首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Finite element modelling of frictional instability between deformable rocks   总被引:1,自引:0,他引:1  
Earthquakes are recognized as resulting from a stick–slip frictional instability along faults. Based on the node‐to‐point contact element strategy (an arbitrarily shaped contact element strategy applied with the static‐explicit algorithm for modelling non‐linear frictional contact problems proposed by authors), a finite element code for modelling the 3‐D non‐linear friction contact between deformable bodies has been developed and extended here to analyse the non‐linear stick–slip frictional instability between deformable rocks with a rate‐ and state‐dependent friction law. A typical fault bend model is taken as an application example to be analysed here. The variations of the normal contact force, the frictional force, the transition of stick–slip instable state and the related relative slip velocity along the fault between the deformable rocks and the stress evolution in the total bodies during the different stages are investigated, respectively. The calculated results demonstrate the usefulness of this code for simulating the non‐linear frictional instability between deformable rocks. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
We present an explicit extended finite element framework for fault rupture dynamics accommodating bulk plasticity near the fault. The technique is more robust than the standard split‐node method because it can accommodate a fault propagating freely through the interior of finite elements. To fully exploit the explicit algorithmic framework, we perform mass lumping on the enriched finite elements that preserve the kinetic energy of the rigid body and enrichment modes. We show that with this technique, the extended FE solution reproduces the standard split‐node solution, but with the added advantage that it can also accommodate randomly propagating faults. We use different elastoplastic constitutive models appropriate for geomaterials, including the Mohr–Coulomb, Drucker–Prager, modified Cam‐Clay, and a conical plasticity model with a compression cap, to capture off‐fault bulk plasticity. More specifically, the cap model adds robustness to the framework because it can accommodate various modes of deformation, including compaction, dilatation, and shearing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
We use three‐dimensional mechanical modelling with fault as Coulomb‐type frictional surface to explore the active deformation of the Xianshuihe–Xiaojiang fault system in south‐eastern Tibet. Crustal rheology is simplified as an elastoplastic upper crust and a viscoelastic lower crust. Far‐field GPS velocities and Quaternary fault slip rates are used to constrain the model results. Numerical experiments show that effective fault friction lower than ∼0.1–0.08 leads to a high slip rate that fits well with geological estimates of the slip rate on the fault system. Associating with the modelled fault slip rate, strain in the surrounding crust distributes broadly, and is partitioned into strike–slip and thrust senses. This means that in the Indian‐Eurasia convergence, accommodation of the large fraction of sinistral motion on the fault system is achieved mainly due to its lower fault friction. This in turn affects crustal deformation around the south‐eastern Tibetan margin, resulting in negligible compression across the Longmen Shan.  相似文献   

4.
Induced seismicity (earthquakes caused by injection or extraction of fluids in Earth’s subsurface) is a major, new hazard in the USA, the Netherlands, and other countries, with vast economic consequences if not properly managed. Addressing this problem requires development of predictive simulations of how fluid-saturated solids containing frictional faults respond to fluid injection/extraction. Here, we present a finite difference method for 2D linear poroelasticity with rate-and-state friction faults, accounting for spatially variable properties. Semi-discrete stability and accuracy are proven using the summation-by-parts, simultaneous-approximation-term (SBP-SAT) framework for discretization and boundary condition enforcement. Convergence rates are verified using the method of manufactured solutions and comparison to the analytical solution to Mandel’s problem. The method is then applied to study fault slip triggered by fluid injection and diffusion through high-permeability fault damage zones. We demonstrate that in response to the same, gradual forcing, fault slip can occur in either an unstable manner, as short-duration earthquakes that radiate seismic waves, or as stable, aseismic, slow slip that accumulates over much longer time scales. Finally, we use these simulation results to discuss the role of frictional and elastic properties in determining the stability and nature of slip.  相似文献   

5.
High-velocity friction experiments on gabbro and monzodiorite, using a rotary-shear high-velocity friction apparatus, have revealed that frictional melting and progressive growth of a molten layer along a fault cause slip weakening, eventually reaching a nearly steady-state. The melting surface at the host rock/molten layer interface is initially very flat, but it becomes more complex and rounded in shape towards the steady state owing to the selective melting of minerals with lower melting points and the Gibbs–Thomson effect. This change in the melting-surface topography can be quantitatively expressed by the fractal dimension D, as determined by the divider method, from about 1.0 near the peak friction to around 1.1 near the steady-state friction. The ultimate fractal dimension at steady-state friction tends to decrease with increasing heat production rate presumably due to more rapid and uniform melting. A systematic correlation of D with mechanical behavior of the fault during frictional melting may provide a way of estimating slip-weakening distance and heat production rate at steady-state friction by measuring D for natural pseudotachylytes on slip surfaces with different displacements. The weakening distance is of vital significance in relation to fault instability and the heat production rate is related to the fault strength. The experimental studies point to ways to estimate these difficult quantities for natural faults.  相似文献   

6.
A few cases of occurrence of normal aftershocks after strike slip earthquakes in compressive regime have been reported in the literature. Occurrence of such aftershocks is intriguing as they occurred despite the apparent stabilizing influence of compressive plate tectonic stresses on the normal faults. To investigate the occurrence processes of such earthquakes, we calculate change in static stress on optimally oriented normal and reverse faults in the dilational and compressional step over zones, respectively, due to slip on a vertical strike slip fault under compressive regime. We find that change in static stress is much more pronounced on normal faults as compared to that on reverse faults, for all values of fault friction. Change in static stress on reverse fault is marginally positive only when the fault friction is low, whereas for normal faults it is positive for all values of fault friction, and is maximum for high fault friction. We suggest that strike slip faulting in compressive regime creates a localized tensile environment in the dilational step over zone, which causes normal faulting in that region. The aftershocks on such normal faults are considered to have occurred as an almost instantaneous response of stress transfer due to strike slip motion.  相似文献   

7.
A few cases of occurrence of normal aftershocks after strike slip earthquakes in compressive regime have been reported in the literature. Occurrence of such aftershocks is intriguing as they occurred despite the apparent stabilizing influence of compressive plate tectonic stresses on the normal faults. To investigate the occurrence processes of such earthquakes, we calculate change in static stress on optimally oriented normal and reverse faults in the dilational and compressional step over zones, respectively, due to slip on a vertical strike slip fault under compressive regime. We find that change in static stress is much more pronounced on normal faults as compared to that on reverse faults, for all values of fault friction. Change in static stress on reverse fault is marginally positive only when the fault friction is low, whereas for normal faults it is positive for all values of fault friction, and is maximum for high fault friction. We suggest that strike slip faulting in compressive regime creates a localized tensile environment in the dilational step over zone, which causes normal faulting in that region. The aftershocks on such normal faults are considered to have occurred as an almost instantaneous response of stress transfer due to strike slip motion.  相似文献   

8.
Deformation mechanisms at the pore scale are responsible for producing large strains in porous rocks. They include cataclastic flow, dislocation creep, dynamic recrystallization, diffusive mass transfer, and grain boundary sliding, among others. In this paper, we focus on two dominant pore‐scale mechanisms resulting from purely mechanical, isothermal loading: crystal plasticity and crofracturing. We examine the contributions of each mechanism to the overall behavior at a scale larger than the grains but smaller than the specimen, which is commonly referred to as the mesoscale. Crystal plasticity is assumed to occur as dislocations along the many crystallographic slip planes, whereas microfracturing entails slip and frictional sliding on microcracks. It is observed that under combined shear and tensile loading, microfracturing generates a softer response compared with crystal plasticity alone, which is attributed to slip weakening where the shear stress drops to a residual level determined by the frictional strength. For compressive loading, however, microfracturing produces a stiffer response than crystal plasticity because of the presence of frictional resistance on the slip surface. Behaviors under tensile, compressive, and shear loading invariably show that porosity plays a critical role in the initiation of the deformation mechanisms. Both crystal plasticity and microfracturing are observed to initiate at the peripheries of the pores, consistent with results of experimental studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
汶川地震断裂作用研究新认识   总被引:2,自引:0,他引:2  
2008年汶川地震后,人们不得不思考问题是:大地震是如何发生的?下一次大地震什么时候发生?也就是涉及地质学家和地球物理学家一直未解决的科学问题:断层是如何破裂的?震后断裂是如何愈合的?我们试图通过对汶川地震断裂带结构、断裂摩擦行为和断裂愈合过程的研究来回答这些问题。本文将介绍通过对地表露头和汶川地震断裂科学钻探一号孔(WFSD)岩心中汶川地震主滑移带的详细研究,以及钻孔中长期温度监测来分析有关汶川地震断裂动态弱化和摩擦行为,并结合钻孔中长期水文监测计算所得断裂带渗透率变化,分析震后断裂愈合过程,进而探讨和认识汶川地震断裂作用所涉及的上述问题。经过详细研究,确定了汶川地震断裂带(映秀—北川断裂带)宽105~240 m、具有五个不同断裂岩组合的内部结构,是一条经常发生大地震、具多种弱化机制的断裂带;发现了汶川地震不仅具有同震石墨化作用,而且测量到目前世界上最低的动态摩擦系数(≤0.02),同时首次记录到大地震后断裂快速愈合信息。这些研究结果不仅直接回答了一直困扰在地震地质和地震物理学领域几十年的关键问题,而且对完善地震断裂理论和认识汶川地震机制具有极其重要的意义,为防震减灾提供了理论依据。  相似文献   

10.
断层作用热模型及其对烃源岩热演化的影响   总被引:1,自引:0,他引:1  
从盆地的应力状态分析入手,从断层摩擦生热的角度,建立了断层作用生热的定量模型。在此基础上,确定了断层摩擦产生的热量与断层的性质、深度、构造应力和流体压力等之间的定量关系,定量分析了断层摩擦生热对烃源岩热演化的影响。结果表明:断层作用的生热量主要决定于断层的深度,构造应力的大小、流体压力、断层的位移量、断面摩擦系数等;断层的活动速率对断层摩擦的生热量没有影响,但对断层带内产生的温度却起决定性的作用;在断层快速活动的条件下(地震型),断层摩擦生热虽然可以产生很高的温度,可以造成断层面附近岩石的局部熔融,但其影响范围和影响持续的时间是十分有限的。   相似文献   

11.
Whilst faulting in the shallow crust is inevitably associated with comminution of rocks, the mechanical properties of the comminuted granular materials themselves affect the slip behavior of faults. Therefore, the mechanical behavior of any fault progresses along an evolutionary path. We analyzed granular fault rocks from four faults, and deduced an evolutionary trend of fractal size frequency. Comminution of fault rocks starts at a fractal dimension close to 1.5 (2-D measurement), at which a given grain is supported by the maximum number of grains attainable and hence is at its strongest. As comminution proceeds, the fractal dimension increases, and hence comminution itself is a slip weakening mechanism. Under the appropriate conditions, comminuted granular materials may be fluidized during seismic slip events. In this paper, we develop a new method to identify the granular fault rocks that have experienced fluidization, where the detection probability of fragmented counterparts is a key parameter. This method was applied to four fault rock samples and a successful result was obtained. Knowledge from powder technology teaches us that the volume fraction of grains normalized by maximum volume fraction attainable is the most important parameter for dynamic properties of granular materials, and once granular fault materials are fluidized, the fault plane becomes nearly frictionless. A small decrease in the normalized volume fraction of grains from 1 is a necessary condition for the phase transition to fluidization from the deformation mechanism governed by grain friction and crushing by contact stresses. This condition can be realized only when shearing proceeds under unconstrained conditions, and this demands that the gap between fault walls is widened. Normal interface vibration proposed by Brune et al. [Tectonophysics 218 (1993) 59] appears to be the most appropriate cause of this, and we presented two lines of field evidence that support this mechanism to work in nature.  相似文献   

12.
Optical, cathodoluminescence and transmission electron microscope (TEM) analyses were conducted on four groups of calcite fault rocks, a cataclastic limestone, cataclastic coarse-grained marbles from two fault zones, and a fractured mylonite. These fault rocks show similar microstructural characteristics and give clues to similar processes of rock deformation. They are characterized by the structural contrast between macroscopic cataclastic (brittle) and microscopic mylonitic (ductile) microstructures. Intragranular deformation microstructures (i.e. deformation twins, kink bands and microfractures) are well preserved in the deformed grains in clasts or in primary rocks. The matrix materials are of extremely fine grains with diffusive features. Dislocation microstructures for co-existing brittle deformation and crystalline plasticity were revealed using TEM. Tangled dislocations are often preserved at the cores of highly deformed clasts, while dislocation walls form in the transitions to the fine-grained  相似文献   

13.
四川汶川5.12大地震同震滑动断层泥的发现及意义   总被引:4,自引:0,他引:4  
付碧宏  王萍  孔屏  郑国东  王刚  时丕龙 《岩石学报》2008,24(10):2237-2243
2008年汶川8.0级地震沿龙门山断裂带内的映秀—北川断裂和灌县—安县断裂产生了近300 km的同震地表破裂带。震后地质科学考察发现地表变形以逆冲为主,并伴有右旋走滑。地震地表破裂带大多沿古生代碳质泥岩、页岩和三叠系煤系地层内的滑动面出露地表,这些软弱地层为地震破裂带冲到地表提供了超低摩擦滑动带。我们发现在同震垂直和水平位错达6m左右的地表破裂带,地震的同震滑动发生在厚度约0.5~2cm 的狭窄滑动带内,以发育新鲜的灰色断层泥为特征,这些断层泥是地震断层快速滑动过程中岩石—流体相互作用的结果。  相似文献   

14.
15.
This paper further examines the possibility of modelling landslide as a consequence of the unstable slip in a steadily creeping slope when it is subject to perturbations, such as those induced by rainfall and earthquakes. In particular, the one-state variable friction law used in the landslide analysis by Chau is extended to a two-state variable friction law. According to this state variable friction law, the shear strength (τ) along the slip surface depends on the creeping velocity (V) as well as the two state variables (θ1 and θ2), which evolve with the ongoing slip. For translational slides, a system of three coupled non-linear first-order ordinary differential equations is formulated, and a linear stability analysis is applied to study the stability in the neighbourhood of the equilibrium solution of the system. By employing the stability classification of Reyn for three-dimensional space, it is found that equilibrium state (or critical point) of a slope may change from a ‘stable spiral’ to a ‘saddle spiral with unstable plane focus’ through a transitional state called ‘converging vortex spiral’ (i.e. bifurcation occurs), as the non-linear parameters of the slip surface evolve with its environmental changes (such as those induced by rainfall or human activities). If the one-state variable friction law is used in landslide modelling, velocity strengthening (i.e. dτss/dV > 0, where τss is the steady-state shear stress) in the laboratory always implies the stability of a creeping slope containing the same slip surface under gravitational pull. This conclusion, however, does not apply if a two-state variable friction law is employed to model the sliding along the slip surface. In particular, neither the region of stable creeping slopes in the non-linear parameter space can be inferred by that of velocity strengthening, nor the unstable region by that of velocity weakening. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
A theoretical 3D model of a fault region includes a slip-dependent friction, tectonic loading from the sides, and deterministic, continuous time formulation of governing equations. The model reproduces such properties of real faults as earthquake nucleation, earthquake complex rupture and nonregular recurrence. In particular, it is observed that the style of faulting changes from one event to another. Since all parameters related to the constitutive law are fixed during computer simulations, it is concluded that interactions between fault segments are responsible for such behavior. Neither the constitutive law nor fault spatial heterogeneities solely create complexity; rather it is the whole interactive dynamics of the system that determines the character of its evolution. Results are illustrated by time variations of global (i.e., related to the state of the whole fault) functions, such as energy release rate, seismic moment release rate, tectonic stresses, and local characteristics, such as driving and cohesive stresses, slip rates, slip displacements and mutual relations between them.  相似文献   

17.
假玄武玻璃的研究进展与现状   总被引:6,自引:0,他引:6  
在国外有关假玄武玻璃(pseudotachylite)的研究已经有百余年的历史,在野外产状、显微镜观察和实验模拟等方面积累了丰富的资料。而国内在这方面的研究甚少。近年来,随着人们对“活断层”研究的深入,所谓有“地震化石”之称的假玄武玻璃也日益为研究者们所重视。假玄武玻璃通常认为是与地震断层有关的高应变速率条件下的产物。假玄武玻璃的研究对了解地震时地下深处断层带的变形机制等多方面具有重要意义。尤其是通过模拟假玄武玻璃形成时的相似条件(主要是力学机制和化学机制),可以了解假玄武玻璃形成时断层剪切带变形历史。为了使国内对这一研究领域感兴趣的学者了解假玄武玻璃的形成过程及其所反映的意义,本文从假玄武玻璃的地质特征及成因等几个方面进行了总结,以飧读者。  相似文献   

18.
Abstract: This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region. It shows that the East Tibetan Plateau is dominated by strike-slip and reverse faulting stress regimes and that the maximum horizontal stress is roughly consistent with the contemporary velocity field, except for the west Qinling range where it parallels the striking of the major strike-slip faults. Active tectonics in the East Tibetan Plateau is characterized by three faulting systems. The left-slip Kunlun-Qinling faulting system combines the east Kunlun fault zone, sinistral oblique reverse faults along the Minshan range and two major NEE-striking faults cutting the west Qinling range, which accommodates eastward motion, at 10–14 mm/a, of the Chuan-Qing block. The left-slip Xianshuihe faulting system accommodated clockwise rotation of the Chuan-Dian block. The Longmenshan thrust faulting system forms the eastern margin of the East Tibetan Plateau and has been propagated to the SW of the Sichuan basin. Crustal shortening across the Longmenshan range seems low (2–4 mm/a) and absorbed only a small part of the eastward motion of the Chuan-Qing block. Most of this eastward motion has been transmitted to South China, which is moving SEE-ward at 7–9 mm/a. It is suggested from geophysical data interpretation that the crust and lithosphere of the East Tibetan Plateau is considerably thickened and rheologically layered. The upper crust seems to be decoupled from the lower crust through a décollement zone at a depth of 15–20 km, which involved the Longmenshan fault belt and propagated eastward to the SW of the Sichuan basin. The Wenchuan earthquake was just formed at the bifurcated point of this décollement system. A rheological boundary should exist beneath the Longmenshan fault belt where the lower crust of the East Tibetan Plateau and the lithospheric mantle of the Yangze block are juxtaposed.  相似文献   

19.
Dating of the Karakorum Strike-slip Fault   总被引:6,自引:0,他引:6  
This paper mainly discusses the timing of the Karakorum strike-slip fault, and gives a brief introduction of its structures, offset, and deformational style. This fault strikes NNW-SSE. Asymmetrical folds, stretching lineation, S-C fabrics, feldspar and quartz σ-porphyroclasts, domino structure, shear cleavages and faults in the fault zone are products of tectonic movements. They all indicate a dextral slip sense of faulting. Mylonitic bands are widely developed along this fault. Phengite appears, indicating rather high deformational pressure. Geochronological data indicate that the Karakorum strike-slip faulting occurred from 6.88±0.36 to 8.75±0.25 Ma. The cumulative displacement from Muztag Ata to Muji is about 135 km.  相似文献   

20.
To characterize the fault-related rocks within the Chelungpu fault, we performed X-ray computed tomography (CT) image analyses and microstructural observations of Hole B core samples from the Taiwan Chelungpu-fault Drilling Project. We identified the slip zone associated with the 1999 Chi-Chi earthquake, within the black gouge zone in the shallowest major fault zone, by comparison with previous reports. The slip zone was characterized by low CT number, cataclastic (or ultracataclastic) texture, and high possibility to have experienced a mechanically fluidized state. Taking these characteristics and previous reports of frictional heating in the slip zone into consideration, we suggested that thermal pressurization was the most likely dynamic weakening mechanism during the earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号