首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complexity of formulations for the hydromechanical coupled mechanics of porous media is typically minimised by simplifying assumptions such as neglecting the effect of inertia terms. For example, three formulations commonly employed to model practical problems are classified as fully dynamic, simplified dynamic and quasi‐static. Thus, depending on the porous media conditions, each formulation will have advantages and limitations. This paper presents a comprehensive analysis of these limitations when solving one‐dimensional fully saturated porous media problems in addition to a new solution that considers a more general loading situation. A phase diagram is developed to assist on the selection of which formulation is more appropriate and convenient regarding particular cases of porosity and hydraulic conductivity values. Non‐dimensional formulations are proposed to achieve this goal. Results using the analytical solutions are compared against numerical values obtained with the finite element method, and the effect of porosity is investigated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Based on the Biot theory, the exact solutions for one‐dimensional transient response of single layer of fluid‐saturated porous media and semi‐infinite media are developed, in which the fluid and solid particles are assumed to be compressible and the inertial, viscous and mechanical couplings are taken into account. First, the control equations in terms of the solid displacement u and a relative displacement w are expressed in matrix form. For problems of single layer under homogeneous boundary conditions, the eigen‐values and the eigen‐functions are obtained by means of the variable separation method, and the displacement vector u is put forward using the searching method. In the case of nonhomogeneous boundary conditions, the boundary conditions are first homogenized, and the displacement field is constructed basing upon the eigen‐functions. Making use of the orthogonality of eigen‐functions, a series of ordinary differential equations with respect to dimensionless time and their corresponding initial conditions are obtained. Those differential equations are solved by the state‐space method, and the series solutions for three typical nonhomogeneous boundary conditions are developed. For semi‐infinite media, the exact solutions in integral form for two kinds of nonhomogeneous boundary conditions are presented by applying the cosine and sine transforms to the basic equations. Finally, three examples are studied to illustrate the validity of the solutions, and to assess the influence of the dynamic permeability coefficient and the fluid inertia to the transient response of porous media. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The dynamic behaviour of pile groups subjected to an earthquake base shaking is analysed. An analysis is formulated in the time domain and the effects of material nonlinearity of soil, pile–soil–pile kinematic interaction and the superstructure–foundation inertial interaction on seismic response are investigated. Prediction of response of pile group–soil system during a large earthquake requires consideration of various aspects such as the nonlinear and elasto‐plastic behaviour of soil, pore water pressure generation in soil, radiation of energy away from the pile, etc. A fully explicit dynamic finite element scheme is developed for saturated porous media, based on the extension of the original formulation by Biot having solid displacement (u) and relative fluid displacement (w) as primary variables (uw formulation). All linear relative fluid acceleration terms are included in this formulation. A new three‐dimensional transmitting boundary that was developed in cartesian co‐ordinate system for dynamic response analysis of fluid‐saturated porous media is implemented to avoid wave reflections towards the structure. In contrast to traditional methods, this boundary is able to absorb surface waves as well as body waves. The pile–soil interaction problem is analysed and it is shown that the results from the fully coupled procedure, using the advanced transmitting boundary, compare reasonably well with centrifuge data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
王小岗 《岩土力学》2011,32(1):253-260
研究了横观各向同性饱和土地基在地表动力荷载作用下的三维瞬态响应。基于饱和多孔介质的三维Biot波动理论,利用Laplace变换,建立圆柱坐标系下横观各向同性饱和土的波动方程;解耦波动方程后,根据算子理论,并借助Fourier展开和Hankel变换技术,得到瞬态荷载作用下,饱和土介质的土骨架位移和应力、孔隙水相对位移和孔隙水压力的一般解;利用一般解,给出横观各向同性饱和地基在地表集中荷载激励下的瞬态Lamb问题的解答。数值算例结果表明,采用各向同性饱和介质的动力学模型,不能准确描述具有明显各向异性特性的饱和土地基的瞬态动力特性。  相似文献   

5.
In this paper, a mathematical model is presented for the analysis of dynamic fracture propagation in the saturated porous media. The solid behavior incorporates a discrete cohesive fracture model, coupled with the flow in porous media through the fracture network. The double‐nodded zero‐thickness cohesive interface element is employed for the mixed mode fracture behavior in tension and contact behavior in compression. The crack is automatically detected and propagated perpendicular to the maximum effective stress. The spatial discretization is continuously updated during the crack propagation. Numerical examples from the hydraulic fracturing test and the concrete gravity dam show the capability of the model to simulate dynamic fracture propagation. The comparison is performed between the quasi‐static and fully dynamic solutions, and the performance of two analyses is investigated on the values of crack length and crack mouth opening. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Fully coupled, porous solid–fluid formulation, implementation and related modeling and simulation issues are presented in this work. To this end, coupled dynamic field equations with u?p?U formulation are used to simulate pore fluid and soil skeleton (elastic–plastic porous solid) responses. Present formulation allows, among other features, for water accelerations to be taken into account. This proves to be useful in modeling dynamic interaction of media of different stiffnesses (as in soil–foundation–structure interaction). Fluid compressibility is also explicitly taken into account, thus allowing excursions into modeling of limited cases of non‐saturated porous media. In addition to these features, present formulation and implementation models in a realistic way the physical damping, which dissipates energy. In particular, the velocity proportional damping is appropriately modeled and simulated by taking into account the interaction of pore fluid and solid skeleton. Similarly, the displacement proportional damping is physically modeled through elastic–plastic processes in soil skeleton. An advanced material model for sand is used in present work and is discussed at some length. Also explored in this paper are the verification and validation issues related to fully coupled modeling and simulations of porous media. Illustrative examples describing the dynamical behavior of porous media (saturated soils) are presented. The verified and validated methods and material models are used to predict the behavior of level and sloping grounds subjected to seismic shaking. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
One-dimensional transient wave propagation in a saturated single-layer porous medium with a fluid surface layer is studied in this paper. An analytical solution for a special case with a dynamic permeability coefficient kf → ∞ and a semianalytical solution for a general case with an arbitrary dynamic permeability coefficient are presented. The eigenfunction expansion and precise time step integration methods are employed. The solution is presented in series form, and thus, the long-term dynamic responses of saturated porous media with small permeability coefficients can be easily computed. We first transform the nonhomogeneous boundary conditions into homogeneous boundary conditions, and then we obtain the eigenvalues and orthogonal eigenfunctions of the fluid–solid system. Finally, the solutions in the time domain are developed. As the model is one dimensional, geometric attenuation is absent, and only the attenuation in the saturated porous medium is considered. We can apply this model to analyse the influences of different seabed types on the propagation of acoustic waves in the fluid layer, which is very important in ocean acoustics and ocean seismic. This solution can also be employed to validate the accuracies of various numerical methods.  相似文献   

8.
Analytical solutions are presented for fluid‐saturated linear poroelastic beams under pure bending. The stress‐free boundary condition at the lateral surfaces is satisfied in the St Venant's sense and the Beltrami–Michell compatibility conditions are resolved rigorously, rendering the flexure of the beams analytically tractable. Two sets of formulations are derived based on the coupled and uncoupled diffusion equations respectively. The analytical solutions are compared with three‐dimensional finite element simulations. Both sets of analytical formulations are capable of capturing exactly both the initial (undrained) and the steady‐state (fully drained) deflection of the beams. However, the analytical solutions are found to be deficient during the transient phase. The cause for the deficiency of the transient analytical solutions is discussed. The accuracy of the analytical solutions improves as Poisson's ratio and the compressibility of the constituents of the porous beam increase, where the St Venant's edge effect at the lateral surfaces is mitigated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The chemical‐dissolution front propagation problem exists ubiquitously in many scientific and engineering fields. To solve this problem, it is necessary to deal with a coupled system between porosity, pore‐fluid pressure and reactive chemical‐species transport in fluid‐saturated porous media. Because there was confusion between the average linear velocity and the Darcy velocity in the previous study, the governing equations and related solutions of the problem are re‐derived to correct this confusion in this paper. Owing to the morphological instability of a chemical‐dissolution front, a numerical procedure, which is a combination of the finite element and finite difference methods, is also proposed to solve this problem. In order to verify the proposed numerical procedure, a set of analytical solutions has been derived for a benchmark problem under a special condition where the ratio of the equilibrium concentration to the solid molar density of the concerned chemical species is very small. Not only can the derived analytical solutions be used to verify any numerical method before it is used to solve this kind of chemical‐dissolution front propagation problem but they can also be used to understand the fundamental mechanisms behind the morphological instability of a chemical‐dissolution front during its propagation within fluid‐saturated porous media. The related numerical examples have demonstrated the usefulness and applicability of the proposed numerical procedure for dealing with the chemical‐dissolution front instability problem within a fluid‐saturated porous medium. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Two formulations for calculating dynamic response of a cylindrical cavity in cross‐anisotropic porous media based on complex functions theory are presented. The basis of the method is the solution of Biot's consolidation equations in the complex plane. Employing two groups of potential functions for solid skeleton and pore fluid (each group includes three functions), the uw formulation of Biot's equations are solved. Difference of these two solutions refers to use of two various potential functions. Equations for calculating stress, displacement and pore pressure fields of the medium are mentioned based on each two formulations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This paper deals with the theoretical aspects of nonaqueous phase liquid (NAPL)‐dissolution‐induced instability in two‐dimensional fluid‐saturated porous media including solute dispersion effects.After some weaknesses associated with the previous work are analyzed and overcome, a comprehensive dimensionless number, known as the Zhao number, is proposed to represent the main driving force and three controlling mechanisms of an NAPL‐dissolution system that has a finite domain. The linear stability analysis is carried out to derive the critical value of the comprehensive dimensionless number of the NAPL‐dissolution system in a limit case as the ratio of the equilibrium concentration to the density of the NAPL approaches zero. As a result, a theoretical criterion that can be used to assess the instability of planar NAPL‐dissolution fronts in two‐dimensional fluid‐saturated porous media of finite domains has been established. Not only can the present theoretical results be used for the theoretical understanding of the effect of solute dispersion on the instability of an NAPL‐dissolution front in the fluid‐saturated porous medium of either a finite domain or an infinite domain, but also they can be used as benchmark solutions for verifying numerical methods employed to simulate detailed morphological evolution processes of NAPL‐dissolution fronts in two‐dimensional fluid‐saturated porous media. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
丁伯阳  张勇  王瑞峰  徐庭 《岩土力学》2016,37(4):922-928
饱和土在理论上一直以两相饱和孔隙介质模拟,利用Biot饱和孔隙介质动力方程纵波解耦的 (u为波动的振幅位移,p为孔隙水压)解答,结合排水的Somigliana表象积分,能够完成饱和土排水动力反应计算,结果也能在野外试验中验证。为了进一步深入研究饱和土排水的动力特性,设计了室内饱和土动三轴的排水试验,以不同状态饱和粉砂土排水状态下试验的结果,阐述了排水理论计算解答与动三轴试验测试结果的对比分析。最后指出修正后的理论解答与饱和粉砂土的试验测试结果较吻合,并在今后饱和土伴有排水的动力响应分析能在饱和土动力学问题研究中有所应用。  相似文献   

13.
A finite element algorithm for frictionless contact problems in a two‐phase saturated porous medium, considering finite deformation and inertia effects, has been formulated and implemented in a finite element programme. The mechanical behaviour of the saturated porous medium is predicted using mixture theory, which models the dynamic advection of fluids through a fully saturated porous solid matrix. The resulting mixed formulation predicts all field variables including the solid displacement, pore fluid pressure and Darcy velocity of the pore fluid. The contact constraints arising from the requirement for continuity of the contact traction, as well as the fluid flow across the contact interface, are enforced using a penalty approach that is regularised with an augmented Lagrangian method. The contact formulation is based on a mortar segment‐to‐segment scheme that allows the interpolation functions of the contact elements to be of order N. The main thrust of this paper is therefore how to deal with contact interfaces in problems that involve both dynamics and consolidation and possibly large deformations of porous media. The numerical algorithm is first verified using several illustrative examples. This algorithm is then employed to solve a pipe‐seabed interaction problem, involving large deformations and dynamic effects, and the results of the analysis are also compared with those obtained using a node‐to‐segment contact algorithm. The results of this study indicate that the proposed method is able to solve the highly nonlinear problem of dynamic soil–structure interaction when coupled with pore water pressures and Darcy velocity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The motions of fluid and solid phases in saturated porous media are coupled by inertial, viscous and mechanical interactions as described by Biot's equations. A one-dimensional exact analytical solution of the Biot's equations for the completely general solution of the transient problem in saturated, linear, elastic, porous media is presented. The problem is solved by using the Fourier series. The transient response of porous media is shown for typical material properties of a natural granular deposit and for different degrees of viscous coupling. The analytical results show the mechanics of dispersive wave propagation in saturated porous media and they should provide a useful comparison term for the existing numerical solution methods.  相似文献   

15.
An analytical solution is developed in this paper to investigate the dynamic response of a large‐diameter end‐bearing pipe pile subjected to torsional loading in viscoelastic saturated soil. The wave propagation in saturated soil and pile are simulated by Biot's two‐phased linear theory and one‐dimensional elastic theory, respectively. The dynamic equilibrium equations of the outer soil, inner soil, and pile are established. The solutions for the outer and inner soils in frequency domain are obtained by Laplace transform technique and the separation of variables method. Then, the dynamic response of the pile is obtained on the basis of the perfect contacts between the pile and the outer soil as well as the inner soil. The results in this paper are compared with that of a solid pile in elastic saturated soil to verify the validity of the solution. Furthermore, the solution in this paper is compared with the classic plane strain solution to verify the solution further and check the accuracy of the plane strain solution. Numerical results are presented to analyze the vibration characteristics and illustrate the effect of the soil parameters and the geometry size of the pile on the complex impedance and velocity admittance of the pile head. Finally, the displacement of the soil at different depth and frequency is analyzed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, the numerical model of the transverse vibrations of a thin poroelastic plate saturated by a fluid was proposed. Two coupled dynamic equations of equilibrium related to the plate deflection and the equivalent moment were established for an isotropic porous medium with uniform porosity. The fundamental solutions for a porous plate were derived both in the Laplace transform domain and in the time domain. A meshless method was developed and demonstrated in the Laplace transform domain for solving two coupled dynamic equations. Numerical examples demonstrated the accuracy of the method of the fundamental solutions and comparisons were made with analytical solutions. The proposed meshless method was shown to be simple to implement and gave satisfactory results for a poroelastic plate dynamic analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
马强  周凤玺  刘云帅 《冰川冻土》2016,38(4):898-903
基于Biot理论,假定固体颗粒和孔隙内流体均不可压缩,建立了以固体骨架位移表示的的控制方程.考虑单层饱和多孔介质在竖向简谐荷载作用下一维动力响应,通过理论推导获得了骨架位移、应力以及孔隙流体压力等物理量的解析表达式.基于饱和土的简谐动力模型试验数据,与所得到的理论解答相结合,将饱和多孔介质材料参数反演问题归结为非线性多峰函数的最优化问题.全局最优解的求解采用了遗传算法和模拟退火算法,并通过试验和数值算例验证了所得材料参数的正确性.  相似文献   

18.
This paper presents a stable and efficient method for calculating the transient solution of layered saturated media subjected to impulsive loadings by means of the analytical layer element method. Starting with the field equations based on Biot's linear theory for porous, fluid‐saturated media, and the seepage continuity equation, an analytical layer element for a single layer is established by applying Laplace‐Hankel integral transform. The global stiffness matrix in the transform domain for a layered saturated half‐space subjected to a transient circular patch loading is obtained by assembling the layer elements of each layer. The displacements in the time domain are derived by Laplace‐Hankel inverse transform of the global stiffness matrix. Numerical examples are conducted to verify the accuracy of the method and to demonstrate the influences of type of transient loading, buried depth of loading, permeability, and stratification of materials on the transient response of the multilayered saturated poroelastic media.  相似文献   

19.
黄晓吉  扶名福  徐斌 《岩土力学》2012,33(3):892-898
基于Biot理论,研究了饱和土中带有衬砌的圆形隧洞在移动环形荷载作用下的动力响应。假定衬砌为弹性体,土体为饱和多孔介质,引入两类势函数来表示土体、孔隙水和衬砌的位移,使隧洞的控制方程解耦。结合边界条件及连续条件,通过傅立叶变换得到频率-波数域中衬砌和土体的应力、位移和孔隙水压力解答,最后用傅立叶积分逆变换得到时-空域中的数值解。计算并比较了3种隧洞模型(弹性土体隧洞、饱和土体隧洞和饱和土衬砌隧洞)的动力响应分析。数值分析结果说明:(1)移动荷载速度对3种隧洞动力响应均具有较大影响;(2)弹性土体隧洞和饱和土体隧洞的动力响应具有明显区别,所以在富水地区的隧洞动力响应中土体应该视为饱和土体;(3)衬砌对隧洞动力响应有较大影响,故隧洞的动力分析中不能忽略衬砌作用。  相似文献   

20.
This study aims at determining the macroscopic strength of porous materials having a Drucker–Prager solid phase at microscale and two populations of saturated pores with different pressures at both micro and meso scales. To this end, and taking account of the available results by Maghous et al. (2009), we first derive a closed‐form expression of approximate criterion for a dry porous medium whose matrix obeys to a general elliptic criterion. The methodology to formulate this criterion is based on limit analysis of a hollow sphere subjected to a uniform strain rate boundary conditions. The obtained results are then implemented in a two‐step homogenization procedure, which interestingly delivers analytical expression of the macroscopic criterion for dry double porous media whose solid phase at microscale obeys to a Drucker–Prager criterion. After a brief discussion of the results, we propose an extension to double porous saturated media, allowing therefore to quantify the simultaneous effects of the different pore pressures applied on each voids population. The results are discussed in terms of the existence or not of effective stresses. Finally, they are assessed by comparing them to recently available results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号