首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
As an extension of the elastic multi-spring model developed by the authors in a companion paper [Gerolymos N, Gazetas G. Winkler model for lateral response of rigid caisson foundations in linear soil. Soil Dyn Earthq Eng; 2005 (submitted companion paper).], this paper develops a nonlinear Winkler-spring method for the static, cyclic, and dynamic response of caisson foundations. The nonlinear soil reactions along the circumference and on the base of the caisson are modeled realistically by using suitable couple translational and rotational nonlinear interaction springs and dashpots, which can realistically (even if approximately) model such effects as separation and slippage at the caisson–soil interface, uplift of the caisson base, radiation damping, stiffness and strength degradation with large number of cycles. The method is implemented in a new finite difference time-domain code, NL-CAISSON. An efficient numerical methodology is also developed for calibrating the model parameters using a variety of experimental and analytical data. The necessity for the proposed model arises from the difficulty to predict the large-amplitude dynamic response of caissons up to failure, statically or dynamically. In a subsequent companion paper [Gerolymos N, Gazetas G. Static and dynamic response of massive caisson foundations with soil and interface nonlinearities—validation and results. Soil Dyn Earthq Eng; 2005 (submitted companion paper).], the model is validated against in situ medium-scale static load tests and results of 3D finite element analysis. It is then used to analyse the dynamic response of a laterally loaded caisson considering soil and interface nonlinearities.  相似文献   

2.
The static, cyclic, and dynamic response of a massive caisson foundation embedded in nonlinear layered or inhomogeneous soil and loaded at its top is investigated. The caisson is supported against horizontal displacement and rotation by four types of inelastic springs and dashpots, described with the BWGG model that was developed in the preceding companion paper [Gerolymos N, Gazetas G. Development of winkler model for static and dynamic response of caisson foundations with soil and interface nonlinearities. Soil Dyn Earthq Eng, submitted companion paper]. The prediction of the model is satisfactorily compared with results from 3D-finite element analysis. Some experimental corroboration of the method is provided with the help of a 1/3-scale lateral load test that had been conducted in the field by EPRI. An illustrative example of a caisson embedded in linearly-inhomogeneous clay and subjected to static and dynamic loading is analysed. Characteristic results are presented highlighting the role of soil inelasticity and its interplay with the two dominant interface nonlinearities: separation (gapping) of the caisson shaft from the surrounding soil, and uplifting of the base from the underlying soil.  相似文献   

3.
While seismic codes do not allow plastic deformation of piles, the Kobe earthquake has shown that limited structural yielding and cracking of piles may not be always detrimental. As a first attempt to investigate the consequences of pile yielding in the response of a pile-column supported bridge structure, this paper explores the soil–pile-bridge pier interaction to seismic loading, with emphasis on structural nonlinearity. The pile–soil interaction is modeled through distributed nonlinear Winkler-type springs and dashpots. Numerical analysis is performed with a constitutive model (Gerolymos and Gazetas 2005a, Soils Found 45(3):147–159, Gerolymos and Gazetas 2005b, Soils Found 45(4):119–132, Gerolymos and Gazetas 2006a, Soil Dyn Earthq Eng 26(5):363–376) materialized in the OpenSees finite element code (Mazzoni et al. 2005, OpenSees command language manual, p 375) which can simulate: the nonlinear behaviour of both pile and soil; the possible separation and gapping between pile and soil; radiation damping; loss of stiffness and strength in pile and soil. The model is applied to the analysis of pile-column supported bridge structures, focusing on the influence of soil compliance, intensity of seismic excitation, pile diameter, above-ground height of the pile, and above or below ground development of plastic hinge, on key performance measures of the pier as is: the displacement (global) and curvature (local) ductility demands and the maximum drift ratio. It is shown that kinematic expressions for performance measure parameters may lead to erroneous results when soil-structure interaction is considered.  相似文献   

4.
As the first part of a sequence focusing on the dynamic response of composite caisson-piles foundations (CCPFs1), this paper develops a simplified method for the lateral response of these foundations. A Winkler model for the lateral vibration of the CCPF is created by joining the two components, the caisson and the pile group, where the four-spring Winkler model is utilized for the caisson and axial–lateral coupled vibration equations are derived for the pile group. For determining the coefficients of the four-spring Winkler model for the caissons, embedded footing impedance is used and a modification on the rotational embedment factor is made for the sake of the geometrical difference between shallow footings and caissons. Comparisons against results from finite element simulations demonstrate the reliability of this modified four-spring Winkler model for caissons in both homogenous and layered soils. The proposed simplified method for the lateral vibration of CCPFs is verified also by 3D finite element modeling. Finally, through an example, the idea of adding piles beneath the caisson is proved to be of great significance to enhance the resistance of the foundation against lateral dynamic loads.  相似文献   

5.
A simplified method with a dynamic Winkler model to study the seismic response of composite caisson–piles foundations (CCPF1) is developed. Firstly, with the dynamic Winkler model, the kinematic response of the CCPF subjected to vertically propagating seismic S-wave is analyzed by coupling the responses of caisson part and pile part. Secondly, a simplified model for the foundation–structure system is created with the structure simplified as a lumped mass connected to the foundation with an elastic column, and through the Fast Fourier Transformation (FFT) this model is enabled to solve transient seismic problems. Thirdly, the proposed method for the seismic response of CCPF-structure systems is verified by comparison against 3D dynamic finite element simulation, in which the Domain Reduction Method (DRM2) is utilized. Lastly, the mechanism and significance of adding piles in improving the earthquake resistance of the foundation and structure is analyzed through an example with different soil conditions. Discovered in this study is that adding piles under the caisson is an efficient way to increase seismic resistant capability of the soil–foundation–structure system, and the main mechanism of that is the elimination of the pseudo-resonance.  相似文献   

6.
Traditional nonlinear static methods, e.g. the original version of the N2 method implemented in Eurocode 8, are not always effective in the assessment of asymmetric structures because of the errors committed in the evaluation of the torsional response. To overcome this shortcoming, two methods have recently been suggested by Kreslin and Fajfar (Bull Earthquake Eng 10(2):695–715, 2012) and Bosco et al. (Earthq Eng Struct Dyn 41:1751–1773, 2012). In particular, the method proposed by Kreslin and Fajfar adjusts the results of the nonlinear static analysis by means of those of a standard modal response spectrum analysis. In the method proposed by Bosco et al., the researchers suggested the use of two nonlinear static analyses characterized by lateral forces applied to different points of the deck. In this paper, the two improved nonlinear static methods and the original N2 method are applied to predict the maximum dynamic response of single- and multi-storey systems subjected to artificial and recorded accelerograms. The results highlight that the improved nonlinear static methods provide estimates which are more accurate than those of the original N2 method. Further, the comparison of the results identifies the range of the structural properties within which the original N2 method is still reliable and the range within which one of the two improved methods should be preferred.  相似文献   

7.
Calibration of dynamic analysis methods from field test data   总被引:3,自引:0,他引:3  
In view of the heterogeneity of natural soil deposits and approximations made in analysis methods, in situ methods of determining soil parameters are highly desirable. The problem of interest here is the nonlinear dynamic behavior of pile foundations. It is shown in this paper that soil parameters needed for simplified dynamic analysis of a single pile may be back-calculated from the dynamic response of the pile measured in the field. A pile was excited by applying a large horizontal dynamic force at the pile-head level, and the response measured. In this paper, two different (simplified) methods of modeling the dynamic response of the pile are considered. One of the methods is based on the Winkler foundation approach, with the spring constant characterized by the so-called nonlinear py springs. The second method is based on the equivalent-linear finite element approach, with the nonlinearity of shear modulus and damping accounted for by employing the so-called degradation relationships. In the latter, the effect of interface nonlinearity is also considered. Starting with best estimates of soil parameters, the experimental data on the response of pile is used to fine-tune the values of the parameters, and thereby, to estimate parameters that are representative of in situ soil conditions.  相似文献   

8.
A three‐dimensional beam‐truss model for reinforced concrete (RC) walls developed by the first two authors in a previous study is modified to better represent the flexure–shear interaction and more accurately capture diagonal shear failures under static cyclic or dynamic loading. The modifications pertain to the element formulations and the determination of the inclination angle of the diagonal elements. The modified beam‐truss model is validated using the experimental test data of eight RC walls subjected to static cyclic loading, including two non‐planar RC walls under multiaxial cyclic loading. Five of the walls considered experienced diagonal shear failure after reaching their flexural strength, while the other three walls had a flexure‐dominated response. The numerically computed lateral force–lateral displacement and strain contours are compared with the experimentally recorded response and damage patterns for the walls. The effects of different model parameters on the computed results are examined by means of parametric analyses. Extension of the model to simulate RC slabs and coupled RC walls is presented in a companion paper. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
A simple mechanical model is presented for the three-dimensional dynamic soil-structure interaction analysis of surface foundations. The model is made of one-dimensional vertical beams with distributed mass and horizontal springs which interconnect the two adjacent beams. Its parameters are rather uniquely related with the soil properties alone and thus are minimally dependent on the loading condition and the foundation conditions like geometry, flexibility and size. Formulations are provided to determine the model parameters from the soil properties. Solving the governing equations of this model, expressions for the subgrade behavior in response to the applied load and soil-foundation interaction are developed in analytical forms for various cases. The dynamic and static response of three-dimensional surface foundations are computed by these expressions. It is verified that the model is well capable of reproducing the three-dimensional soil-structure interaction behavior.  相似文献   

10.
基于水平循环荷载作用下不同负温冻土环境中单桩动力特性模型试验结果,在已有分析桩-土-结构相互作用的动力BNWF模型的基础上,提出改进的冻土-桩基动力相互作用非线性反应分析模型。在该模型中,利用改进的双向无拉力多段屈服弹簧考虑桩侧冻土的水平非线性力学特性,同时兼顾桩侧与冻土间的竖向非线性摩擦效应、桩尖土的挤压与分离作用以及远场土体阻尼对桩基动力特性的影响。其中桩侧水平多段屈服弹簧参数根据冻土非线性p-y关系获得,该关系曲线以三次函数曲线段及常值函数段共同模拟,并由室内冻土压缩试验结果确定。最后基于改进的动力BNWF模型,提取动位移荷载作用下该桩顶力-位移滞回曲线及桩身不同埋深处的弯矩动响应数值分析结果,并与相应的模型试验结果对比,二者具有较好的拟合度,表明本文所提出的改进模型在分析冻土-桩动力相互作用时有较好的适用性。  相似文献   

11.
A Study of Piles during Earthquakes: Issues of Design and Analysis   总被引:1,自引:0,他引:1  
The seismic response of pile foundations is a very complex process involving inertial interaction between structure and pile foundation, kinematic interaction between piles and soils, seismically induced pore-water pressures (PWP) and the non-linear response of soils to strong earthquake motions. In contrast, very simple pseudo-static methods are used in engineering practice to determine response parameters for design. These methods neglect several of the factors cited above that can strongly affect pile response. Also soil–pile interaction is modelled using either linear or non-linear springs in a Winkler computational model for pile response. The reliability of this constitutive model has been questioned. In the case of pile groups, the Winkler model for analysis of a single pile is adjusted in various ways by empirical factors to yield a computational model for group response. Can the results of such a simplified analysis be adequate for design in all situations?The lecture will present a critical evaluation of general engineering practice for estimating the response of pile foundations in liquefiable and non-liquefiable soils during earthquakes. The evaluation is part of a major research study on the seismic design of pile foundations sponsored by a Japanese construction company with interests in performance based design and the seismic response of piles in reclaimed land. The evaluation of practice is based on results from field tests, centrifuge tests on model piles and comprehensive non-linear dynamic analyses of pile foundations consisting of both single piles and pile groups. Studies of particular aspects of pile–soil interaction were made. Piles in layered liquefiable soils were analysed in detail as case histories show that these conditions increase the seismic demand on pile foundations. These studies demonstrate the importance of kinematic interaction, usually neglected in simple pseudo-static methods. Recent developments in designing piles to resist lateral spreading of the ground after liquefaction are presented. A comprehensive study of the evaluation of pile cap stiffness coefficients was undertaken and a reliable method of selecting the single value stiffnesses demanded by mainstream commercial structural software was developed. Some other important findings from the study are: the relative effects of inertial and kinematic interactions between foundation and soil on acceleration and displacement spectra of the super-structure; a method for estimating whether inertial interaction is likely to be important or not in a given situation and so when a structure may be treated as a fixed based structure for estimating inertial loads; the occurrence of large kinematic moments when a liquefied layer or naturally occurring soft layer is sandwiched between two hard layers; and the role of rotational stiffness in controlling pile head displacements, especially in liquefiable soils. The lecture concludes with some recommendations for practice that recognize that design, especially preliminary design, will always be based on simplified procedures.  相似文献   

12.
Seismic response of bridge pier on rigid caisson foundation in soil stratum   总被引:2,自引:0,他引:2  
An analytical method to study the seismic response of a bridge pier supported on a rigid caisson foundation embedded in a deep soil stratum underlain by a homogeneous half space is developed. The method reproduces the kinematic and inertial responses, using translational and rotational distributed Winkler springs and dashpots to simulate the soil-caisson interaction. Closed-form solutions are given in the frequency domain for vertical harmonic S-wave excitation. Comparison with results from finite element (FE) analysis and other available solutions demonstrates the reliability of the model. Results from parametric studies are given for the kinematic and inertial responses. The modification of the fundamental period and damping ratio of the bridge due to soil-structure interaction is graphically illustrated.  相似文献   

13.
采用动力文克尔地基模型模拟均质粘弹性土层,推导出了均质土中单桩动阻抗;引用桩-桩动力相互作用因子,得到了刚性承台下群桩的动阻抗;而且建立了柔性承台与桩基础的竖向振动模型,该模型考虑了筏板自身的变形,并导出了其共同作用的运动方程。最后对柔性承台与刚性承台的计算结果作了对比分析。  相似文献   

14.
The response of shallow foundations under lateral cyclic loading is generally nonlinear and involves rocking, sliding, settlement, and may also involve foundation uplift and soil yielding. Unlike pile foundations, the nonlinear Winkler model is not widely used for modeling cyclic soil–footing–structure interaction (SFSI) problems. Nonetheless, it has some important features that make it more attractive than conventional finite element approaches, and is a recommended approach in the FEMA 356 design guideline. This paper explores the strengths and limitations of the FEMA 356 nonlinear Winkler modeling approach, when used in predicting the cyclic response of various recent SFSI experiments. The results of the study show that the model is capable of satisfactorily predicting all the different cyclic response quantities apart from permanent horizontal displacements. This should therefore be noted when using the approach in design.  相似文献   

15.
The response of massive caisson foundations to combined vertical (N), horizontal (Q) and moment (M) loading is investigated parametrically by a series of three-dimensional finite element analyses. The study considers foundations in cohesive soil, with due consideration to the caisson-soil contact interface conditions. The ultimate limit states are presented by failure envelopes in dimensionless and normalized forms and the effects of the embedment ratio, vertical load and interface friction on the bearing capacity are studied in detail. Particular emphasis is given on the physical and geometrical interpretation of the kinematic mechanisms that accompany failure, with respect to the loading ratio M/Q. Exploiting the numerical results, analytical expressions are derived for the capacities under pure horizontal, moment and vertical loading, for certain conditions. For the case of fully bonded interface conditions, comparison is given with upper bound limit equilibrium solutions based on Brinch Hansen theory for the ultimate lateral soil reaction. A generalized closed-form expression for the failure envelope in M–Q–N space is then proposed and validated for all cases examined. It is shown that the incremental displacement vector of the caisson at failure follows an associated flow rule, with respect to the envelope, irrespective of: (a) the caisson geometry, and (b) the interface conditions. A simplified geometrical explanation and physical interpretation of the associativity in M-Q load space is also provided. Finally, the derived failure envelope is validated against low (0.67 Hz) and high frequency (5 Hz) dynamic loading tests and the role of radiation damping on the response of the caisson at near failure conditions is unraveled.  相似文献   

16.
修建在纵向不均质地层中的地铁隧道,由于列车循环荷载的作用,会导致隧道下部的土体产生不均匀沉降,对既有隧道产生不利的影响。针对这一问题,提出考虑隧道剪切效应的地基不均匀沉降对既有隧道竖向变形影响的解析解。既有隧道简化为搁置在Winkler地基上的Timoshenko梁,通过两阶段分析法,分析下卧地层不均匀沉降引起的隧道响应。首先确定列车荷载引起的动偏应力,并运用土层的力学指标计算出静偏应力和破坏偏应力。然后运用累积应变的经验公式计算出隧道下部土体的累计沉降,将土体的沉降转化为力施加在隧道上。基于Timoshenko梁理论,建立考虑隧道剪切效应的隧道竖向变形微分方程,求解得到隧道变形的解析解,进一步可以得到隧道的弯矩、剪力、转角、错台。  相似文献   

17.
根据Winkler地基模型,对桩基础通过特性分析建立了合理的力学模型。在动力分析的基础上,给出了桩基础横向自振特性及在常轴力与横向地震载荷作用下的强迫反应解析解。文中的解析公式为桩基础动力分析提供了一种新的解析方法。  相似文献   

18.
19.
This paper presents an engineering approach for analysing the longitudinal behaviour of tunnels subjected to earthquakes. The tunnel is modelled as a Timoshenko beam connected to the far soil by means of continuous elastic support (Winkler model). Seismic free-field inputs, such as those caused by surface waves travelling parallel to the tunnel axis, were imposed at the base of the springs of the Winkler model, generating bending moments and shear forces on the cross-sections of the tunnel. Closed-form expressions of the tunnel displacements, shear forces, and bending moments were determined at any tunnel section in terms of the seismic excitation, tunnel geometry and material properties, and subgrade reaction modulus of the soil. A dimensional analysis was carried out to ascertain directly the maximum tunnel displacement, bending moment, and shear force.  相似文献   

20.
The effect of soil inhomogeneity on dynamic stiffness and kinematic response of single flexural elastic piles to vertically-propagating seismic SH waves is explored. A generalized parabolic function is employed to describe the variable shear wave propagation velocity in the inhomogeneous stratum. A layered soil with piece-wise homogeneous properties is introduced to approximate the continuous inhomogeneity in the realm of a Beam-on-Dynamic-Winkler-Foundation model. The problem is treated numerically by means of a layer transfer-matrix (Haskell–Thompson) formulation, and validated using available theoretical solutions and finite-element analyses. The role of salient model parameters such as pile-head fixity conditions, pile-to-soil stiffness ratio, surface-to-base shear wave velocity ratio and rate of inhomogeneity is elucidated. A new normalization scheme for inertial and kinematic response of such systems is presented based on an average Winkler wavenumber. With reference to long piles in moderately inhomogeneous soils, results indicate that: (a) kinematic pile response is essentially governed by a single dimensionless frequency parameter accounting for pile-to-soil stiffness ratio, pile slenderness and soil inhomogeneity and (b) definition of a characteristic pile wavelength allows an approximate estimation of pile elastodynamic response for preliminary design or analysis. Issues related to domain discretization and Winkler moduli are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号