首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A 1000-km-long lithospheric transect running from the Variscan Iberian Massif (VIM) to the oceanic domain of the Northwest African margin is investigated. The main goal of the study is to image the lateral changes in crustal and lithospheric structure from a complete section of an old and stable orogenic belt—the Variscan Iberian Massif—to the adjacent Jurassic passive margin of SW Iberia, and across the transpressive and seismically active Africa–Eurasia plate boundary. The modelling approach incorporates available seismic data and integrates elevation, gravity, geoid and heat flow data under the assumptions of thermal steady state and local isostasy. The results show that the Variscan Iberian crust has a roughly constant thickness of 30 km, in opposition to previous works that propose a prominent thickening beneath the South Portuguese Zone (SPZ). The three layers forming the Variscan crust show noticeable thickness variations along the profile. The upper crust thins from central Iberia (about 20 km thick) to the Ossa Morena Zone (OMZ) and the NE region of the South Portuguese Zone where locally the thickness of the upper crust is <8 km. Conversely, there is a clear thickening of the middle crust (up to 17 km thick) under the Ossa Morena Zone, whereas the thickness of the lower crust remains quite constant (6 km). Under the margin, the thinning of the continental crust is quite gentle and occurs over distances of 200 km, resembling the crustal attitude observed further north along the West Iberian margins. In the oceanic domain, there is a 160-km-wide Ocean Transition Zone located between the thinned continental crust of the continental shelf and slope and the true oceanic crust of the Seine Abyssal Plain. The total lithospheric thickness varies from about 120 km at the ends of the model profile to less than 100 km below the Ossa Morena and the South Portuguese zones. An outstanding result is the mass deficit at deep lithospheric mantle levels required to fit the observed geoid, gravity and elevation over the Ossa Morena and South Portuguese zones. Such mass deficit can be interpreted either as a lithospheric thinning of 20–25 km or as an anomalous density reduction of 25 kg m−3 affecting the lower lithospheric levels. Whereas the first hypothesis is consistent with a possible thermal anomaly related to recent geodynamics affecting the nearby Betic–Rif arc, the second is consistent with mantle depletion related to ancient magmatic episodes that occurred during the Hercynian orogeny.  相似文献   

2.
A late-Variscan rhyodacite is exposed at the contact between the Ossa Morena Zone and the Central Iberian Zone of the Iberian Massif, Central Portugal. Dykes of rhyodacite intruded the Série Negra Unit and the Sardoal Complex that are part of the Cadomian basement. The igneous crystallization age of the rhyodacite (308 ± 1 Ma) was obtained on igneous monazite by the ID-TIMS U-Pb method. It is broadly coeval with the emplacement of late-Variscan granitoids during the last deformation phase of the Variscan Orogeny (ca. 304–314 Ma) and with the development of the large late-Variscan strike-slip shear zones (ca. 307 Ma). The rhyodacite samples are calc-alkaline, show identical composition and belong to the same magmatic sequence. The rhyodacite isotopic signatures (Sm-Nd and δ18O) are consistent with depleted-mantle juvenile sources and the contribution of the meta-igneous lower crust. The input of mantle juvenile sources is related to Variscan reactivation of lithospheric fractures. The inherited Neoproterozoic (ca. 619 Ma) and Mesoproterozoic (ca. 1054 Ma) zircon ages, are similar to those of the Central Iberian Zone. This suggests that lower crust of the Central Iberian Zone was involved in the magma generation of the rhyodacite. Coeval late-Variscan magmatic rocks display a larger contribution from ancient crustal components, which may be attributed to the smaller volume and faster cooling rate of the rhyodacite and consequent lower melting of the crust. Mixing of juvenile mantle-derived melts with melts from the lower continental crust was followed by fractional crystallization of garnet and amphibole that remained in the source. Fractional crystallization of plagioclase, biotite, quartz and zircon occurred in shallower magma chambers. Fractional crystallization of zircon was not significant.  相似文献   

3.
International Journal of Earth Sciences - Zircon grains extracted from S-type granites of the Mêda-Escalhão-Penedono Massif (Central Iberian Zone, Variscan Orogen) constrain the timing of...  相似文献   

4.
New U–Pb zircon data of a mylonitic greenschist from the Moeche Ophiolite, one of the mafic units involved in the Variscan suture in the Cabo Ortegal Complex (NW of the Iberian Massif), yielded an age of 400 ± 3 Ma. Consequently, this unit can be considered one of the Devonian ophiolites, the most extended group of oceanic units in the Variscan belt. The mafic rocks show transitional compositions between N-MORB and island-arc tholeiites, although Lu–Hf isotope signatures of its zircons clearly indicate contribution from an old continental source. εHf values in the analysed zircons are negative (generally below εHf = ?5), and thence, they are not compatible with their generation from a juvenile mantle source. Accordingly, the igneous protoliths were generated in a setting where juvenile mafic magmas interacted with an old continental crust. The Devonian ophiolites from the Variscan suture have been repeatedly interpreted as remnants of the Rheic Ocean. However, the presence of a continental source in the origin of the mafic rocks of the Moeche Ophiolite allows discarding an intraoceanic setting for their generation, at least for the NW Iberian counterparts. The tectonic setting for the Devonian ophiolites of NW Iberia is very likely represented by an ephemeral oceanic basin opened within a continental realm. Herein, the real Rheic Ocean suture could only be located west of the terrane represented by the upper units of the allochthonous complexes. Apparently that suture is not represented in NW Iberia.  相似文献   

5.
The Iberian Massif poses a problem of relationships between its northwestern and southern parts. Suture terranes (ophiolites and high-pressure rocks) crop out in NW Iberia but only as allochthonous units, unconnected from their root zone. Sutures cropping out in SW Iberia are discussed in order to relate them to the unknown root of the NW Iberia allochthons. On the other hand, the Moroccan Variscides are very briefly presented with a view to propose their correlation with the Iberian zones. Particularly important is the transition from the Variscides to the Paleoproterozoic basement in Morocco, which is a key argument for palaeogeographic reconstructions.  相似文献   

6.
The Variscan mountain belt in Iberia defines a large “S” shape with the Cantabrian Orocline in the north and the Central Iberian curve, an alleged orocline belt of opposite curvature, to the south. The Cantabrian Orocline is kinematically well constrained, but the geometry and kinematics of the Central Iberian curve are still controversial. Here, we investigate the kinematics of the Central Iberian curve, which plays an important role in the amalgamation of Pangea since it may have accommodated much of the post-collisional deformation. We have performed a paleomagnetic study on Carboniferous granitoids and Cambrian limestones within the hinge of the curve. Our paleomagnetic and rock magnetic results show a primary magnetization in the granitoids and a widespread Carboniferous remagnetization of the limestones. Syn-kinematic granitoids show ca. 70° counter-clockwise rotations consistent with the southern limb of the Cantabrian Orocline. Post-kinematic granitoids and Cambrian limestones show consistent inclinations but very scattered declinations suggesting that they were magnetized coevally to and after the ~ 70° rotation. Our results show no differential rotations between northern, southern limb and the hinge zone. Therefore, we discard a late Carboniferous oroclinal origin for the Central Iberian curve.  相似文献   

7.
The occurrence of Lower Paleozoic mafic magmatic rocks in the Central Iberian Zone (CIZ) of the Variscan Orogen is rare. Amphibolites and metagabbros embedded in the metasediments of the Douro-Beiras Supergroup outcrop at Farminhão, Viseu (central-north Portugal). The protoliths of these two rock types are tholeiites presenting different isotopic signatures (εNd480 = +4.63 to +4.93 and +5.74 to +7.67) and incompatible element ratios (normalized La/Lu up to 4.5 and down to 0.7), respectively which suggests they are not cogenetic. The closely related meta-ultramafic rocks are considered as cumulates generated from the magmas that originated the metagabbros. The elemental and isotopic features of the metagabbros are similar to those reported for amphibolitic occurrences in Tenzuela (near Segovia, Spain) which allows the proposition of a similar age for the mafic rocks of Farminhão. Despite the depleted characteristics of the studied rocks, they are interpreted as having been formed during a continental rifting process characterized by variable degrees of stretching, some 100 Ma after the end of the deposition of the Douro-Beiras Supergroup. This rifting event marks the onset of the Variscan Cycle (s.l.) in the Central Iberian Zone. The occurrence of these metabasic rocks near the confluence between the Porto-Viseu Metamorphic Belt and the Juzbado-Penalva do Castelo Shear Zone suggests that these first-order structures may have worked as weakness zones constraining the ascent of magmas during the Ordovician. The Lower Ordovician metabasic rocks here studied are chemically similar to the abundant lower to medium Cambrian magmatic rocks of the Ossa Morena Zone, also in Iberia, further reinforcing the diachronous character of the opening of the Rheic Ocean that later propagated to the eastern sectors of the European Variscan Belt.  相似文献   

8.
The Asturian Arc was produced in the Early Permian by a large E–W dextral strike–slip fault (North Iberian Megashear) which affected the Cantabrian and Palentian zones of the northeastern Iberian Massif. These two zones had previously been juxtaposed by an earlier Kasimovian NW–SE sinistral strike–slip fault (Covadonga Fault). The occurrence of multiple successive vertical fault sets in this area favoured its rotation around a vertical axis (mille-feuille effect). Along with other parallel faults, the Covadonga Fault became the western margin of a proto-Tethys marine basin, which was filled with turbidities and shallow coal-basin successions of Kasimovian and Gzhelian ages. The Covadonga Fault also displaced the West Asturian Leonese Zone to the northwest, dragging along part of the Cantabrian Zone (the Picos de Europa Unit) and emplacing a largely pelitic succession (Palentian Zone) in what would become the Asturian Arc core. The Picos de Europa Unit was later thrust over the Palentian Zone during clockwise rotation. In late Gzhelian time, two large E–W dextral strike–slip faults developed along the North Iberian Margin (North Iberian Megashear) and south of the Pyrenean Axial Zone (South Pyrenean Fault). The block south of the North Iberian Megashear and the South Pyrenean Fault was bent into a concave, E-facing shape prior to the Late Permian until both arms of the formerly NW–SE-trending Palaeozoic orogen became oriented E–W (in present-day coordinates). Arc rotation caused detachment in the upper crust of the Cantabrian Zone, and the basement Covadonga Fault was later resurrected along the original fault line as a clonic fault (the Ventaniella Fault) after the Arc was completed. Various oblique extensional NW–SE lineaments opened along the North Iberian Megashear due to dextral fault activity, during which numerous granitic bodies intruded and were later bent during arc formation. Palaeomagnetic data indicate that remagnetization episodes might be associated with thermal fluid circulation during faulting. Finally, it is concluded that the two types of late Palaeozoic–Early Permian orogenic evolution existed in the northeastern tip of the Iberian Massif: the first was a shear-and-thrust-dominated tectonic episode from the Late Devonian to the late Moscovian (Variscan Orogeny); it was followed by a fault-dominated, rotational tectonic episode from the early Kasimovian to the Middle Permian (Alleghenian Orogeny). The Alleghenian deformation was active throughout a broad E–W-directed shear zone between the North Iberian Megashear and the South Pyrenean Fault, which created the basement of the Pyrenean and Alpine belts. The southern European area may then be considered as having been built by dispersal of blocks previously separated by NW–SE sinistral megashears and faults of early Stephanian (Kasimovian) age, later cut by E–W Early Permian megashears, faults, and associated pull-apart basins.  相似文献   

9.
On the southern border of the Central Iberian Zone there are two sectors with different styles of deformation. To the south-west, in the Hornachos sector, large-scale recumbent folds associated with ductile shearing can be seen. This shearing is characterized by a direction of movement parallel to the fold axes and can be correlated for 150 km along strike. The K-values of the strain ellipsoid range from 0.8 to 2.0. Stretching in the X direction, parallel to the recumbent fold axes, is more than 100%. To the north-east, in the Oliva sector, first-phase folds are upright and the strain intensity is lower than in the Hornachos sector. Metamorphic, geometric and kinematic considerations lead us to conclude that the shearing in the Hornachos sector is better explained as conjugate to a main shear zone along which the southern border of the Central Iberian Zone is moved onto the Ossa-Morena Zone. This main thrust is at present obliterated by a left-lateral extensional shear zone that affects a high pressure exotic unit located between the Central Iberian and the Ossa-Morena Zones. This high pressure unit constitutes a suture of the Variscan belt in the Iberian Peninsula.  相似文献   

10.
Early Palaeozoic bimodal rift-related magmatism is widespread throughout much of the Variscides of Europe. It is traceable from the Polish Sudetes to NW Iberia. Granitic plutonism generally predates Cambro–Ordovician bimodal magmatism. In the N Bohemian Massif this early Palaeozoic granitic plutonism was generated by partial melting of Cadomian basement, whereas contemporaneous alkali granites with a mantle component are typical of the NW Iberian Massif. Silurian-Devonian mafic magmatism in the N Bohemian Massif, Massif Central and NW Iberian Massif is partly preserved as obducted ophiolites. Compositional diversity displayed by Cambro-Ordovician mafic magmatism can be accounted for by interaction between a spreading centre and an upwelling mantle plume. This indicates that combined tensional forces and mantle plume convection assisted the early Palaeozoic dispersal of terranes from the N Gondwana margin. Continued fragmentation resulted in development of an archipelago of related terranes separated by a network of seaways and formation of oceanic crust.  相似文献   

11.
Abstract Dating of zircon cores and rims from granulites developed in a shear zone provides insights into the complex relationship between magmatism and metamorphism in the deep roots of arc environments. The granulites belong to the uppermost allochthonous terrane of the NW Iberian Massif, which forms part of a Cambro‐Ordovician magmatic arc developed in the peri‐Gondwanan realm. The obtained zircon ages confirm that voluminous calc‐alkaline magmatism peaked around 500 Ma and was shortly followed by granulite facies metamorphism accompanied by deformation at c. 480 Ma, giving a time framework for crustal heating, regional metamorphism, deformation and partial melting, the main processes that control the tectonothermal evolution of arc systems. Traces of this arc can be discontinuously followed in different massifs throughout the European Variscan Belt, and we propose that the uppermost allochthonous units of the NW Iberian Massif, together with the related terranes in Europe, constitute an independent and coherent terrane that drifted away from northern Gondwana prior to the Variscan collisional orogenesis.  相似文献   

12.
Abstract

The Ibero-Armorican arc is continuous between Iberia and Armorica; its curvature increased with time due to subduction followed by continental collision; indentation produced left lateral transpression in Iberia and right-lateral transpression in Armorica. It is argued that whereas the antithetic shear is predominant in Iberia, in Armorica a synthetic shear prevailed because the identer rotated anticlockwise between the opposed forelands of the Variscan Fold Belt. It is proposed that the major Rheic ocean, closed by subduction towards the inner part of the arc, solving the space problem of centripetal vergences.  相似文献   

13.
This paper aims to discuss the structural evolution of the Iberian Pyrite Belt during the Variscan Orogeny. It provides new structural data, maps and cross sections from the eastern part of the Iberian Pyrite Belt. Regional geology of the South Portuguese Zone and lithostratigraphy of the Iberian Pyrite Belt are first briefly summarised. Three roughly homoaxial deformation phases are distinguished, and are mainly characterised by south-verging multi-order folds, axial planar cleavages and thrusts. Three structural units are distinguished: the La Puebla de Guzmán and Valverde del Camino antiforms are rooted units related to the propagation of southward-directed thrust systems that may branch onto the lower décollement level of the South Portuguese Zone; El Cerro de Andévalo is a structurally higher unit, mainly composed of allochthonous D1 thrust nappes. No evidence of sinistral transpression has been found in the transected cleavage and the strike of S3 with respect to S2. Better evidence of transpression is the moderately to steeply westerly plunging folds that show S-type asymmetry in down-plunge view. Variscan deformation in the Iberian Pyrite Belt is defined as the combination of a dominant southwards shear and a sinistral E-shear caused by oblique continental collision between the South Portuguese plate and the Iberian Massif.  相似文献   

14.
The Tormes Gneiss Dome (NW Iberian Massif, Variscan Belt ofSpain), comprises a metamorphic core complex (Lower Unit) boundedby a major extensional detachment. Despite metamorphic temperaturesin the upper amphibolite facies (  相似文献   

15.
Ediacaran and Early Cambrian sedimentary rocks from NW Iberia have been investigated for detrital zircon U–Pb ages. A total of 1,161 concordant U–Pb ages were obtained in zircons separated from four Ediacaran samples (3 from the Cantabrian Zone and one from the Central Iberian zone) and two Lower Cambrian samples (one from the Cantabrian Zone and one from the Central Iberian Zone). Major and trace elements including REE and Sm–Nd isotopes were also analyzed on the same set of samples. The stratigraphically older Ediacaran sequence in the Cantabrian Zone has a maximum sedimentation age of ca. 600 Ma based on detrital zircon content and is intruded by ca. 590–580 Ma granitoids constraining the deposition of this part of the sequence between ca. 600 and 580 Ma. The stratigraphically younger Ediacaran sequence in the Cantabrian Zone has a maximum sedimentation age of ca. 553 Ma. The Ediacaran sample from the Central Iberian Zone has an identical within error maximum sedimentation age of ca. 555 Ma. The detrital zircon U–Pb age patterns are very similar in all the Ediacaran samples from both zones including the main age groups ca. 0.55–0.75 Ga, ca. 0.85–1.15 Ga and minor Paleoproterozoic (ca. 1.9–2.1 Ga) and Archean (ca. 2.4–2.6 Ga) populations. Kolmogorov–Smirnov statistical tests performed on this set of samples indicate that they all were derived from the same parent population (i.e., same source area). The same can be said on the basis of Nd isotopes, REE patterns and trace element concentrations. The two Cambrian samples, however, show contrasting signatures: The sample from the Cantabrian Zone lacks the ca. 0.85–1.15 Ga population and has a high proportion of Paleoproterozoic and Archean zircons (>60 %) and a more negative ε Nd and higher T DM values than the Ediacaran samples. The Early Cambrian sample from the Central Iberian Zone has the same U–Pb detrital zircon age distribution (based on KS tests) as all the Ediacaran samples but has a significantly more negative ε Nd value. These data suggest apparently continuous sedimentation in the NW Iberian realm of northern Gondwana between ca. 600 and 550 Ma and changes in the detrital influx around the Ediacaran–Cambrian boundary. The nature and origin of these changes cannot be determined with available data, but they must involve tectonic activity on the margin as evidenced by the angular unconformity separating the Ediacaran and Lower Cambrian strata in the Cantabrian Zone. The absence of this unconformity and the apparent continuity of detrital zircon age distribution between Ediacaran and Cambrian rocks in the Central Iberian Zone suggest that the margin became segmented with significant transport and sedimentation flux changes in relatively short distances. As to the paleoposition of NW Iberia in Ediacaran–Early Cambrian times, comparison of the data presented herein with a wealth of relevant data from the literature both on the European peri-Gondwanan terranes and on the terranes of northern Africa suggests that NW Iberia may have lain closer to the present-day Egypt–Israel–Jordan area and that the potential source of the hitherto enigmatic Tonian–Stenian zircons could be traced to exposed segments of arc terranes such as that described in the Sinai Peninsula (Be’eri-Shlevin et al. in Geology 40:403–406, 2012).  相似文献   

16.
The Tertiary deformation of the Iberian plate is here interpreted as the result of changes in the coupling between the Iberian–African plates. During the early stages of the Africa/Iberia subduction (Palaeocene), deformation was confined at the Betic plate boundary. From the Eocene, during the collision in the southern plate margin, compressional deformation delocalized and distributed throughout the Iberian plate. First, in the Pyrenees, where the main stage of thrusting occurred during the Late Eocene – Early Oligocene. Then (mainly Oligocene – Late Miocene), in the inner part of the Iberian plate, forming basement uplifts in the Iberian Chain and the Central System, in correspondence of pre-existing (Mesozoic and Variscan) structures. Finally, during the decay of compression inside the Iberian plate, extension took place the Mediterranean margin and the Alboran Sea.  相似文献   

17.
The South Armorican Shear Zone consists of a set of faults that runs across the southern Armorican Massif and extends eastwards to the Massif Central. One of its branches, the Cholet Shear Zone of South Brittany, can be correlated with the North-Millevaches–La Courtine Shear Zone in the Massif Central. It was active immediately after the regional Frasnian anatexis (372–368 Ma) as a right-lateral strike-slip fault. The horizontal offset, which can be estimated between 110 and 170 km, was achieved before the emplacement of non-deformed Late Tournaisian calc-alkaline and peraluminous granites (355–350 Ma). This newly established age of activity (Fammenian–Tournaisian) of the Cholet–La Courtine Shear Zone (CCSZ) has to be taken into account in geodynamical reconstructions of the Variscan belt of western Europe. To cite this article: C. Cartannaz et al., C. R. Geoscience 338 (2006).  相似文献   

18.
The amalgamation of Pangea during the Carboniferous produced a winding mountain belt: the Variscan orogen of West Europe. In the Iberian Peninsula, this tortuous geometry is dominated by two major structures: the Cantabrian Orocline, to the north, and the Central Iberian curve (CIC) to the south. Here, we perform a detailed structural analysis of an area within the core of the CIC. This core was intensively deformed resulting in a corrugated superimposed folding pattern. We have identified three different phases of deformation that can be linked to regional Variscan deformation phases. The main collisional event produced upright to moderately inclined cylindrical folds with an associated axial planar cleavage. These folds were subsequently folded during extensional collapse, in which a second fold system with subhorizontal axes and an intense subhorizontal cleavage formed. Finally, during the formation of the Cantabrian Orocline, a third folding event refolded the two previous fold systems. This later phase formed upright open folds with fold axis trending 100° to 130°, a crenulation cleavage and brittle–ductile transcurrent conjugated shearing. Our results show that the first and last deformation phases are close to coaxial, which does not allow the CIC to be formed as a product of vertical axis rotations, i.e. an orocline. The origin of the curvature in Central Iberia, if a single process, had to be coeval or previous to the first deformation phase.  相似文献   

19.
Aeolian processes and ephemeral water influx from the Variscan Iberian Massif to the mid‐Cretaceous outer back‐erg margin system in eastern Iberia led to deposition and erosion of aeolian dunes and the formation of desert pavements. Remains of aeolian dunes encased in ephemeral fluvial deposits (aeolian pods) demonstrate intense erosion of windblown deposits by sudden water fluxes. The alternating activity of wind and water led to a variety of facies associations such as deflation lags, desert pavements, aeolian dunes, pebbles scattered throughout dune strata, aeolian sandsheets, aeolian deposits with bimodal grain‐size distributions, mud playa, ephemeral floodplain, pebble‐sand and cobble‐sand bedload stream, pebble–cobble‐sand sheet flood, sand bedload stream, debris flow and hyperconcentrated flow deposits. Sediment in this desert system underwent transport by wind and water and reworking in a variety of sub‐environments. The nearby Variscan Iberian Massif supplied quartzite pebbles as part of mass flows. Pebbles and cobbles were concentrated in deflation lags, eroded and polished by wind‐driven sands (facets and ventifacts) and incorporated by rolling into the toesets of aeolian dunes. The back‐erg depositional system comprises an outer back‐erg close to the Variscan highlands, and an inner back‐erg close to the central‐erg area. The inner back‐erg developed on a structural high and is characterized by mud playa deposits interbedded with aeolian and ephemeral channel deposits. In the inner back‐erg area ephemeral wadis, desiccated after occasional floods, were mud cracked and overrun episodically by aeolian dunes. Subsequent floods eroded the aeolian dunes and mud‐cracked surfaces, resulting in largely structureless sandstones with boulder‐size mudstone intraclasts. Floods spread over the margins of ephemeral channels and eroded surrounding aeolian dunes. The remaining dunes were colonized occasionally by plants and their roots penetrated into the flooded aeolian sands. Upon desiccation, deflation resulted in lags of coarser‐grained sediments. A renewed windblown supply led to aeolian sandsheet accumulation in topographic wadi depressions. Synsedimentary tectonics caused the outer back‐erg system to experience enhanced generation of accommodation space allowing the accumulation of aeolian dune sands. Ephemeral water flow to the outer back‐erg area supplied pebbles, eroded aeolian dunes, and produced hyperconcentrated flow deposits. Fluidization and liquefaction generated gravel pockets and recumbent folds. Dune damming after sporadic rains (the case of the Namib Desert), monsoonal water discharge (Thar Desert) and meltwater fluxes from glaciated mountains (Taklamakan Desert) are three potential, non‐exclusive analogues for the ephemeral water influx and the generation of hyperconcentrated flows in the Cretaceous desert margin system. An increase in relief driven by the Aptian anti‐clockwise rotation of Iberia, led to an altitude sufficient for the development of orographic rains and snowfall which fed (melt)water fluxes to the desert margin system. Quartzite conglomerates and sands, dominantly consisting of quartz and well‐preserved feldspar grains which are also observed in older Cretaceous strata, indicate an arid climate and the mechanical weathering of Precambrian and Palaeozoic metamorphic sediments and felsic igneous rocks. Unroofing of much of the cover of sedimentary rocks in the Variscan Iberian Massif must therefore have taken place in pre‐Cretaceous times.  相似文献   

20.
The original stratigraphic relationships and structure of VMS deposits are commonly obscured by deformation. This can also affect their economic significance, as shown by several Iberian Pyrite Belt (IPB, SW Iberia) examples. The contrasting rheologic properties of the different lithologies present in an orebody (massive sulphide, feeder stockwork, alteration envelope, volcanic and sedimentary rocks) play a major role in determining its overall behaviour. Variscan thin-skinned tectonics led to stacking of the massive pyrite and stockwork bodies in duplex structures, resulting in local thickening and increased tonnage of minable mineralization. Furthermore, differential mechanical behaviour of the different sulphide minerals localised the detachments along relatively ductile sulphide-rich bands. The result was a geochemical and mineralogical reorganisation of most deposits, which now consist of barren, massive pyrite horses, bounded by base metal-rich ductile shear zones. Metal redistribution was enhanced by mobilisation of the base metal sulphides from the initially impoverished massive pyrite, through pressure-solution processes, to tensional fissures within the already ductile shear zones. In NW Iberia, VMS deposits were also strongly overprinted by the Variscan deformation during emplacement of the Cabo Ortegal and órdenes allochthonous nappe complexes, but no stacking of the orebodies was produced. Original contacts were transposed, and the orebodies, their feeder zones and the country rock acquired pronounced laminar geometry. In lower-grade rocks (greenschist facies, Cabo Ortegal Complex), solution transfer mechanisms are common in pyrite, which remains in the brittle domain, while chalcopyrite shows ductile behaviour. In higher-grade rocks (amphibolite facies, órdenes Complex), metamorphic recrystallisation overprints earlier deformation textures. The contrasting behaviour of the IPB and NW Iberian deposits is explained by key factors that affect their final geometry, composition and economics, such as pre-deformation structure, size and mineralogical composition of the orebody and associated lithologies, temperature, crustal level, deviatoric stress and availability of a fluid phase during deformation and the style and rate of deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号