首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
An FM/CW radar sounding system designed and built by one of us (Richter, 1969) reveals atmospheric wave structure in unparalleled detail.The most outstanding features evident in the record are; internal gravity waves; features resembling Kelvin/Helmholtz instability structures; and multiple layering, often with lamina only a few meters thick.This paper shows a variety of atmospheric structural patterns and compares them with several hypothetical models of internal waves to obtain more insight into the atmospheric processes at work. Special attention is given to the distribution of the Richardson number in trapped and untrapped gravity waves. It is proposed that the multiple layers result from untrapped internal gravity waves whose propagation vector is directed nearly vertically within very stable height regions. It is argued that the layers are caused by dynamic instability resulting from reduction in the Richardson number due to wave induced shear and to some background wind shear when the amplitude-to-wavelength ratio grows during propagation into thermally stable height regions of the atmosphere.  相似文献   

2.
Turbulence in stably stratified fluids: A review of laboratory experiments   总被引:1,自引:0,他引:1  
This is a review of laboratory studies of mixing in stably stratified fluids away from the direct intluence of boundary layers, and was written to introduce the session on laboratory experiments at the IUCRM Colloquium.Internal waves (Section 2) can lead to turbulence by creating regions of unstable density gradients through their mutual interactions, by individually breaking by forming rotors, and by reducing the local Richardson number until Kelvin-Helmholtz instability results. They may be important in radiating energy from turbulent or spreading regions. Critical-layer absorption of internal waves is not found to be a direct cause of turbulence in experiments with 15 Richardson number 5, although the modification of the vertical density profile may be significant.Turbulent-laminar interfaces without mean shear (Section 3) and with mean shear (Section 4) are described. The source of turbulence in these experiments is partly external, either generated by an oscillating grid or by a (relatively) moving boundary. The development of turbulence generated entirelywithin a stratified layer by Kelvin-Helmholtz instability, is described in detail in Section 5, and the results are compared with measurements in the ocean and in the atmosphere.  相似文献   

3.
Characteristics of intermittent turbulence events in the stably stratified nocturnal boundary layer are investigated with data collected in the CASES-99 tower array of 300-m radius. The array consists of a central 60-m tower with eddy covariance measurements at eight levels and six satellite towers with eddy covariance measurements at 5 m. A significant increase in the magnitude of vertical wind velocity () and spectral information are used to define the onset of an intermittent turbulence event. Normally, only a subset of 5 m-levels in the tower network experience an intermittent turbulence event concurrent with one at the 5 m-level on the main tower. This behaviour reveals the small horizontal extent of most events. Intermittent turbulence events at the main tower 5-m level are normally confined to a layer much thinner than the 60-m tower height. The turbulent kinetic energy budget is evaluated for intermittent turbulence events observed at the 5-m level on the main tower. Generally, the onset of an intermittent turbulence event is not closely related to the reduction of the gradient Richardson number below 0.25, the critical Richardson number of turbulence generation for linear instability. Possible explanations including the influence of advected turbulence patches are discussed.  相似文献   

4.
In this paper we report the results of the analysis of two 60-min wave events that occurred in a boreal aspen forest during the 1994 BOREAS (Boreal Ecosystems-Atmosphere Study) field experiment. High frequency wind and temperature data were provided by three 3-D sonic anemometer/thermometers and fourteen fine-wire thermocouples positioned within and above the forest. Wave phase speeds, estimated from information revealed by spectral analysis and linear plane wave equations, are 2.2 and 1.3 m s-1 for the two events. The wavelengths are 130 m and 65 m respectively and are much larger than the vertical wave displacements. There is strong evidence from the present analysis and from the literature supporting our postulate that these waves are generated by shear instability. We propose that wind shear near the top of the stand is often large enough to reduce the gradient Richardson number below the critical value of 0.25 and thus is able to trigger the instability. When external conditions are favorable, the instability will grow into waves.  相似文献   

5.
Summary A nonlinear, forced, dissipative quasi-geostrophic, two-level -plane model of baroclinic instability is formulated. The model resolves a baroclinic zonal flow and a wave of arbitrary zonal scale. Multiple equilibrium solutions describing Hadley and eddy circulations coexist. Only the circulation with smaller thermal wind is stable. The most efficient eddy activity occurs at a zonal wavenumber close to the wavelength of maximum instability of linear baroclinic instability theory. For a wide range of forcing and dissipative parameters, the steady baroclinic zonal wind of the eddy regime is close to the critical shear of linear theory. Eddy statistics are obtained analytically in terms of the doparture of the zonally symmetric state from radiative equilibrium. A parameterization for the eddy heat transport is obtained.With 14 Figures  相似文献   

6.
Summary In the past, experimental investigations as well as theoretical considerations have shown that within fronts and inversions wind shear and vertical temperature gradient adjust in such a way that the Richardson number is at its critical value. Results from aircraft measurements now suggest that the shear within moving cold fronts, warm fronts and inversions shows different behaviour because of the different mechanisms controlling the Richardson numbers. This leads to higher Richardson numbers, and therefore to lower amounts of wind shear within moving cold fronts when compared to warm fronts and inversions.With 9 Figures  相似文献   

7.
This paper reviews the remote sensing of waves and turbulence in statically stable atmospheric layers, utilizing sodar and microwave radar echoes from the small-scale inhomogeneities in gaseous refractive index caused by localized fluctuations in temperature, humidity, and velocity. Scattering theory and sounding methodology are reviewed briefly, and the relative performance of typical radar and sodar systems compared. The main section of the paper takes the form of a summary and discussion of experimental progress since 1969, showing how the echo patterns obtained may be applied to the interpretation of multiple layering, gravity waves, internal fronts and the details of dynamic instability and the genesis of turbulence in stably stratified shear layers. In addition, methods for the measurement of the intensity of the small-scale ( /2) variability of wind, temperature and water vapor from the observed radar or sodar echo intensities, and the use of Doppler techniques for the measurement of mean velocity and turbulence are discussed.SODAR from SOund Detection And Ranging in analogy to RAdio Detection And Ranging.  相似文献   

8.
Summary The MST (Mesosphere-Stratosphere-Tropospher) Radar Facility at Gadanki (13.47° N, 79.18° E), near Tirupati, Andhra Pradesh, India has been operated over seven diurnal cycles—three in November 1994, one in September 1995 and three in January–February 1996 with an objective to study the wind and stability characteristics in the troposphere and lower-stratosphere. The radar-measured height profiles of both zonal (EW) and meridional (NS) wind components and near-simultaneous radiosonde measurements from Madras (13.04° N, 80.7° E) and Bangalore (12.85° N, 77.58° E), the two stations close to either side of the radar site, have been compared and they are found to be in gross agreement within the limitations of the sensing techniques.The results of the study also indicated multiple stable and turbulent structures/stratification throughout the height region from about 4 to 30 km. It is noticed that the stable layers are well marked around the altitudes 4 km, 12 km and the tropopause while the turbulent layers exist a few kilometers below the tropopause. These stable and turbulent layer structures showed good correspondence with the radar-measured wind gradients and also with the radiosonde-derived temperature and wind distributions over Madras. The maximum positive gradient in the signal-tonoise ratio (SNR) which corresponds to radar tropopause is found to coincide with the greater potential temperature gradient and smaller wind gradient. The time evolution of atmospheric stability structure, derived from the SNR, spectral width and vertical wind revealed a diffused tropopause or tropopause weakening which is found to be associated with broader spectral width and larger gradients of winds. This feature is considered to be due either to the instability associated with large vertical gradients in horizontal winds (dynamical instability) or to the instability generated by the convection (convective instability).With 6 Figures  相似文献   

9.
Turbulence measurements from a 30 m tower in the stably stratifiedboundary layer over the Greenland ice sheet are analyzed. The observationsinclude profile and eddy-correlation measurements at various levels. Atfirst, the analysis of the turbulence data from the lowest level (2 m aboveground) shows that the linear form of the non-dimensional wind profile(m) is in good agreement with the observations for z/L <0.4, whereL represents the Obukhov length. A linear regression yieldsm=1+5.8z/L. The non-dimensional temperature profile (h) at the2m level shows no tendency to increase with increasing stability. The datafrom the upper levels of the tower are analyzed in terms of both localscaling and surface-layer scaling. The m and the h values show atendency to level off at large stability (z/>0.4) where represents the local Obukhov length. Hence, the linear form of the functions is no longer appropriate under such conditions. The bestcorrespondence to the data can be achieved when using the expression ofBeljaars and Holtslag for m and h. The vertical profiles of theturbulent fluxes, the wind velocity variances and temperature variance arealso determined. The momentum flux profile and the profiles of wind speedvariances are in general agreement with other observations if a welldeveloped low-level wind maximum occurs, and the height of this maximum isused as a height scale.  相似文献   

10.
Seventy-five nights of fast-response wind and temperature data taken from a 300 m tower near Augusta, GA, were analyzed to determine the time-height structure of the nocturnal planetary boundary layer. The nights were selected from all four seasons over a wide range of synoptic conditions. Statistical summaries of Pasquill-Gifford stability, boundary-layer depth, nocturnal jet height, directional shear, gravity wave occurrence, and azimuthal meandering were obtained. The diversity of nocturnal conditions for the 75 cases resulted in histograms with broad peaks and slowly-varying distributions.To reduce the overall variance, we grouped the nights into two classes: steady nights and unsteady nights. Nights classified as steady maintained relatively uniform wind conditions. The data base was large enough to permit a further breakdown of the steady nights into three subclasses based on the height and strength of the wind maximum. Unsteady nights were more disturbed, showing time-dependent features in the wind field and were also divided into three subclasses, depending on the predominant features observed: microfrontal passage, trend, or variable conditions. Although the subclasses were based mainly on wind structure, they correlated well with other NPBL properties, such as mixed-layer depth and inversion strength. Thus, the classification procedure tended to group together nights with similar dispersion characteristics.  相似文献   

11.
Stably stratified flow in a marine atmospheric surface layer   总被引:3,自引:1,他引:2  
Data from the marine atmospheric surface layer have been analysed. The data set consists of about two weeks with tower measurements up to 31 m of mean profiles of wind, temperature, and humidity, together with 20 Hz turbulence data. Mean wind, temperature, and humidity profiles up to 2000 m are also available from pibal trackings and radio soundings. Wave height was measured at 2 Hz, using an inverted echo-sounder.It was found from pibal wind profiles that low level jets were present during 2/3 of the measurements, having their maxima in the height interval 40 to 300 m. Here only data from the remaining 1/3 of the measurements, without low level jets, have been analysed.Non-dimensional wind and temperature gradients agree with results over homogeneous land surfaces as regards stability dependence during stable conditions that prevailed during this experiment. Linear regression gave m = 1 + 6.8z/L and m = 1 + 8.3z/L. No significant sea wave influence was found. The same was vrue for me dimensionless standard deviations of the three wind components, except for the vertical component. The expected wind speed dependence was found for the neutral drag coefficient, givingC dN = 0.109U + 0.33 at 10 m, and a dependence on the wave parameter,C/u *, was confirmed. Note, however, that the data set was restricted to low and moderate wind speeds and that stratification was mainly stable.Power spectra, non-dimensionalized according to suface-layer theories, do not follow the expected stability dependence. It was shown that this may be a consequence of the presence of gravity waves in the stable marine boundary layer. Indicators of gravity waves were found in most runs. The TKE budget agrees with findings over homogeneous land areas. The pressure transport term was found to be a source of energy also for near neutral conditions.  相似文献   

12.
天津塔层风切变的研究   总被引:2,自引:1,他引:2  
赵鸣  唐有华  刘学军 《气象》1996,22(1):7-12
根据天津气象铁塔1990-1992年冬季8个月的风速、风向、温度等资料的分析,得到了天津250m以下边界层中风切变的若干特征,如风垂直分布幂次律中指数p的时空变化及频数分布,各层各时段风切变的频数分布,风切变与温度梯度、稳定度的关系。这些特征有助于对城市下垫面塔层中风垂直分布的了解。还分析了冷锋过境前后风切变及温度状 的分布情况。  相似文献   

13.
The impact of sea waves on sensible heat and momentum fluxes is described. The approach is based on the conservation of heat and momentum in the marine atmospheric surface layer. The experimental fact that the drag coefficient above the sea increases considerably with increasing wind speed, while the exchange coefficient for sensible heat (Stanton number) remains virtually independent of wind speed, is explained by a different balance of the turbulent and the wave-induced parts in the total fluxes of momentum and sensible heat.Organised motions induced by waves support the wave-induced stress which dominates the surface momentum flux. These organised motions do not contribute to the vertical flux of heat. The heat flux above waves is determined, in part, by the influence of waves upon the turbulence diffusivity.The turbulence diffusivity is altered by waves in an indirect way. The wave-induced stress dominates the surface flux and decays rapidly with height. Therefore the turbulent stress above waves is no longer constant with height. That changes the balance of the turbulent kinetic energy and of the dissipation rate and, hence the diffusivity.The dependence of the exchange coefficient for heat on wind speed is usually parameterized in terms of a constant Stanton number. However, an increase of the exchange coefficient with wind speed is not ruled out by field measurements and could be parametrized in terms of a constant temperature roughness length. Because of the large scatter, field data do not allow us to establish the actual dependence. The exchange coefficient for sensible heat, calculated from the model, is virtually independent of wind speed in the range of 3–10 ms-1. For wind speeds above 10 ms-1 an increase of 10% is obtained, which is smaller than that following from the constant roughness length parameterization.The investigation was in part supported by the Netherlands Geosciences Foundation (GOA) with financial aid from the Netherlands Organization for Scientific Research (NWO).  相似文献   

14.
In studies of turbulence, tower data are used to measure vertical fluxes of momentum and heat generated by correlations in the fluctuating fields. Similar time averages of wu and w may be computed for an interval of wave activity observed at an instrumented tower. However, it is shown that such measurements do not necessarily correspond to the conventional Reynold's stresses or vertical heat fluxes. And waves can appear to have non-zero and even countergradient fluxes when proper averages show no fluxes at all.These spurious fluxes are generated by the method of analysis, a Fourier series performed on a finite time interval. Any background disturbance that is not strictly confined to the interval will generate a spurious wave spectrum. In particular, long-period waves will generate terms that interfere with the true high frequency waves to give false wave fluxes. The theoretical findings of this paper provide a ready explanation of tower data that would otherwise appear to conflict with conventional wave theory.  相似文献   

15.
The interpretation of ultra-high resolution radar observations of thin clear-air echo strata is made with the aid of fine-scale aircraft measurements. The echo layer, generally comprising two sub-strata each 5 m thick and spaced 7–10 m apart, is found within a 10–20 m deep section of a strong inversion where the thermal stability and shear are maximized, and the Richardson number is close to 0.25. Mechanical turbulence is restricted entirely to this layer; the variance of the N-S velocity component, 3, is the strongest, consistent with the orientation of the shear vector in this stratum. Spectra and cospectra of a 9-s slant run through the echo stratum show remarkably ordered motions. A strong negative peak of <w> covariance at 80-m scale, accompanied by a zero of <uw> covariance and bulges in the longitudinal () and vertical (w) velocity spectra, is identified with breaking Kelvin-Helmholtz waves oriented in the N-S direction along the shear vector. A synthesis of the temperature and velocity structures from measurements along the flight path confirms the ordered motion deduced from the spectra and reveals a group of K-H waves of 80-m length and 10-m height at the height of the radar echo. Microscale K-H ripples of 3–4 m length are also deduced to be present in the 0.5 m thick interfacial region where the thermal gradient and shear are strongly enhanced by the larger shearing K-H wave.Two possible sources of the echoes are proposed: (1) scatter from fully developed turbulence within the interfacial zone in an inertial subrange falling entirely in sub-meter scales; and (2) the incoherent summation of specular reflections from properly oriented portions of the microscale K-H ripples. While the authors favor the first of these mechanisms, both require stringent conditions of the physical microstructure which are beyond the available observations. Fossil turbulence is precluded as an echo mechanism.This paper is based in part on the doctoral dissertation by the senior author.Present affiliation: Air Force Cambridge Research Laboratories, Bedford, Mass., U.S.A.  相似文献   

16.
The aircraft-based experiment KABEG97 (Katabatic wind and boundary-layer front experiment around Greenland) was performed in April/May 1997. During the experiment, surface stations were installed at five positions on the ice sheet and in the tundra near Kangerlussuaq, West Greenland. A total of nine katabatic wind flights were performed during quite different synoptic situations and surface conditions, and low-level jets with wind speeds up to 25m s-1 were measured under strong synoptic forcing of the katabatic wind system. The KABEG data represent a unique data set for the investigation of katabatic winds. For the first time, high-resolution and accurate aircraft measurements can be used to investigate the three-dimensional structure of the katabatic wind system for a variety of synoptic situations.Surface station data show that a pronounced daily cycle of the near-surface wind is present for almost all days due to the nighttime development of the katabatic wind. In a detailed case study the stably-stratified boundary layer over the ice and the complex boundary-layer structure in the transition zone ice/tundra are investigated. The katabatic wind system is found to extend about 10 km over the tundra area and is associated with strong wind convergence and gravity waves. The investigation of the boundary-layer dynamics using the concept of a two-layer katabatic wind model yields the results that the katabatic flow is always a shooting flow and that the pure katabatic force is the main driving mechanism for the flow regime, although a considerable influence of the large-scale synoptic forcing is found as well.  相似文献   

17.
本文利用线性两层模式討論了对流层上部和下部扰动的发展和移动,以及它們之間相互关系。有以下主要結果: 1.一般常用的“溫度波落后于气压波,扰动发展”这一規則,对于超长波(波长大于10000公里)只适用于对流层上部,对于波长为7000公里左右的长波自对流层中部以上皆可应用,对于較短的长波整个对流层皆可应用。 2。当槽线或脊线随高度向西傾斜时,扰动的上层发展,下层阻尼;向东傾斜时,上层阻尼,下层发展;当时,上下层同时发展. 3.溫度波和高度波的移速可以不同,甚至方向可以相反;无論在上层或下层,当脊移进輻散区或槽移进輻合区时,扰动发展;当脊移进輻合区或槽移进輻散区时,扰动阻尼. 4.扰动的振幅和移速随时間而变,它不仅决定于基本流場的参数和扰动的波长,同时决定于扰动本身的上下結构. 5.周期性变化的稳定波在发展时期,其振幅的发展一天可达两倍半以上.因此日常所观測到的环流的巨大变化是否都属于一般所謂的西风带不稳定的現象值得深入研究.  相似文献   

18.
Wavelike motions within a strong morning inversion of the planetary boundary layer were investigated experimentally using two atmospheric research aircraft: an Aerocommander 280FL and a Cessna 206. The Aerocommander aircraft, instrumented for the measurement of rapid fluctuations of temperature, water vapour density and air velocities, was flown horizontally at different levels within the inversion layer in order to document adequate data on the wave motion. An example of such motions observed on 8 June, 1974 is described and analyzed in the present paper. The aircraft records obtained within the inversion layer at about 600 m above the ground show large fluctuations of the meteorological variables with well-defined amplitudes and wavelengths.Spectra and cross-spectra of temperature, water vapour density and air velocities were computed and analyzed to determine characteristics of gravity waves according to the method described by Metcalf (1975). These spectra exhibit a sharp maximum associated with high coherences at a particular wavelength. In this narrow spectral band, phase angles ±90 ° are obtained between vertical velocity and temperature as well as between vertical and horizontal velocities. These features suggest that observed motions are horizontally propagating trapped or evanescent waves. They enable us to estimate true wavelengths (500 m), wave vector azimuths, intrinsic frequencies and phase velocities of these waves. These results appear to be mutually consistent. Furthermore, it is possible to confirm these latter with the detailed vertical profiles of the boundary layer provided by the Cessna aircraft making spiral soundings. In this regard, the vertical structure of the Brunt-Väisälä frequency confirms that the waves are everywhere evanescent except within a thin highly stable layer between the diurnal mixed layer and the overlapping inversion. Moreover, examination of the wind profiles reveals that the interfacial vertical wind shear might be a relevant parameter reducing phase velocities. Such a conclusion is also supported by the observed wave vector directions which appear to be closely parallel to the wind shear vectors at the 600-m level. Additional confirmation is found by comparing the observed wavelengths to those predicted by applying the hydrodynamical stability model of Hazel (1972) to the measured profiles. Although the wind shear clearly plays a role in wave development, local heat flux and temperature variance values show that in this case the instability is only a marginal and sporadic event embedded in nearly neutral waves. Accordingly, it is argued that the observed motions are interfacial waves at the inversion base level, the amplitude and wave vector azimuth of which are controlled by the vertical wind shear.
Ondes de gravite interfaciales marginalement instables dans la couche limite planetaire
Résumé Des ondes de gravité interfaciales progressives sont étudiées à l'aide de deux avions dans la couche limite planétaire. Les spectres des vitesses et de la température fournissent les directions et vitesses de propagation. La comparaison des résultats aux profils verticaux du vent et de la température montre que ces ondes sont marginalement instables sous l'effet du cisaillement vertical du vent.


IOPG, 12, avenue des Landais - 63001 Clermont-Ferrand Cedex.

Complexe Scientifique des Cézeaux BP 45 - 63170 Aubiere.  相似文献   

19.
Summary A 1290MHz wind profiler (Radian Lap-3000), at present one of three operational wind profilers in Austria, is operated at Vienna airport. In spite of quality assurance procedures as consensus averaging included in the data evaluation process from profiler raw data, some spurious peaks of wind speed and unrealistic changes of the wind vector in time or height occur in the wind measurements. This is especially true for sampling intervals of only 5 minutes which are used to resolve the temporal evolution of summer thunderstorms and frontal passages. Averaging periods of only a few minutes are rather the lower limit apt for wind profiler observations and result in a low data availability of 28%, whereas about 55% of data (relative to the maximum height range according to the parameter setting) are available for 10 to 30 minutes profiles.Approaches to a posteriori quality control using checks for automatic error detection are proposed and tested on a one and a half year data-set: Flagging data when the three-dimensional wind divergence exceeds a predefined limit (0.5s–1) is in most cases successful in combination with thresholds for wind speed (2 times the median of the daily data-set) or wind shear (0.2s–1).The wind profiler data is compared to wind profiles from the next radiosonde station where soundings are launched 4 times a day at Hohe Warte, approx. 20km northwest, at the hill-side of the Viennese Woods. Deviations of about 1m s–1 in wind speed are found between the observations of the two systems. Differences between the wind profiles within the boundary layer can be explained by local differences in the wind regime observed at the airport and the radiosounding – blocking effects of the Viennese Woods during south-easterly flow. Comparing the profiler data to radiosoundings on a monthly basis gives a tool to monitor the profiler performance.  相似文献   

20.
Measurement flights with the meteorological mini aerial vehicle (M $^2$ AV) were performed in spring 2011 to assess the capability of an unmanned aerial vehicle (UAV) to measure the structure of the transition zone between the convective boundary layer and the stably stratified free atmosphere. The campaign took place at the Meteorological Observatory Lindenberg/Richard-Aßmann-Observatory of the German Meteorological Service. Besides the M $^2$ AV flights, observations were made from a 12-m and a 99-m tower, a sodar, two ceilometers, radiosondes, and a tethered balloon with sensor packages at six different levels. M $^2$ AV measurements were intentionally combined with remote sensing systems. The height range of the entrainment zone as well as its diurnal cycle were provided by the remote sensing instruments. The UAV provided the high-resolution in situ data of temperature and wind for the study of turbulent processes. It is shown that the M $^2$ AV is able to maintain constant altitude with very small deviations—a pre-requisite to study processes inside the often quite thin entrainment zone and that M $^2$ AV high-resolution wind and temperature measurements allow for very detailed studies of the fine structure of the atmosphere and thus for the identification of quite local and/or short-duration processes such as overshooting thermals or downward intrusions of warm air. Spatial series measured by the M $^2$ AV during horizontal flights show turbulent exchange of heat in short turbulent bursts at heights close to and within the entrainment zone. Scaled vertical profiles of vertical velocity, potential temperature variance, and sensible heat flux confirm the general shape found by previous measurements and numerical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号