首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
An arcuate structure, comparable in size with the Ibero-Armorican arc, is delineated by Variscan folds and magnetic anomalies in the Central Iberian Zone of the Iberian Massif. Called the Central Iberian arc, its sense of curvature is opposite to that of the Ibero-Armorican arc, and its core is occupied by the Galicia-Trás-os-Montes Zone of NW Iberia, which includes the Rheic suture. Other zones of the Iberian Massif are bent by the arc, but the Ossa-Morena and South Portuguese zones are not involved. The arc formed during the Late Carboniferous, at final stages of thermal relaxation and collapse, and an origin related with right-lateral ductile transpression at the scale of the Variscan belt is proposed. The Central Iberian arc explains the width of the Central Iberian Zone, clarifies the position of the allochthonous terranes of NW Iberia, and opens new perspectives for correlations with the rest of the Variscan belt, in particular, with the Armorican Massif, whose central zone represents the continuation of the southwest branch of the arc detached by strike-slip tectonics.  相似文献   

2.
Transpressional deformation has played an important role in the late Neoproterozoic evolution of the ArabianNubian Shield including the Central Eastern Desert of Egypt. The Ghadir Shear Belt is a 35 km-long, NW-oriented brittleductile shear zone that underwent overall sinistral transpression during the Late Neoproterozoic. Within this shear belt, strain is highly partitioned into shortening, oblique, extensional and strike-slip structures at multiple scales. Moreover, strain partitioning is heterogeneous along-strike giving rise to three distinct structural domains. In the East Ghadir and Ambaut shear belts, the strain is pure-shear dominated whereas the narrow sectors parallel to the shear walls in the West Ghadir Shear Zone are simple-shear dominated. These domains are comparable to splay-dominated and thrust-dominated strike-slip shear zones. The kinematic transition along the Ghadir shear belt is consistent with separate strike-slip and thrustsense shear zones. The earlier fabric(S1), is locally recognized in low strain areas and SW-ward thrusts. S2 is associated with a shallowly plunging stretching lineation(L2), and defines ~NW-SE major upright macroscopic folds in the East Ghadir shear belt. F2 folds are superimposed by ~NNW–SSE tight-minor and major F3 folds that are kinematically compatible with sinistral transpressional deformation along the West Ghadir Shear Zone and may represent strain partitioning during deformation. F2 and F3 folds are superimposed by ENE–WSW gentle F4 folds in the Ambaut shear belt. The sub-parallelism of F3 and F4 fold axes with the shear zones may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation in fold zones. Dextral ENEstriking shear zones were subsequently active at ca. 595 Ma, coeval with sinistral shearing along NW-to NNW-striking shear zones. The occurrence of upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the Ghadir shear belt. Oblique convergence may have been provoked by the buckling of the Hafafit gneiss-cored domes and relative rotations between its segments. Upright folds, fold with vertical axes and sinistral strike-slip shear zones developed in response to strain partitioning. The West Ghadir Shear Zone contains thrusts and strikeslip shear zones that resulted from lateral escape tectonics associated with lateral imbrication and transpression in response to oblique squeezing of the Arabian-Nubian Shield during agglutination of East and West Gondwana.  相似文献   

3.
The rocks of the Jutogh Group in the Himachal Himalayas and their equivalents elsewhere are now considered to represent a several km thick crustal scale ductile shear zone, the so called Main Central Thrust Zone. In this article we present a summary of structural and metamorphic evolution of the Jutogh Group of rocks in the Chur half-klippe and compare our results with those of Naha and Ray (1972) who worked in the adjacent Simla klippe. The deformational history of the Jutogh Group of rocks in the area around the Chur-peak, as deduced from small-scale structures, can be segmented into: (1) an early event giving rise to two sets of very tight to isoclinal and coaxial folds with gentle dip of axial planes and easterly or westerly trend of axes, (2) an event of superimposed progressive ductile shearing during which a plethora of small-scale structures have developed which includes successive generations of strongly non-cylindrical folds, several generations of mylonitic foliation, extensional structures and late-stage small-scale thrusts, and (3) a last stage deformation during which a set of open and upright folds developed, but these are regionally unimportant. The structure in the largest scale (tens of km) can be best described in terms of stacked up thin thrust sheets. Km-scale asymmetric recumbent folds with strongly non-cylindrical hinge lines, developed as a consequence of ductile shearing, are present in one of these thrust sheets. The ductile shearing, large-scale folding and thrusting can be related to the development of the Main Central Thrust Zone. The microstructural relations show that the main phase of regional low-to medium-grade metamorphism (T ≈ 430–600°C andP ≈ 4.5–8.5 kbar) is pre-kinematic with respect to the formation of the Main Central Thrust Zone. Growth zoned garnets with typical bell-shaped Mn profiles and compensating bowl-shaped Fe profiles are compatible with this phase of metamorphism. Some of the larger garnet grains, however, show flat compositional profiles; if they represent homogenization of growth zoning, it would be a possible evidence of a relict high-grade metamorphism. The ductile shearing was accompanied by a low-greenschist facies metamorphism during which mainly chlorite and occasionally biotite porphyroblasts crystallized.  相似文献   

4.
Situated in the inner zone of the Iberian massif, the Tormes gneiss dome is composed of two units with different lithological contents and metamorphic evolution. The upper unit consists of a thick sequence of low- to high-grade metasediments, ranging in age from Late Proterozoic to Silurian. The lower unit is a high-grade metamorphic complex composed mostly of granitic orthogneisses and minor amounts of metasediments. Four Variscan deformations are distinguished. At deep structural levels, the most prominent D1 ductile structures are recumbent anticlines with NE vergence, cored by orthogneisses, and separated by narrow synclines. These recumbent folds grade upward into less-flattened and NE-vergent steeper structures. The overall structure is that of a large-scale stacking of orthogneissic slices underlying a shortened and thickened sedimentary sequence that formed a huge orogenic wedge in this region. During the heterogeneous and ductile D2 deformation, the rheological behaviour of the orthogneisses and metasediments became similar. The vertical D2 shortening associated with a strong top-to-the-SE shearing in a large-scale subhorizontal shear zone folded the prior SW-dipping structures, developing SW-vergent folds with axes close to NW–SE L2 mineral and stretching lineations. D2 corresponds to post-collisional crustal thinning following D1 crustal thickening. The D3 and D4 late structures are much more localized and occurred under retrograde conditions, but have a significant effect on the final geometry of the metamorphic complex. This sequence of contractional and extensional deformative events permits a tectonic interpretation in the framework of the dynamic wedge theory based on the evolution in the time of the stress configuration applied to a portion of the crust.  相似文献   

5.
Abstract

An important generation of recumbent folds can be recognized in the Nevado-Filabride nappe complex in the Sierra de los Filabres in SE Spain.

Folding post-dates an initial phase of flattening and is prior to the main phase of non-coaxial deformation and thrusting in the upper part of the complex, involved in a large-scale movement zone with dominant sense of shear to the northwest.

Axial planes and axes of these folds are aligned sub-parallel to the plastic flow plane in quartz and the shear direction respectively. Relict quartz fabrics can be found however, which strongly suggest that some fold axes originated in this position and did not rotate towards parallelism with the shear direction. This apparently contradicts the generally accepted model of development of folds in mylonite zones.

The redistribution of linear structures of the older flattening fase over the folds, confirms that the original orientation of fold axes was close to the present and indicates that an important component of flexural slip was involved in fold formation.  相似文献   

6.
The Central Zone (CZ) of the Limpopo Complex of southern Africais characterized by a complex deformational pattern dominatedby two types of fold geometries: large sheath folds and crossfolds. The sheath folds are steeply SSW-plunging closed structureswhereas the cross folds are north–south-oriented withnear-horizontal fold axes. In the area south of Messina thiscomplexly folded terrain grades continuously towards the southinto a crustal-scale ENE–WSW-trending ductile shear zonewith moderate dip towards the WSW. All sheath folds documentconsistent top-to-the-NE thrust movement of high-grade material.The timing of this shear deformational event (D2) and thus ofthe gneissic fabric (S2) is constrained (at  相似文献   

7.
The northern fold belt away from the Singhbhum Shear Zone displays a set of folds on bedding. The folds are sub-horizontal with E-W to ESE striking steep axial surfaces. In contrast, the folds in the Singhbhum Shear Zone developed on a mylonitic foliation and have a reclined geometry with northerly trending axes. There is a transitional zone between the two, where the bedding and the cleavage have become parallel by isoclinal folding and two sets of reclined folds have developed by deforming the bedding—parallel cleavage. Southward from the northern fold belt the intensity of deformation increases, the folds become tightened and overturned towards the south while the fold hinges are rotated from the sub-horizontal position to a down-dip attitude. Recognition of the transitional zone and the identification of the overlapping character of deformation in the shear zone and the northern belt enable the formulation of a bulk kinematic model for the area as a whole.  相似文献   

8.
The major structural features of the Iberian Pyrite Belt are described in terms of geometry, deformation mechanisms, scale, timing, kinematics and the mutual relationships among the various architectural elements. The result of such an analysis allows this zone to be considered as a S-verging, thin-skinned, fold and thrust belt propagating southwards over a mid-crustal basal detachment. This was the response in the footwall of the suture to the major phase of Hercynian oblique collision between the South Portuguese Plate and the Ossa-Morena Zone of the Iberian Autochthon. This thin-skinned event inverted a previous extensional structure acquired during the initial stages of the collisional process and intimately linked to the formation of the ore deposits that make this region a world-class metallogenic province.  相似文献   

9.
The amalgamation of Pangea during the Carboniferous produced a winding mountain belt: the Variscan orogen of West Europe. In the Iberian Peninsula, this tortuous geometry is dominated by two major structures: the Cantabrian Orocline, to the north, and the Central Iberian curve (CIC) to the south. Here, we perform a detailed structural analysis of an area within the core of the CIC. This core was intensively deformed resulting in a corrugated superimposed folding pattern. We have identified three different phases of deformation that can be linked to regional Variscan deformation phases. The main collisional event produced upright to moderately inclined cylindrical folds with an associated axial planar cleavage. These folds were subsequently folded during extensional collapse, in which a second fold system with subhorizontal axes and an intense subhorizontal cleavage formed. Finally, during the formation of the Cantabrian Orocline, a third folding event refolded the two previous fold systems. This later phase formed upright open folds with fold axis trending 100° to 130°, a crenulation cleavage and brittle–ductile transcurrent conjugated shearing. Our results show that the first and last deformation phases are close to coaxial, which does not allow the CIC to be formed as a product of vertical axis rotations, i.e. an orocline. The origin of the curvature in Central Iberia, if a single process, had to be coeval or previous to the first deformation phase.  相似文献   

10.
The structure of the Ciudad Rodrigo area (Iberian Massif, Central Iberian Zone) has been revisited in order to integrate new geological data with recent models of the evolution of the Iberian Massif. Detailed mapping of fold structures along with a compilation of field data have been used to constrain the geometry and relative timing of ductile deformation events in this section of the hinterland of the Variscan belt. The structural evolution shows, in the first place, the development of a regional train of overturned folds with associated axial planar foliation (D1). Towards the lower structural levels, the deflection of the fold limbs and a subhorizontal crenulation cleavage depict the upper structural boundary of a superimposed low angle shear zone (D2), which extends at least to the deepest parts of the basement exposed in the study area. The amplification and rotation of D1 folds about a horizontal axis also occurred within this shear zone. The flat-lying character of the D2 structures accounts for the attenuation of the previously thickened crust, which developed following gravity gradients during thermal re-equilibration. Subsequent deformation led to the formation of two orthogonal sets of upright folds (D3), representing a new shift between crustal thinning and crustal thickening in the region.  相似文献   

11.
The high-temperature metamorphism recorded in the Valuengo and Monesterio areas constitutes a rare occurrence in the Ossa-Morena Zone of Southwest Iberia, where low-grade metamorphism dominates. The metamorphism of the Valuengo area has been previously considered either Cadomian or Variscan in age, whereas that of Monesterio has been interpreted as a Cadomian imprint. However, these areas share important metamorphic and structural features that point towards a common tectonometamorphic evolution. The metamorphism of the Valuengo and Monesterio areas affects Late Proterozoic and Early Cambrian rocks, and is syn-kinematic with a top-to-the-north mylonitic foliation, which was subsequently deformed by early Variscan folds and thrusts. The U–Pb zircon age (480±7 Ma) we have obtained for an undeformed granite of the Valuengo area is consistent with our geological observations constraining the age of the metamorphism. We propose that this high-temperature metamorphic imprint along a NW–SE ductile extensional shear zone is related to the crustal extension that occurred in the Ossa-Morena Zone during the Cambro-Ordovician rifting. In the same way, the tectonothermal effect of the preorogenic rifting stage may have been wrongly attributed to orogenic processes in other regions as well as in this one.  相似文献   

12.
One of the main tectonic boundaries of the Variscan Belt in the Iberian Peninsula is the Ossa-Morena/Central Iberian contact. This contact is marked by a highly deformed unit (Central Unit) which recorded an initial high-pressure/high-temperature metamorphic evolution. Rb-Sr whole-rock isotopic data from three gneissic bodies cropping out in the Central Unit yield two Late Proterozoic ages (690 ± 134 and 632 ± 103 Ma) and an early Palaeozoic age (495 ± 13 Ma), which we interpret as protolith ages. The two Late Proterozoic orthogneisses show initial 87Sr/86Sr ratios typical of mantle-derived materials or those with significant mantle participation (87Sr/86Sr > 0.709). These new radiometric data, together with ages previously published and the structural evolution of the Central Unit, lead to the conclusions that: (1) there are magmatic protoliths of Late Proterozoic and Early Palaeozoic ages; (2) the metamorphic evolution of this area, including the high-pressure event, belongs to the Variscan orogenic cycle; (3) the deformations observed affect the rocks of the entire Central Unit, accordingly they are post-Ordovician, i.e. Variscan; and (4) consequently, the Ossa-Morena/Central Iberian contact is interpreted here as a Variscan suture.  相似文献   

13.
The structural geometry of a mylonite zone (the Woodroffe thrust) and the country rock in its immediate vicinity is described. Mylonitic schistosity formed axial planar to folds in country rock foliation and contains a mineral elongation lineation which is constant in orientation. However, the fold axes (and associated intersection lineation) spread in orientation within the mylonitic schistosity but with a strong maximum parallel to the mineral elongation lineation. It is demonstrated that the fold axes formed initially at approximately 90° to mineral elongation but rotated with increase in strain towards it. Where this phenomenon was homogeneous on a macroscopic scale, rotation of large blocks of country rock across zones of mylonitization accompanied reorientation of fold axes within the mylonite.The controversy of progressive simple versus progressive pure shear for mylonite zones is discussed in the light of recent fabric and other evidence. It is concluded that the inhomogeneous forms of both progressive pure shear and progressive simple shear played a part and that the former dominated initially but gradually gave way to the latter until brittle rupture with large simple-shear displacements on a zone lubricated by the formation of pseudotachylite, brought granulite over amphibolite facies rocks.  相似文献   

14.
The western part of the North Anatolian Shear Zone at the southern boundary of the Central Pontides in Turkey, was investigated in the Kurşunlu-Araç area by means of a geological-structural field study. In this area the North Anatolian Shear Zone results in a transpressional deformation zone that extends between two master faults striking parallel to the main shear direction. The main systems of structures identified in the deformation zone appear to be oriented parallel to the directions predicted by Riedel theoretical model. Nevertheless, the strain partitioning is more complicated than predicted by theory. The structural analysis suggests a polyphase deformation characterized by a steady component of transcurrence associated with alternance of compression and extension. Along each of theoretical directions the combination of double verging structures can be observed, with folds and thrust surfaces root into high-angle shear zones, according to flower-type geometries. The discrepancies of directions, kinematics and geometries from theoretical models are due to transpressive and/or transtensive nature of the deformation. According to the observed outcropping structures, we propose a conceptual model for the North Anatolian Shear Zone, interpreting it as a crustal-scale positive flower structure.  相似文献   

15.
作为变质核杂岩构造的重要组成部分,拆离断层带内广泛发育的褶皱构造与其寄主岩石一样记录了中下地壳拆离作用过程。选取辽南变质核杂岩金州拆离断层带内褶皱构造作为研究对象,基于叶理与褶皱构造关系分析,划分了褶皱期次与阶段性;通过形态组构分析、结晶学组构分析及石英古温度计等技术方法的应用,初步分析了拆离断层内褶皱的形成机制,为辽南地区拆离作用过程提供约束。根据褶皱形成与拆离作用的时间关系,将拆离带内褶皱分为拆离前褶皱、拆离同期褶皱和拆离后褶皱;拆离作用同期的褶皱按时间早晚分为早期(a1)阶段、中期(a2)阶段、晚期(a3)阶段。不同阶段褶皱的野外形态、叶理与褶皱关系等方面的差异,以及形态组构与结晶学组构的特征,为判断和恢复褶皱的形成机制提供了佐证,揭示出拆离断层带褶皱是在纵弯压扁和顺层流变的共同作用下递进剪切变形的产物。在拆离作用过程中, a1阶段和a2阶段褶皱以纵弯、压扁褶皱作用为主,a3阶段褶皱以弯滑作用为主。褶皱作用记录了拆离断层一定温度范围内(主要集中在380~500 ℃)的变形特征,拆离作用从早期到晚期的演化整体处于相对稳定的应变状态下。对金州拆离断层带而言,在区域NW-SE向伸展过程中,还伴随着NE-SW向微弱的收缩。  相似文献   

16.
Geometrical relations between quartz C-axis fabrics, textures, microstructures and macroscopic structural elements (foliation, lineation, folds…) in mylonitic shear zones suggest that the C-axis fabric mostly reflects the late-stage deformation history. Three examples of mylonitic thrust zones are presented: the Eastern Alps, where the direction of shearing inferred from the quartz fabric results from a late deformation oblique to the overall thrusting; the Caledonides nappes and the Himalayan Main Central Thrust zone, where, through a similar reasoning, the fabrics would also reflect late strain increments though the direction of shearing deduced from quartz fabric remains parallel to the overall thrusting direction. Hence, the sense of shear and the shear strain component deduced from the orientation of C-axis girdles relative to the finite strain ellipsoid axes are not simply related nor representative of the entire deformation history.  相似文献   

17.
This paper aims to discuss the structural evolution of the Iberian Pyrite Belt during the Variscan Orogeny. It provides new structural data, maps and cross sections from the eastern part of the Iberian Pyrite Belt. Regional geology of the South Portuguese Zone and lithostratigraphy of the Iberian Pyrite Belt are first briefly summarised. Three roughly homoaxial deformation phases are distinguished, and are mainly characterised by south-verging multi-order folds, axial planar cleavages and thrusts. Three structural units are distinguished: the La Puebla de Guzmán and Valverde del Camino antiforms are rooted units related to the propagation of southward-directed thrust systems that may branch onto the lower décollement level of the South Portuguese Zone; El Cerro de Andévalo is a structurally higher unit, mainly composed of allochthonous D1 thrust nappes. No evidence of sinistral transpression has been found in the transected cleavage and the strike of S3 with respect to S2. Better evidence of transpression is the moderately to steeply westerly plunging folds that show S-type asymmetry in down-plunge view. Variscan deformation in the Iberian Pyrite Belt is defined as the combination of a dominant southwards shear and a sinistral E-shear caused by oblique continental collision between the South Portuguese plate and the Iberian Massif.  相似文献   

18.
The Navalpino Anticline is a major Variscan structure in the Central Iberian Zone of Spain. Three lithological groups are defined in the pre-Ordovician rocks of this anticline. The Rifean or Lower Vendian Extremeño Dome Group is unconformably overlain by the Upper Vendian Ibor-Navalpino Group. This latter group presents two different facies separated by a NW-SE trending synsedimentary fault. The Lower Cambrian Valdelacasa Group unconformably overlies both the Extremeno Dome and the Ibor-Navalpino Groups.Three pre-Variscan episodes of deformation have been defined in the area of the Navalpino Anticline. A major asymmetrical fold with a subvertical east-west-striking limb is the result of the first deformation event of pre-Late Vendian age. The second deformation event is of Cadomian (Late Precambrian) age and is composed of two stages; (i) an early extensional stage including NW - SE trending extensional fault and basin development in the north-eastern block; and (ii) a second compressive stage giving rise to north-south trending upright folds. This second compressive stage possibly inverted the basin. A final pre-Variscan deformation event took place between the Early Cambrian and the Early Ordovician resulting in a 5–10° tilting to the north-east.There are two main phases of Variscan deformation in the area. The first deformation event (Dv1) gave rise to a upright WNW - ESE trending folds on all scales, whereas the second (Dv2) gave rise to a brittle—ductile sinistral strike-slip shear zone tending subparallel to the axial trace of the Dv1 folds.  相似文献   

19.
Transpressional deformation has played an important role in the late Paleozoic evolution of the western Central Asian Orogenic Belt (CAOB), and understanding the structural evolution of such transpressional zones is crucial for tectonic reconstructions. Here we focus on the transpressional Irtysh Shear Zone with an aim at understanding amalgamation processes between the Chinese Altai and the West/East Junggar. We mapped macroscopic fold structures in the southern Chinese Altai and analyzed their relationships with the development of the adjacent Irtysh Shear Zone. Structural observations from these macroscopic folds show evidence for four generations of folding and associated fabrics. The earlier fabric (S1), is locally recognized in low strain areas, and is commonly isoclinally folded by F2 folds that have an axial plane orientation parallel to the dominant fabric (S2). S2 is associated with a shallowly plunging stretching lineation (L2), and defines ∼NW-SE tight-close upright macroscopic folds (F3) with the doubly plunging geometry. F3 folds are superimposed by ∼NNW-SSE gentle F4 folds. The F3 and F4 folds are kinematically compatible with sinistral transpressional deformation along the Irtysh Shear Zone and may represent strain partitioning during deformation. The sub-parallelism of F3 fold axis with the Irtysh Shear Zone may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation (F3) in fold zones. The strain partitioning may have become less efficient in the later stage of transpressional deformation, so that a fraction of transcurrent components was partitioned into F4 folds.  相似文献   

20.
Trace element and U–Pb isotopic analyses of inherited zircon cores from a sample of Gil Márquez granodiorite (South Portuguese Zone, SPZ) and Almonaster nebulite (Ossa-Morena Zone, OMZ, in the Aracena Metamorphic Belt) have been obtained using laser ablation-inductively coupled plasma-mass spectrometry. These data reveal differences in the age of deep continental crust in these two zones. Inherited zircon cores from the Ossa-Morena Zone range at 600±100 Ma, 1.7–2 Ga and 2.65–2.95 Ga, while those from the South Portuguese Zone range at 400–500 and 700–800 Ma. These data support the “exotic” origin of the South Portuguese Zone basement relative to the rest of Iberian Massif. The young ages of inherited zircon cores and Nd model ages of magmatic rocks of the South Portuguese Zone are comparable to results from granulite facies xenoliths and granitic rocks from the Meguma Terrane and Avalonia and support a correlation between the basement of the southernmost part of the Iberian Massif and the northern Appalachians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号