocene revolution (4.2?Ma), the upper Pliocene revolution (2.4?Ma) and the mid-Pleistocene revolution (0.9?Ma). The Plio-Quaternary succession has been deposited on top of a Miocene reef, which serves as an acoustic basement and is affected by a large fault, offsetting the basement on average by 150?m. Marked erosional features throughout and further incision of the Sant Jordi Channel along the basement fault in the Pleistocene deposits indicate stronger currents in this period. The Pleistocene deposits also show a pronounced cyclicity, which is tentatively ascribed to climatic variations and the effects of eustatic sea-level fluctuation over the south-western Mallorca shelf at that time.  相似文献   

8.
A set of multi-channel seismic profiles (∼15,000 km) is used to study the depositional evolution of the Cosmonaut Sea margin of East Antarctica. We recognize a regional sediment wedge, below the upper parts of the continental rise, herein termed the Cosmonaut Sea Wedge. The wedge is situated stratigraphically below the inferred glaciomarine section and extends for at least 1,200 km along the continental margin with a width that ranges from 80 to about 250 km. The morphology of the wedge and its associated depositional features indicate a complex depositional history, where the deep marine depositional sites were influenced by both downslope and alongslope processes. This interaction resulted in the formation of several proximal depocentres, which at their distal northern end are flanked by elongated mounded drifts and contourite sheets. The internal stratification of the mounded drift deposits indicates that westward flowing bottom currents reworked the marginal deposits. The action of these currents together with sea-level changes is considered to have controlled the growth of the wedge. We interpret the Cosmonaut Sea Wedge as a composite feature comprising several bottom current reworked fan systems. The wide spectrum of depositional geometries in the stratigraphic column reflects dramatic variations in sediment supply from the continental margin as well as varying interaction between downslope and alongslope processes.  相似文献   

9.
10.
The margin of the Gulf of Cadiz is swept by the deep current formed by the Mediterranean Outflow Water (MOW) flowing from the Mediterranean to the Atlantic. On the northern margin of the Gulf (Algarve Margin, South Portugal), the MOW intensity is low and fine-grained contourite drifts are built up with an alongslope development. From new sedimentological data, this study emphasizes the presence of two types of contourite drifts separated only by a deep submarine canyon incising the slope with a north-south orientation (Portimão Canyon). High-resolution seismic and bathymetry interpretation shows that on the eastern side of the canyon, the MOW forms a thick and large detached drift (Albufeira Drift) prograding toward both north and west, as shown in seismic profiles, with a high sedimentation rate. On this side of the canyon, the MOW intensity is high enough to erode the slope forming a moat channel (Alvarez Cabral). On the western side of Portimão Canyon, the MOW energy is lower, preventing moat channel erosion. Only flat and thin drift develops (Portimão and Lagos Drifts) with slow aggradation and a low sedimentation rate. This difference in drift development is due to the presence of the canyon which generates an important change in hydrodynamic of the MOW, confirmed by temperature-density measurements showing that MOW flows down Portimão Canyon. The canyon is responsible for the deviation of the direction of the MOW as it partly catches the deep-sea current flowing westward (i.e. capture phenomenon). It creates, thus, a decrease of the flow energy, competency and capacity between the east and west sides of the canyon. Through this phenomenon of MOW deep-sea current capture, the canyon constitutes a morphologic feature generating an important change in the contourite deposition pattern.In addition to already known climatic and oceanographic influences, our results show the role of canyons on contourite drift building. This study provides new elements on autocyclic factors influencing the contourite sedimentation, which are important to consider in future sedimentary paleo-reconstruction interpretations.  相似文献   

11.
The Adriatic Sea is a modern epicontinental basin where the late Quaternary transgressive systems tract shows substantial variations within two contrasting shelf domains, separated by a 250-m-deep remnant basin: a lowgradient shelf in the north, and a steeper margin in the south. Four differentiated sedimentary responses reflect contrasting physiographic domains and differences in the ratio between oceanographic regime and sediment input during relative sea-level rise. The progressive widening of the Adriatic epicontinental shelf, up to seven times its low-stand extent, also determines variations in the style of transgressive deposition by controlling major changes in oceanographic circulation.  相似文献   

12.
The continental-shelf morphology is dominated by glacial erosion and deposition. Erosion is prominent on the near-shore shelf and deposition along the outer shelf edge. The continental slope is characterized by delta-shaped progradations (glaciomarine-sediment fans) seaward of the shelf channels. Canyons cross the continental slope only in the region southeast of Cape Farewell. The continental rise is incised by a number of submarine canyons. Broad sediment ridges on the upper continental rise are probably canyon-eroded remains of extensive Plio-Pleistocene fans. A mid-ocean channel which crosses the continental rise is possibly related to the axis of maximum depth of Denmark Strait. Despite the presence of strong bottom currents, there is no indication of depositional sediment drifts along the continental margin of Greenland between Cape Farewell and Denmark Strait. This may be a function of high current velocity or low sediment load.Sea floor older than 60 m.y. B.P. is present just seaward of the Greenland continental margin implying either downwarped continental material or an early rift formed prior to the separation of Greenland from the European plate. A left lateral offset of anomalies 20 and 21 at 65°N indicates a major fracture zone related to the Greenland continental margin offset nearby.  相似文献   

13.
High-resolution seismic reflection profiles and multibeam bathymetry data collected in 2006 and 2008 around Pantelleria Island show the widespread occurrence of contourite drifts and erosional elements ~30?km from the narrowest part (~145?km) of the Sicily Channel, where water masses from the Eastern Mediterranean flow towards the Western Mediterranean. The contourite drifts are rather small (up to 10?km long and 3.3?km wide), at water depths of ~250?C750?m. Most are elongated separated drifts with quite well-developed moats and crests, aligned roughly parallel to the regional bathymetric contours. Erosional elements include abraded surfaces, moats, scours and sub-circular depressions. In addition, a wide sector of the seafloor adjacent to a seamount located SW of Pantelleria Island is characterized by numerous biogenic build-ups colonized by deep-water corals (Madrepora oculata). The spatial distribution of sediment drifts, erosional features and biogenic build-ups suggests an origin from a north-westward-flowing bottom current, in this case the outflow of Levantine Intermediate Water and transitional Eastern Mediterranean Deep Water via the Sicily Channel. These findings for the Pantelleria offshore sector demonstrate that contourite processes are able to concentrate a high variety of closely spaced depositional and erosional features even in small areas (in this case, about 2,000?km2). This Pantelleria focusing can plausibly be related to a particular configuration of the prevailing bottom-current regime in complex interaction with an uneven bathymetry shaped mainly by tectonic and volcanic activity. The distribution of bottom currents seems to be strongly influenced by morphological features ranging from major seabed obstacles, such as the Pantelleria volcanic complex and the so-called southwest seamount, to smaller-scale escarpments and banks. This is consistent with previous findings for Mediterranean and other settings characterized by neotectonics and large topographic features.  相似文献   

14.
Submarine landslides are common along the Uruguayan and Argentinean continental margin, but size, type and frequency of events differ significantly between distinct settings. Previous studies have proposed sedimentary and oceanographic processes as factors controlling slope instability, but also episodic earthquakes have been postulated as possible triggers. However, quantitative geotechnical slope stability evaluations for this region and, for that matter, elsewhere in the South Atlantic realm are lacking. This study quantitatively assesses continental slope stability for various scenarios including overpressure and earthquake activity, based on sedimentological and geotechnical analyses on three up to 36 m long cores collected on the Uruguayan slope, characterized by muddy contourite deposits and a locus of landslides (up to 2 km3), and in a canyon-dominated area on the northern Argentinean slope characterized by sandy contourite deposits. The results of shear and consolidation tests reveal that these distinct lithologies govern different stability conditions and failure modes. The slope sectors are stable under present-day conditions (factor of safety >5), implying that additional triggers would be required to initiate failure. In the canyon area, current-induced oversteepening of weaker sandy contourite deposits would account for frequent, small-scale slope instabilities. By contrast, static vs. seismic slope stability calculations reveal that a peak ground acceleration of at least 2 m/s2 would be required to cause failure of mechanically stronger muddy contourite deposits. This implies that, also along the western South Atlantic passive margin, submarine landslides on open gentle slopes require episodic large earthquakes as ultimate trigger, as previously postulated for other, northern hemisphere passive margins.  相似文献   

15.
Continental slope terraces at the southern Argentine margin are part of a significant contourite depositional system composed of a variety of drifts, channels, and sediment waves. Here, a refined seismostratigraphic model for the sedimentary development of the Valentin Feilberg Terrace located in ~4.1?km water depth is presented. Analyzing multichannel seismic profiles across and along this terrace, significant changes in terrace morphology and seismic reflection character are identified and interpreted to reflect variations in deep water hydrography from Late Miocene to recent times, involving variable flow of Antarctic Bottom Water and Circumpolar Deep Water. A prominent basin-wide aggradational seismic unit is interpreted to represent the Mid-Miocene climatic optimum (~17?C14?Ma). A major current reorganization can be inferred for the time ~14?C12?Ma when the Valentin Feilberg Terrace started growing due to the deposition of sheeted and mounded drifts. After ~12?Ma, bottom water flow remained vigorous at both margins of the terrace. Another intensification of bottom flow occurred at ~5?C6?Ma when a mounded drift, moats, and sediment waves developed on the terrace. This may have been caused by a general change in deep water mass organization following the closure of the Panamanian gateway, and a subsequent stronger southward flow of North Atlantic Deep Water.  相似文献   

16.
17.
This contribution to this special volume represents the first attempt to comprehensively describe regional contourite (along-slope) processes and their sedimentary impacts around the Iberian margin, combining numerically simulated bottom currents with existing knowledge of contourite depositional and erosional features. The circulation of water masses is correlated with major contourite depositional systems (CDSs), and potential areas where new CDSs could be found are identified. Water-mass circulation leads to the development of along-slope currents which, in turn, generate contourite features comprising individual contourite drifts and erosional elements forming extensive, complex CDSs of considerable thickness in various geological settings. The regionally simulated bottom-current velocities reveal the strong impact of these water masses on the seafloor, especially in two principal areas: (1) the continental slopes of the Alboran Sea and the Atlantic Iberian margins, and (2) the abyssal plains in the Western Mediterranean and eastern Atlantic. Contourite processes at this scale are associated mainly with the Western Mediterranean Deep Water and the Levantine Intermediate Water in the Alboran Sea, and with both the Mediterranean Outflow Water and the Lower Deep Water in the Atlantic. Deep gateways are essential in controlling water-mass exchange between the abyssal plains, and thereby bottom-current velocities and pathways. Seamounts represent important obstacles for water-mass circulation, and high bottom-current velocities are predicted around their flanks, too. Based on these findings and those of a selected literature review, including less easily accessible ??grey literature?? such as theses and internal reports, it is clear that the role of bottom currents in shaping continental margins and abyssal plains has to date been generally underestimated, and that many may harbour contourite systems which still remain unexplored today. CDSs incorporate valuable sedimentary records of Iberian margin geological evolution, and further study seems promising in terms of not only stratigraphic, sedimentological, palaeoceanographic and palaeoclimatological research but also possible deep marine geohabitats and/or mineral and energy resources.  相似文献   

18.
19.
Four drift accumulations have been identified on the continental margin of northern Norway; the Lofoten Drift, the Vesterålen Drift, the Nyk Drift and the Sklinnadjupet Drift. Based on seismic character these drifts were found to belong to two main groups; (1) mounded, elongated, upslope accretion drifts (Lofoten Drift, Vesterålen Drift and Nyk Drift), and (2) infilling drifts (Sklinnadjupet Drift). The drifts are located on the continental slope. Mainly surface and intermediate water circulation, contrary to many North Atlantic and Antarctic drifts that are related to bottom water circulation, and sediment availability have controlled their growth. Sediments were derived both from winnowing of the shelf and upper slope and from ice sheets when present on the shelf. The main source area was the Vøring margin. This explains the high maximum average sedimentation rate of the nearby Nyk (1.2 m/ka) and Sklinnadjupet (0.5 m/ka) Drifts compared with the distal Lofoten (0.036 m/ka) and Vesterålen (0.060 m/ka) Drifts. The high sedimentation rate of the Nyk Drift, deposited during the period between the late Saalian and the late Weichselian is of the same order of magnitude as previously reported for glacigenic slope sediments deposited during glacial maximum periods only. The Sklinnadjupet Drift is infilling a paleo-slide scar. The development of the infilling drift was possible due to the available accommodation space, a slide scar acting as a sediment trap. Based on the formation of diapirs originating from the Sklinnadjupet Drift sediments we infer these sediments to have a muddy composition with relatively high water content and low density, more easily liquefied and mobilised compared with the glacigenic diamictons.  相似文献   

20.
Facies associations in cores collected in the deep part of the Gulf of Cadiz, which is under the influence of the lower branch of the Mediterranean Outflow Water, are investigated in terms of the classical contourite model using grain-size analyses and thin sections of indurated sediment. Cores include both low-energy (contourite drift) and high-energy (channel) environments. The thin sections and grain-size distributions show that clayey fine silts and sandy coarse silts are the most common facies associations in the studied contourite sequences, while coarse-grained, gravelly contourites are less common. Grain-size distributions are unimodal in the fine-grained and bi- or trimodal in the coarser-grained contourites. This change in grain-size composition is related both to the partial removal of the fine-grained fraction and to the replenishment of the coarser-grained one. In addition, most of the contacts between individual facies are sharp rather than transitional. This suggests that the contourite sequence is only in part related to changes in bottom current velocity and flow competency, but may also be related to the supply of a coarser terrigeneous particle stock, provided by either increased erosion of indurated mud along the flanks of confined contourite channels (mud clasts), or by increased sediment supply by rivers (quartz grains) and downslope mass transport on the continental shelf and upper slope. The classical contourite facies association may therefore not be solely controlled by current velocity, but may be the product of a variety of depositional histories. The classical contourite depositional sequence should therefore be interpreted with greater care and in the light of the regional sedimentological background. In addition, the wisdom of exclusively using mean or modal particle size for the interpretation of depositional contourite processes is questioned. Instead, it is proposed that the vertical evolution of grain-size populations in the facies successions forming contourite sequences be assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号