首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent increased interest in gas hydrates has partly been the result of their potential as an energy source and for energy storage. Natural gas hydrates are found world-wide and contain vast stores of methane fuel. The estimates for the amount of methane are comparable to or even greater than conventional natural gas sources and therefore represent an extensive source of untapped energy. In addition, natural gas hydrates contain high concentrations of methane gas. This property can be exploited for natural gas transportation and storage in the form of hydrates as they can easily be stabilized at moderate pressures (10–25 bars) and temperatures (5–15°C).  相似文献   

2.
Experiments were made on 58 sediment samples from four sites(1244,1245,1250 and 1251) of ODP204 at five temperature points(25,35,45,55 and 65℃) to simulate methane production from hydrate-bearing sediments.Simulation results from site 1244 show that the gas components consist mainly of methane and carbon dioxide,and heavy hydrocarbons more than C2+ cannot be detected.This site also gives results,similar to those from the other three,that the methane production is controlled by experimental temperatures,gene...  相似文献   

3.
We present an equilibrium model of methane venting through the hydrate stability zone at southern Hydrate Ridge, offshore Oregon. Free gas supplied from below forms hydrate, depletes water, and elevates salinity until pore water is too saline for further hydrate formation. This system self-generates local three-phase equilibrium and allows free gas migration to the seafloor. Log and core data from Ocean Drilling Program (ODP) Site 1249 show that from the seafloor to 50 m below seafloor (mbsf), pore water salinity is elevated to the point where liquid water, hydrate and free gas coexist. The elevated pore water salinity provides a mechanism for vertical migration of free gas through the regional hydrate stability zone (RHSZ). This process may drive gas venting through hydrate stability zones around the world. Significant amount of gaseous methane can bypass the RHSZ by shifting local thermodynamic conditions.  相似文献   

4.
To understand the origin of the methane distributions in sediments of Eckernförde Bay, three sites were sampled in May 1994 for determination of methane, sulfate and chloride concentrations in the sediment porewaters. In much of the Bay, bubbles of biogenic methane gas within the sediments lead to widespread ‘acoustic turbidity’ seen in acoustic surveys, masking the sedimentary structure below the gassy horizon. Acoustic windows, where the gas does not appear to be present, occur in several locations in the Bay, often surrounded by acoustically turbid sediments. Pockmarks, shallow depressions in the sediment, are also found in Bay sediments and may show acoustic turbidity at even shallower depths below the interface than surrounding sediments. One site of each type was sampled in this study. The site probably representative of much of the bay below 20 m water depth, revealed methane saturated conditions by about 75 cm depth below the interface, confirming inferences from acoustic scattering data that free gas was present in the sediment. Above this, the methane concentration profile was concave-upward, indicative of methane oxidation in the overlying, sulfate-reducing sediments. These porewaters showed a slightly decreasing chlorinity with depth. At an acoustic window site, methane concentrations rose to a maximum at about 125 cm depth, but did not reach saturation. Below this depth they decreased in a concave-down pattern. Chloride concentrations decreased markedly with depth, indicative of vertical freshwater flow from below. The third site was a pockmark exhibiting very shallow acoustic turbidity at about 25 cm depth. Here methane concentrations rose to exceed saturation within 25 cm depth below the interface and the porewaters became almost fresh by 1.5 m depth, indicative of a stronger flow of freshwater from below. These groundwater flows have competing effects on the methane inventory. They help exclude sulfate from the sediment, allowing the earlier/shallower onset of methanogenesis, but they also aid loss of methane through advection. A diagenetic model that couples the biogeochemistry of sulfate and methane is used to explain the presence or absence of methane gas in these sediments in relation to the flow rate of fresh groundwater from below. Model results indicate that acoustic windows within otherwise acoustically turbid sediments of the bay are likely due to relatively higher rates of vertical advection of fresh groundwater. The gassy pockmark, however, with an even higher vertical advection rate, seems to require the input of additional reactive organic carbon to explain its vertical methane distribution.  相似文献   

5.
There is concern about adverse impacts of natural gas (primarily methane) production on groundwater quality; however, data on trace element concentrations are limited. The objective of this study was to compare the distribution of trace elements in groundwater samples with and without dissolved methane in aquifers overlying the Barnett Shale (Hood and Parker counties, 207 samples) and the Haynesville Shale (Panola County, 42 samples). Both shales have been subjected to intensive hydraulic fracturing for gas production. Well clusters with high dissolved methane were previously found in these counties and are thought to be of natural origin. Overall, groundwater in these counties is of excellent quality with typically low elemental concentrations. Several statistical analyses strongly suggest that most trace element concentrations, generally at low background levels, are no higher and even reduced when dissolved methane is present. In addition, trace element concentrations are not correlated with distance to gas wells. The reduction in trace element concentrations is attributed to anaerobic microbial degradation of methane, is associated with a higher pH (>8.5), and, likely, with precipitation of carbonates and pyrite and formation of clays. Trace and other elements are likely incorporated within the precipitating mineral crystalline network or sorbed. High pH values are found throughout these high‐methane clusters (e.g., Parker‐Hood cluster), even in subregions where methane is not present, which is consistent with a pervasive natural origin of dissolved methane rather than a limited gas well source.  相似文献   

6.
苏正  陈多福 《地球物理学报》2007,50(5):1518-1526
除合适的温度和压力条件外,甲烷水合物的形成还需要有充足的甲烷供给,沉积物孔隙水中的甲烷浓度必须大于甲烷水合物的溶解度.本文建立了水合物-水-游离气三相体系、水合物-水二相体系、气-水二相体系的甲烷溶解度计算优选方法,计算确定了水合物系统的甲烷溶解度-深度相图,依此划分出游离气、溶解气、水-水合物、水-水合物-游离气四个甲烷不同相态分布区.对水合物脊ODP1249和1250钻位、布莱克海台ODP997钻位稳定带甲烷水合物含量和稳定带之下游离气含量进行了计算.ODP1249浅部13.5~72.4 mbsf(mbsf表示海底以下深度)的甲烷水合物是沉积物孔隙体积的10%~61%,ODP1250钻位35~1065 mbsf的甲烷水合物约为孔隙体积的0.7%~1.9%,水合物层之下游离气层厚约22 m,游离气含量约占孔隙的4%.布莱克海台ODP997钻位的浅部146.9 mbsf处无水合物发育,202.4~433.3 mbsf之间水合物占孔隙体积的约5%~7%,水合物层之下游离气层厚约80 m,游离甲烷含量为孔隙的0.2%~28%.  相似文献   

7.
The detection and interpretation of hydrogen in fault gases   总被引:1,自引:0,他引:1  
Hydrogen gas can be released by chemical and mechanical changes in crustal rocks. Once released, it is highly mobile, buoyant, and almost insoluble in groundwater. A fault system may act as a conduit, allowing hydrogen to accumulate in soil gases near a surface expression. Since hydrogen is scarce in ambient air, its presence at elevated levels in soil gases may be a tool for fault mapping. In order to evaluate this tool, we surveyed eleven different faults by measuring the concentration of hydrogen and methane in 2 to 21 soil-gas samples that were collected near each of them. The sense of motion at four of those faults is normal (western United States, Greece), at five it is strike-slip or dip-slip (California, Colorado, Japan), and at two it is thrusting (California). At four of these faults (Hebgen Lake, Yellowstone, Yamasaki, Burro Mountain) maximum concentrations of hydrogen ranged from 80 ppm to 70% and methane from 300 ppm to 5%. All other sites showed ambient levels of both gases, except for one sample taken at Mt. Borah, Idaho, that was 2% methane. From this preliminary study it is not clear whether the presence of hydrogen is correlated uniquely to the location of faults or whether it occurs randomly. The conditions required to produced and accumulate hydrogen are also not clear. Excess hydrogen may well be produced by different mechanisms in different geological regimes. For example, if ferrous hydroxide is present in local rocks, it may react to produce hydrogen. Detailed and extensive studies are needed to clarify the connection between hydrogen and tectonic faulting.  相似文献   

8.
The build-up of methane in the hypolimnion of the eutrophic Lake Rotsee (Lucerne, Switzerland) was monitored over a full year. Sources and sinks of methane in the water column were characterized by measuring concentrations and carbon isotopic composition. In fall, high methane concentrations (up to 1 mM) were measured in the anoxic water layer. In the oxic layer, methane concentrations were much lower and the isotopic composition shifted towards heavy carbon isotopes. Methane oxidation rates peaked at the interface between oxic and anoxic water layers at around 8–10 m depth. The electron balance between the oxidants oxygen, sulphate, and nitrate, and the reductants methane, sulphide and ammonium, matched very well in the chemocline during the stratified season. The profile of carbon isotopic composition of methane showed strong indications for methane oxidation at the chemocline (including the oxycline). Aerobic methane oxidizing bacteria were detected at the interface using fluorescence in situ hybridization. Sequencing the responsible organisms from DGGE bands revealed that aerobic methanotrophs type I closely related to Methylomonas were present. Sulphate consumption occurred at the sediment surface and, only towards the end of the stagnation period, matched with a zone of methane consumption. In any case, the flux of sulphate below the chemocline was not sufficient to oxidize all the methane and other oxidants like nitrate, iron or manganese are necessary for the observed methane oxidation. Although most of the methane was oxidized either aerobically or anaerobically, Lake Rotsee was still a source of methane to the atmosphere with emission rates between 0.2 mg CH4 m?2 day?1 in February and 7 mg CH4 m?2 day?1 in November.  相似文献   

9.
At moderate temperatures, the elastic properties of natural MgAl2O4 spinel differ in several significant ways from properties of synthetic spinels. Below 1000 K, the ultrasonic resonant frequencies of an ordered natural spinel change significantly after heat treatment; at higher temperatures, both types of spinels have similar resonant responses. The temperature derivatives of the elastic constants of an ordered spinel also differ from those of disordered spinels at moderate temperatures; again, at higher temperatures, both types of spinels have similar behaviors. The Raman spectra also differ below 1000 K for ordered natural and disordered spinels and are similar at higher temperatures and after cooling to ambient temperature. We associate these changes in ultrasonic resonance and Raman spectra of spinel with cation disordering at high temperature which may be quenched by cooling. We deduce estimates of the inversion parameter from the relative intensities of the two A1g Raman modes in very good agreement with estimates made from other measurements. We find thatC 11 andC 12 decrease by 4 and 8%, respectively, with 20% inversion in spinel;C 44 is less sensitive to cation order. These results imply that previous measurements of the adiabatic elastic constants of spinels at ambient conditions have been affected by the state of cation disorder of the specimen.  相似文献   

10.
Experimental evidence for an ascending microflow of geogas in the ground   总被引:2,自引:0,他引:2  
A microflow of free ascending gas has been observed in 26 out of 30 tested boreholes at three different sites. The flow rates vary between 60 × 10−4 and 4 cm3/min m2 horizontally projected borehole area. Sampling has been made in ground boreholes as well as in holes drilled downwards from the lowest levels in two mines. The composition of the gas varies considerably. The main components of the gas are nitrogen, argon, oxygen and methane. Traces of heavier hydrocarbons are observed. At the site of the ground holes, only traces of methane are observed. In all sampled holes the existence of free oxygen is observed. The nitrogen/argon quotient is close to the atmospheric quotient in all sampled holes, indicating a partly atmospheric origin of the gas. The existence of methane and traces of heavier hydrocarbons indicates the existence of a second source.  相似文献   

11.
Assessing natural vs. anthropogenic sources of methane in drinking water aquifers is a critical issue in areas of shale oil and gas production. The objective of this study was to determine controls on methane occurrences in aquifers in the Eagle Ford Shale play footprint. A total of 110 water wells were tested for dissolved light alkanes, isotopes of methane, and major ions, mostly in the eastern section of the play. Multiple aquifers were sampled with approximately 47 samples from the Carrizo‐Wilcox Aquifer (250‐1200 m depth range) and Queen City‐Sparta Aquifer (150‐900 m depth range) and 63 samples from other shallow aquifers but mostly from the Catahoula Formation (depth <150 m). Besides three shallow wells with unambiguously microbial methane, only deeper wells show significant dissolved methane (22 samples >1 mg/L, 10 samples >10 mg/L). No dissolved methane samples exhibit thermogenic characteristics that would link them unequivocally to oil and gas sourced from the Eagle Ford Shale. In particular, the well water samples contain very little or no ethane and propane (C1/C2+C3 molar ratio >453), unlike what would be expected in an oil province, but they also display relatively heavier δ13Cmethane (>?55‰) and δDmethane (>?180‰). Samples from the deeper Carrizo and Queen City aquifers are consistent with microbial methane sourced from syndepositional organic matter mixed with thermogenic methane input, most likely originating from deeper oil reservoirs and migrating through fault zones. Active oxidation of methane pushes δ13Cmethane and δDmethane toward heavier values, whereas the thermogenic gas component is enriched with methane owing to a long migration path resulting in a higher C1/C2+C3 ratio than in the local reservoirs.  相似文献   

12.
本文研究了多组分天然气在海底沉积层中稳定区和存在区的一些特点. 首先,考虑盐的浓度的影响,建立了天然气含有甲烷和丙烷两种组分的水合物形成的相变曲线,即温度和压力关系曲线,同时也建立了甲烷和丙烷两种组分天然气溶解度的加权关系. 运用水合物预测模型,计算了多组分天然气水合物在海底沉积层中的稳定区及存在区,并同单组分的甲烷水合物的结果进行了对比.计算表明:两种组分的天然气水合物的稳定区与单组分甲烷水合物的稳定区有较大差别,这归因于丙烷对相变曲线大的影响;当天然气浓度大于对应的溶解度时,水合物将形成,由此决定了存在区域;稳定区和存在区范围都受到丙烷含量的较大影响,盐度的增大则减少了稳定区范围. 最后对甲烷分别与其他气体(例如二氧化碳,乙烷和硫化氢等)组合的天然气水合物形成的稳定区范围进行了简要的分析.  相似文献   

13.
利用2D数值方法对南海北部陆坡神狐海域水合物形成聚集过程进行了模拟,对气烟囱、泥底辟与水合物成藏间的关系进行研究.模拟结果表明,来自深部的甲烷热解气在向上运移过程中以垂向运动为主,且局限在某一狭窄的范围内,故在地震剖面上显示为气烟囱及顶部BSR.只有当其越过水合物稳定带底界,才能形成水合物,此时BSR等于水合物稳定带底...  相似文献   

14.
Horizontal drilling and hydraulic fracturing have enabled hydrocarbon recovery from unconventional reservoirs, but led to natural gas contamination of shallow groundwaters. We describe and apply numerical models of gas‐phase migration associated with leaking natural gas wells. Three leakage scenarios are simulated: (1) high‐pressure natural gas pulse released into a fractured aquifer; (2) continuous slow leakage into a tilted fractured formation; and (3) continuous slow leakage into an unfractured aquifer with fluvial channels, to facilitate a generalized evaluation of natural gas transport from faulty natural gas wells. High‐pressure pulses of gas leakage into sparsely fractured media are needed to produce the extensive and rapid lateral spreading of free gas previously observed in field studies. Transport in fractures explains how methane can travel vastly different distances and directions laterally away from a leaking well, which leads to variable levels of methane contamination in nearby groundwater wells. Lower rates of methane leakage (≤1 Mcf/day) produce shorter length scales of gas transport than determined by the high‐pressure scenario or field studies, unless aquifers have low vertical permeabilities (≤1 millidarcy) and fractures and bedding planes have sufficient tilt (~10°) to allow a lateral buoyancy component. Similarly, in fractured rock aquifers or where permeability is controlled by channelized fluvial deposits, lateral flow is not sufficiently developed to explain fast‐developing gas contamination (0‐3 months) or large length scales (~1 km) documented in field studies. Thus, current efforts to evaluate the frequency, mechanism, and impacts of natural gas leakage from faulty natural gas wells likely underestimate contributions from small‐volume, low‐pressure leakage events.  相似文献   

15.
Improved estimates of the amount of subsurface gas hydrates are needed for natural resource, geohazard, and climate impact assessments. To evaluate gas hydrate saturation from seismic methods, the properties of pure gas hydrates need to be known. Whereas the properties of sediments, specifically sands, and hydrate‐bearing sediments are well studied, the properties of pure hydrates are largely unknown. Hence, we present laboratory ultrasonic P‐wave velocity and attenuation measurements on pure tetrahydrofuran hydrates as they form with reducing temperatures from 25°C to 1°C under atmospheric pressure conditions. Tetrahydrofuran hydrates, with structure II symmetry, are considered as proxies for the structure I methane hydrates because both have similar effects on elastic properties of hydrate‐bearing sediments. We find that although velocity increased, the waveform frequency content and amplitude decreased after the hydrate formation reaction was complete, indicating an increase in P‐wave attenuation after hydrate formation. When the tetrahydrofuran hydrate was cooled below the freezing point of water, velocity and quality factor increased. Nuclear Magnetic Resonance results indicate the presence of water in the “pure hydrate” samples above the water freezing point, but none below. The presence of liquid water between hydrate grains most likely causes heightened attenuation in tetrahydrofuran hydrates above the freezing point of water. In naturally occurring hydrates, a similarly high attenuation might relate to the presence of water.  相似文献   

16.
The seismic response of an isolated vertical, cylindrical, extra-large liquefi ed natural gas (LNG) tank by a multiple friction pendulum system (MFPS) is analyzed. Most of the extra-large LNG tanks have a fundamental frequency which involves a range of resonance of most earthquake ground motions. It is an effective way to decrease the response of an isolation system used for extra-large LNG storage tanks under a strong earthquake. However, it is diff icult to implement in practice with common isolation bearings due to issues such as low temperature, soft site and other severe environment factors. The extra-large LNG tank isolated by a MFPS is presented in this study to address these problems. A MFPS is appropriate for large displacements induced by earthquakes with long predominant periods. A simplifi ed fi nite element model by Malhotra and Dunkerley is used to determine the usefulness of the isolation system. Data reported and statistically sorted include pile shear, wave height, impulsive acceleration, convective acceleration and outer tank acceleration. The results show that the isolation system has excellent adaptability for different liquid levels and is very effective in controlling the seismic response of extra-large LNG tanks.  相似文献   

17.
The vertical portion of a shale gas well, known as the “tophole” is often drilled using an air‐hammer bit that may introduce pressures as high as 2400 kPa (350 psi) into groundwater while penetrating shallow aquifers. A 3‐D TOUGH2 model was used to simulate the flow of groundwater under the high hydraulic heads that may be imposed by such trapped compressed air, based on an observed case in West Virginia (USA) in 2012. The model realizations show that high‐pressure air trapped in aquifers may cause groundwater to surge away from the drill site at observable velocities. If dissolved methane is present within the aquifer, the methane can be entrained and transported to a maximum distance of 10.6 m per day. Results from this study suggest that one cause of the reported increase in methane concentrations in groundwater near shale gas production wells may be the transport of pre‐existing methane via groundwater surges induced by air drilling, not necessarily direct natural gas leakage from the unconventional gas reservoir. The primary transport mechanisms are advective transport of dissolved methane with water flow, and diffusive transport of dissolved methane.  相似文献   

18.
Clusters of elevated methane concentrations in aquifers overlying the Barnett Shale play have been the focus of recent national attention as they relate to impacts of hydraulic fracturing. The objective of this study was to assess the spatial extent of high dissolved methane previously observed on the western edge of the play (Parker County) and to evaluate its most likely source. A total of 509 well water samples from 12 counties (14,500 km2) were analyzed for methane, major ions, and carbon isotopes. Most samples were collected from the regional Trinity Aquifer and show only low levels of dissolved methane (85% of 457 unique locations <0.1 mg/L). Methane, when present is primarily thermogenic (δ13C 10th and 90th percentiles of ?57.54 and ?39.00‰ and C1/C2+C3 ratio 10th, 50th, and 90th percentiles of 5, 15, and 42). High methane concentrations (>20 mg/L) are limited to a few spatial clusters. The Parker County cluster area includes historical vertical oil and gas wells producing from relatively shallow formations and recent horizontal wells producing from the Barnett Shale (depth of ~1500 m). Lack of correlation with distance to Barnett Shale horizontal wells, with distance to conventional wells, and with well density suggests a natural origin of the dissolved methane. Known commercial very shallow gas accumulations (<200 m in places) and historical instances of water wells reaching gas pockets point to the underlying Strawn Group of Paleozoic age as the main natural source of the dissolved gas.  相似文献   

19.
The mechanism of hydrogen sulfide (H2S) generation plays a key role in the exploration and development of marine high-sulfur natural gas, of which the major targets are the composition and isotope characteristics of sulfur-containing compounds. Hydrocarbon source rocks, reservoir rocks, natural gases and water-soluble gases from Sichuan Basin have been analyzed with an online method for the content of H2S and isotopic composition of different sulfur-containing compounds. The results of comparative analysis show that the sulfur-containing compounds in the source rocks are mainly formed by bacterial sulfate reduction (BSR), and the sulfur compounds in natural gas, water and reservoir are mainly formed by thermal sulfate reduction (TSR). Moreover, it has been shown that the isotopically reversion for methane and ethane in high sulfur content gas is caused by TSR. The sulfur isotopic composition of H2S in natural gas is inherited from the gypsum or brine of the same or adjacent layer, indicating that the generation and accumulation of H2S have the characteristics of either a self-generated source or a near-source.  相似文献   

20.
Using an approximately analytical formation, we extend the steady state model of the pure methane hydrate system to include the salinity based on the dynamic model of the methane hydrate system. The top and bottom boundaries of the methane hydrate stability zone (MHSZ) and the actual methane hy-drate zone (MHZ), and the top of free gas occurrence are determined by using numerical methods and the new steady state model developed in this paper. Numerical results show that the MHZ thickness becomes thinner with increasing the salinity, and the stability is lowered and the base of the MHSZ is shifted toward the seafloor in the presence of salts. As a result, the thickness of actual hydrate occur-rence becomes thinner compared with that of the pure water case. On the other hand, since lower solubility reduces the amount of gas needed to form methane hydrate, the existence of salts in sea-water can actually promote methane gas hydrate formation in the hydrate stability zone. Numerical modeling also demonstrates that for the salt-water case the presence of methane within the field of methane hydrate stability is not sufficient to ensure the occurrence of gas hydrate, which can only form when the methane concentration dissolved in solution with salts exceeds the local methane solubility in salt water and if the methane flux exceeds a critical value corresponding to the rate of diffusive methane transport. In order to maintain gas hydrate or to form methane gas hydrate in marine sedi-ments, a persistent supplied methane probably from biogenic or thermogenic processes, is required to overcome losses due to diffusion and advection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号