首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 126 毫秒
1.
基于VLBI、SLR和GPS实测数据的现时板块运动模型   总被引:2,自引:0,他引:2  
采用空间大地测量技术 (VL BI、 SLR、 GPS)实测板块运动的最新数据 ,导出了全球 7个主要板块 (欧亚、北美、太平洋、澳大利亚、非洲、南美、南极板块 )之间的相对运动欧拉矢量 ,建立了一个完全基于空间大地测量观测的现时板块运动模型 ,称为 SGPMM2。与地学板块运动模型 NUVEL-1 A相比两者基本一致 ,说明最近 3百万年内全球板块运动总体上是稳定的。作者还首次导出了南中国板块相对于欧亚板块的相对运动欧拉矢量 (2 0 .5°S,67.2°W,0 .3 0 0°/ Ma)。与 Armijo等 (1 989)根据欧亚板块内北西藏块体与周围块体的断层走向和滑动速率估计的北西藏块体相对于欧亚板块的欧拉矢量 (1 7.0°S,61 .4°W,0 .45 8°/Ma)相比 ,两者运动方向一致 ,但南中国板块的运动速率稍小。作为对印度板块高速插入欧亚板块之下的响应 ,这个结果证实了南中国板块受西藏块体东向挤压而向东南运动的构造学推断。  相似文献   

2.
组合GPS和VLBI数据建立板块运动模型   总被引:6,自引:0,他引:6  
利用GPS和VLBI的组合数据,解算了北美、欧亚、太平洋等12板块之间的相对运动欧拉矢量,得到了实测的板块运动模型GVM1。与地学模型(NUVEL1A)的比较指出,GVM1大体上与地学模型一致;EURANOAM的极位置与NUVEL1A的相应极比较接近,旋转速率略微偏大;澳大利亚板块在最近几年内是稳定的;太平洋板块与其他板块对的极位置与地学模型较为接近,这表明多种技术的组合数据提高了板块运动模型建立的精确性和可靠性。  相似文献   

3.
联合绝对重力和重力反演与气候实验卫星(gravity recovery and climate experiment,GRACE)重力多年观测数据,获得了青藏高原多个基准站区域的地壳垂直形变速率。研究结果表明,绝对重力呈明显的负变化,绝对重力和卫星重力的时变系统差也呈较一致的负值,鼎新(DXIN)、德令哈(DLHA)、西宁(XNIN)、拉萨(LHAS)和仲巴(XZZB)5个基准站的区域地壳垂直形变呈明显的隆升状态,即拉萨块体、祁连块体和阿拉善块体处于地壳隆升状态,隆升速率分别约为2.01±0.15 mm/a、1.88±0.19mm/a、1.91±0.10 mm/a。在印度板块和欧亚板块的双向挤压下,青藏高原的地壳在不断的隆升与增厚,平均隆升速率约为1.94±0.17 mm/a,平均增厚速率约为2.35±3.30 mm/a。  相似文献   

4.
本文通过利用ITRF2005框架速度场以及IGS参考站近两年观测数据解算所得速度场对南美板块的运动及形变特征进行分析。结果表明,南美板块整体以约12.4mm/a的速率向北西方向运动,其欧拉矢量参数与NNR-NULVEL1A模型基本一致。形变特征表现为中南部区域西缘因纳兹卡板块俯冲向东凹陷,东侧受大西洋中脊海底扩张推力向西运动,东西向的挤压使其约以22mm/a的速度收缩并阻碍其北向运动。板块南端则受南极洲板块挤压向北西运动。  相似文献   

5.
组合VLBI和SLR数据估计的全球板块运动参数   总被引:4,自引:0,他引:4  
孙付平  赵铭 《测绘学报》1997,26(1):20-25,32
本文组合应用VLBI和SLR数据导出了一个完全基于空间技术实测数据的现时板块运动模型,称为SGPMM1。SGPMM1与地学板块运动模型NUVEL-1的比较指出:空间大地测量数据估计的板块运动总体上与地学估计值一致。经过地磁极倒转时间尺度修正,并考虑到冰斯后地壳回弹的影响,空间大地测量数据估计的北美,欧亚和澳大利亚板块之间的相对运动速率与地学估计值有极好的一致,但太平洋板块相对于北美、欧亚和澳大利亚  相似文献   

6.
太平洋板块俯冲对中国大陆的影响   总被引:8,自引:0,他引:8  
在中国大陆及周边地区ITRF2000速度场的基础上,建立欧亚板块整体旋转与线性应变运动模型,得到中国大陆及邻区的局部形变场,分析此形变场发现东北块体和华北块体东部地壳存在一致的向西或北西西向运动,平均运动速率东北为2.9 mm/a,华北东部为1.4 mm/a,推测这是太平洋板块向欧亚板块俯冲的影响。其影响范围仅限于东北和华北块体,影响较大的是120°E以东和40°N以北地区。并分析太平洋板块俯冲对中国大陆影响的表现形式和形成机制。  相似文献   

7.
朱新慧  王刃  孟键 《测绘科学》2010,35(1):13-15
我国大陆板块是欧亚大陆板块的重要组成部分,其板块运动剧烈,地质构造复杂,是全球研究板块运动的重要地区。本文通过对各个块体分别建模和解算,得出结论:中国地区除东北块体相对于欧亚板块不动外,其他块体均有不同程度的形变运动,东部形变较小,西部形变较大;华北块体总体上以大约6mm/a的速率向东运动;华南块体以约5~8mm/a的速率向东南方向运动;新疆块体以约10~15mm/a的速率向北东方向运动;西藏块体也向北东方向运动,但运动速率从南到北逐步减少。  相似文献   

8.
吕志鹏 《测绘通报》2015,(12):15-19
基于空间大地测量数据建立板块运动的欧拉矢量具有更优的现势性。本文对其计算的3种几何模型进行了理论分析,并且利用IERS发布的ITRF2000速度场数据对上述3种几何模型进行了比较。结果表明,3种几何模型得到的板块运动的欧拉矢量具有统计一致性。但是,由它们得到的板块运动的欧拉矢量最大差异约1 mm/a,整体旋转量最大差异约0.2 mm/a,这对于高精度的大地测量和地球动力学应用影响显著。朱文耀等采用的几何模型更加合理,拟合精度更高,因而建议利用该模型进行板块运动欧拉矢量的拟合。  相似文献   

9.
与之前的国际地球参考框架(ITRF)将全球长期解作为输入数据进行组合不同,ITRF2005将测站坐标(卫星技术每星期的数据和VLBI每24小时的数据)和每天的地球自转参数(EOPs)作为输入数据。使用测站位置时间序列的优势在于可以监控测站的非线性运动和非连续性,并检验框架物理参数即原点和尺度的时变特性。ITRF2005原点定义为:相对于由SLR技术13年的观测数据所得的地球质心的平移和平移速度为零;尺度定义为:相对于由VLBI技术26年的观测数据所得的尺度及其变化率为零;ITRF2005的定向(2000.0历元)及其速率与ITRF2000中70个高质量的测站一致。ITRF2005原点(2000.0历元)及其速率相对于ITRF2000沿X,Y,Z轴在0.1,0.8,5.8mm和0.2,0.1,1.8mm/y的水平上一致,其分量的误差分别为0.3mm和0.3mm/y。两个参考框架原点间一致性差可能是因为SLR网的几何图形差。ITRF2005组合中包含了84个并置站,尺度的不一致性在2000.0历元为1ppb(赤道处为6.3mm),SLR和VLBI由各自时间序列堆栈得到的长期解之间尺度不一致性为0.08ppb/yr。这些不一致性可能是因为SLR和VLBI网形差、并置站质量不好、局部联系的不确定性、系统误差影响以及数据分析中模型改正的不一致性。ITRF历史上,ITRF2005第一次采用了紧组合的方式给出了与之相一致的EOP序列,包括由VLBI和卫星技术得到的极移和仅从VLBI得到的UT和日长数据。  相似文献   

10.
利用长江三角洲区域内19个GPS连续运行参考站2007~2013年间的观测数据,计算得到了该区域ITRF2005参考框架下的三维速度场、应变参数及区域参考框架下的速度场。结果表明,在ITRF2005框架下,水平方向平均速率为33.97 mm/a,优势方向为NE 111.5°;相对于欧亚板块的水平方向平均速率为9.36 mm/a,优势方向为NE 85.6°;高程方向以沉降为主,最大沉降速率为15.22 mm/a,平均沉降速率为4.7 mm/a;该区域块体以N 29.4° E的拉张为主,达到2.4×10-9/a,同时兼有N 119.4° E的挤压,达到1.3×10-9/a。  相似文献   

11.
O. Titov 《Journal of Geodesy》2007,81(6-8):455-468
This paper evaluates the effect of the accuracy of reference radio sources on the daily estimates of station positions, nutation angle offsets, and the estimated site coordinates determined by very long baseline interferometry (VLBI), which are used for the realization of the international terrestrial reference frame (ITRF). Five global VLBI solutions, based on VLBI data collected between 1979 and 2006, are compared. The reference solution comprises all observed radio sources, which are treated as global parameters. Four other solutions, comprising different sub-sets of radio sources, were computed. The daily station positions for all VLBI sites and the corrections to the nutation offset angles were estimated for these five solutions. The solution statistics are mainly affected by the positional instabilities of reference radio sources, whereas the instabilities of geodetic and astrometric time-series are caused by an insufficient number of observed reference radio sources. A mean offset of the three positional components (Up, North, East) between any two solutions was calculated for each VLBI site. From a comparison of the geodetic results, no significant discrepancies between the respective geodetic solutions for all VLBI sites in the Northern Hemisphere were found. In contrast, the Southern Hemisphere sites were more sensitive to the selected set of reference radio sources. The largest estimated mean offset of the vertical component between two solutions for the Australian VLBI site at Hobart was 4 mm. In the worst case (if a weak VLBI network observed a limited number of reference radio sources) the daily offsets of the estimated height component at Hobart exceeded 100 mm. The exclusion of the extended radio sources from the list of reference sources improved the solution statistics and made the geodetic and astrometric time-series more consistent. The problem with the large Hobart height component offset is magnified by a comparatively small number of observations due to the low slewing rate of the VLBI dish (1°/ s). Unless a minimum of 200 scans are performed per 24-h VLBI experiment, the daily vertical positions at Hobart do not achieve 10 mm accuracy. Improving the slew rate at Hobart and/or having an increased number of new sites in the Southern Hemisphere is essential for further improvement of geodetic VLBI results for Southern Hemisphere sites.  相似文献   

12.
本文采用最近获得的VLBI基线变化率,解算了全球50个VLBI站的站速度。通过对VLBI台站构造稳定性的分析,用位于板块稳定地区台站的站速度求解了欧亚(EURA)、北美(NOAM)和太平洋(PCFC)三个主要板块之间的相对运动欧拉矢量,这是完全基于VLBI数据导出的板块运动模型,称为VP-MM1。通过VPMM1与地学板块运动模型的比较,分析了板块运动的稳定性,得出了几点初步结论。  相似文献   

13.
Results of the VLBI experiments conducted with Syowa Station, Antarctica   总被引:1,自引:0,他引:1  
The first successful geodetic Very Long Baseline Interferometry (VLBI) observations to Antarctica were made on baselines from Syowa Station (Antarctica) to Tidbinbilla (Australia) and to Kashima (Japan) in January 1990. Regular geodetic experiments started in 1998 with the installation of a permanent VLBI terminal at Syowa Station. These observations are conducted at the standard geodetic VLBI frequencies of 2.3 and 8.4 GHz, S- and X-Bands. In the first year, the 11-m multipurpose antenna at Syowa Station observed together with the 26-m radio telescope of the University of Tasmania in Australia and the 26-m radio telescope of the Hartebeesthoek Radio Astronomy Observatory in South Africa. From 1999, the experiments were expanded to also include the O’Higgins Station in Antarctica, Fortaleza in Brazil and Kokee on Hawaii. From 1999 until the end of 2003, 25 observing sessions have been reduced and analyzed using the CALC/SOLVE geodetic VLBI data reduction package. The results show that the horizontal baseline of Syowa-Hobart is increasing at the rate of 57.0±1.9 mm/year. The baseline Syowa-Hartebeesthoek is also increasing, but at the lower rate of 9.8±1.9 mm/year. The VLBI result of 2.0±3.1 mm/year and the GPS result of −1.9±0.7 mm/year for the Syowa-O’Higgins horizontal baseline support the hypothesis of one rigid Antarctic plate without intra-plate deformation, which is consistent with the NNR-NUVEL-1A global plate motion model. The location of the Euler pole of the Antarctic plate by VLBI is estimated as 59.7°S and 62.6°E with a rotation rate of 0.190 deg/Myr, while that by GPS in our study is estimated as 60.6°S and 42.2°E with a rotation rate of 0.221 deg/Myr. These pole positions are slightly different to that implied by the NNR-NUVEL-1A model of 63.0°S and 64.2°E with a rotation rate of 0.238 deg/Myr. VLBI observations over a longer time span may resolve small discrepancy of current plate motion from the NNR-NUVEL-1A model. The consistency of the VLBI coordinates with the GPS coordinates at Syowa Station, after correction for the local tie vector components between the two reference markers, is also discussed.  相似文献   

14.
Very Long Baseline Interferometry (VLBI) plays a unique and fundamental role in the maintenance of the global (terrestrial and celestial) reference frames, which are required for precise positioning in many research areas such as the understanding and monitoring of global changes, and for space missions. The International VLBI Service for Geodesy and Astrometry (IVS) coordinates the global VLBI components and resources on an international basis. The service is tasked by the International Association of Geodesy (IAG) and International Astronomical Union (IAU) to provide products for the realization of the Celestial Reference Frame (CRF) through the positions of quasars, to deliver products for the maintenance of the terrestrial reference frame (TRF), such as station positions and their changes with time, and to generate products describing the rotation and orientation of the Earth. In particular, VLBI uniquely provides direct observations of nutation parameters and of the time difference UT1-UTC. This paper summarizes the evolution and current status of the IVS. It points out the activities to improve further on the product quality to meet future service requirements.  相似文献   

15.
Temperature variations at very long baseline interferometry (VLBI) sites cause thermal deformations of the VLBI antennas and corresponding displacements of the VLBI reference points. The thermal deformation effects typically contain seasonal and daily signatures. The amplitudes of the annual vertical motion of the antenna reference point can reach several millimeters, depending on the design of the antenna structure, on the material, and on the environmental effects such as global station position, station height and climatology effects. Simple methods to correct this effect use the difference of the environmental temperature with respect to a defined reference temperature, the antenna dimensions, the elevation of the antenna, the material of antenna structure. Applying these simple models for thermal deformation in the VLBI data analysis improves the baseline length repeatability by 3.5%. A comparison of these simple models with local thermal deformation measurements at the antennas in Onsala and Wettzell show that the local measurements and the modeled corrections agree well when the temperature of the antenna structure is used, but agree less good when the surrounding air temperatures are used. To overcome this problem we present a method to model temperature penetration into the antenna structures, that allows to model thermal deformation effects that agree with the observed vertical deformation of the Onsala and Wettzell radio telescopes with a root mean square deviation of 0.07 and 0.13 mm, respectively. Possible implementations in the VLBI analysis are presented, and the definition of an adequate reference temperature is discussed.  相似文献   

16.
This paper compares estimated terrestrial reference frames (TRF) and celestial reference frames (CRF) as well as position time-series in terms of systematic differences, scale, annual signals and station position repeatabilities using four different tropospheric mapping functions (MF): The NMF (Niell Mapping Function) and the recently developed GMF (Global Mapping Function) consist of easy-to-handle stand-alone formulae, whereas the IMF (Isobaric Mapping Function) and the VMF1 (Vienna Mapping Function 1) are determined from numerical weather models. All computations were performed at the Deutsches Geodätisches Forschungsinstitut (DGFI) using the OCCAM 6.1 and DOGS-CS software packages for Very Long Baseline Interferometry (VLBI) data from 1984 until 2005. While it turned out that CRF estimates only slightly depend on the MF used, showing small systematic effects up to 0.025 mas, some station heights of the computed TRF change by up to 13 mm. The best agreement was achieved for the VMF1 and GMF results concerning the TRFs, and for the VMF1 and IMF results concerning scale variations and position time-series. The amplitudes of the annual periodical signals in the time-series of estimated heights differ by up to 5 mm. The best precision in terms of station height repeatability is found for the VMF1, which is 5–7% better than for the other MFs.  相似文献   

17.
本文结合流动VLBI参加的"地壳运动观测网络工程"和"探月工程",从建立和维护我国地心参考框架和深空探测两个角度讨论了流动VLBI站址的选择、以及所选站址对我国VLBI观测网的改善。提出了将流动VLBI站设在海南,这样既增加了南北基线长度,也扩大了可观测射电源的范围,同时在建立和维持我国地心参考框架方面也是较好的选择。  相似文献   

18.
Time series of daily position solutions at eight co-located GPS and VLBI stations are used to assess the frequency features in the solutions over various time-scales. This study shows that there are seasonal and inter-annual signals in all three coordinate components of the GPS and VLBI solutions. The power and frequency of the signals vary with time, the station considered and the coordinate components, and between the GPS and VLBI solutions. In general, the magnitudes of the signals in the horizontal coordinate components (latitude and longitude) are weaker than those in the height component. The weighted means of the estimated annual amplitudes from the eight GPS stations are, respectively, 1.0, 0.8 and 3.6 mm for the latitude, longitude and height components, and are, respectively, 1.5, 0.7 and 2.2 mm for the VLBI solutions. The phases of the annual signals estimated from the GPS and VLBI solutions are consistent for most of the co-located stations. The seasonal signals estimated from the VLBI solutions are, in general, more stable than those estimated from the GPS solutions. Fluctuations at inter-annual time-scales are also found in the series. The inter-annual fluctuations are up to ∼5 mm for the latitude and longitude components, and up to ∼10 mm for the height component. The effects of the seasonal and inter-annual variations on the estimated linear rates of movement of the stations are also evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号