首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Grain-size distributions of gravels transported as bedload in Oak Creek, Oregon, show systematic variations with changing flow discharges. At low discharges the gravel distributions are nearly symmetrical and Gaussian. As discharges increase, the distributions become more skewed and follow the ideal Rosin distribution. The patterns of variations are established by goodness-of-fit comparisons between the measured and theoretical distributions, and by Q-mode factor analysis. Two end members are obtained in the factor analysis, having (respectively) almost perfect Gaussian and Rosin distributions, and the percentages of the two end members within individual samples vary systematically with discharge. Transformation from Gaussian to Rosin distribution with increasing discharge may be explained by processes of selective entrainment of grains from a bed of mixed sizes. Samples of bed material in Oak Creek follow the Rosin distribution. At high discharges, the transported bedload approaches the grain sizes of that bed-material source and mimics its Rosin distribution. Random-selection processes must be more important to grain entrainment at lower discharges, so that the resulting Gaussian distributions of transported bedload reflect similar distributions of bed stresses exerted by the stream flow. The results from Oak Creek demonstrate that the competence of the flow is reflected in the entire distribution of transported gravel sizes. A sequence of layers of fluvial gravels, modern or ancient, might show systematic variations between coarse Rosin and finer-grained Gaussian distributions, and these could be used to infer frequencies of various discharges and to establish a relationship to the source sediment. With further study, analyses of changing bedload grain-size distributions and their transport rates will lead to a better understanding of downstream variations in grain sizes of bed sediments and how their distributions reflect the progressive development of textural maturity.  相似文献   

2.
Flow-competence assessments of floods have been based on the largest particle sizes transported, and yield either the mean flow stress, mean velocity, or discharge per unit flow width. The use of extreme particle sizes has potential problems in that they may have been transported by debris flows rather than by the flood, it may be difficult to locate the largest particles within the flood deposits, and there are questions concerning how representative one or a few large particles might be of the transported sediments and therefore of the flood hydraulics. Such problems would be eliminated for the most part if competence evaluations are based on median grain sizes of transported sediments, or perhaps on some coarse percentile that is established by a reasonable number of grains. In order to examine such issues, the gravel-transport data of Milhous from Oak Creek, Oregon, and of Carling from Great Eggleshope Beck, England, have been analysed in terms of changing grain-size percentiles with varying flow stresses. A comparison between these two data sets is of added interest because the bed material in Oak Creek is segregated into well-developed pavement and subpavement layers, while such a layering of bed materials is largely absent in Great Eggleshope Beck. The analyses show that the trend of increasing sizes of the largest particles in the bedload samples (diameter Dm) with increasing flow stresses is consistent with similar dependencies based on sieve percentiles ranging from the medians (D50) to the 95th percentiles (D95). This indicates that the largest particles are an integral part of the overall distributions of bedload grain sizes, and respond to changing flow hydraulics along with the rest of the size distribution. In Oak Creek, the median grain size shows the largest change with increasing flow stresses, followed by D60, and so on to D95 which shows the smallest change. The variations in Dm continue this trend, and are similar to those for D95. This systematic variation of grain-size percentiles in Oak Creek is consistent with changes in the overall distributions which tend to be symmetrical and Gaussian for low discharges, but become skewed Rosin distributions for high discharges. In contrast, in Great Eggleshope Beck the several percentiles and Dm show the same rate of shift to coarser sizes as flow stresses increase. This results in part from differences in sampling techniques wherein the bedload samples from Great Eggleshope Beck represent a complete flood event, while shorterterm samples at a specific flow stage were obtained in Oak Creek. As a result of the integrated sampling in Great Eggleshope Beck, the bedload grain-size distributions are more complex, commonly with a bimodal pattern. However, after accounting for differences in sampling schemes in the two streams, contrasting patterns in changing grain-size distributions remain, and these are concluded to reflect grain sorting differences as the bedload grain-size distributions approach the distributions of the bed materials. It is surprising that if criteria commonly employed to demonstrate the equal mobility of different grain sizes are used in the comparison, then Great Eggleshope Beck is far closer to this condition in spite of its minimal development of a pavement. It is concluded that the respective shapes of the bed-material grain-size distributions, in particular their degrees of skewness, are more important to the observed sorting patterns than are the effects of a pavement layer regulating grain entrapment to produce an equal mobility of different grain sizes. Therefore, the comparison has established that flow-competence relationships will differ from one stream to another, depending on the pattern of grain sorting which is a function of the bedmaterial grain-size distribution.  相似文献   

3.
Grain-size frequency distributions of suspended loads at different flow velocities and over sand beds of four different grain-size patterns were studied in a laboratory flume. The proportion of bed material which went into suspension increased with decrease of grain-size in each case, but the modes of the suspended loads occurred in the size classes intermediate between the coarsest and the finest. With increase of flow velocity, as also with decrease of the bed's mean grain-size, the total amount of material in suspension markedly increased, mainly due to addition of particles to the medium size classes. The coarsest grains in the bed resisted erosion due to their weight, whereas the finest ones were either not available in sufficient quantities or resisted erosion due to their homogeneity. The finest of the erodible grains which were abundantly available in bed were therefore, lifted up in large quantities. This size sorting took place at or near the bed surface and was closely related to the process of bed form migration. Large accumulation of medium sized particles in suspension at high velocities led to lognormal grain-size distributions when the nature of the bed (source) material was suitable. At lower velocities, or over other types of bed materials, the phi (log)-probability plots of cumulative grain-size distributions of the suspended loads resolved into a number of straight lines. Mixtures of linear segments on phi-probability graphs therefore, need not necessarily indicate different modes of sediment transportation, as is commonly believed, but might reflect the conditions of flow and the nature of the source material.  相似文献   

4.
The grain-size fractions in the bedload transported over the five heterogeneous sediment beds of different values of bed roughness were computed from the flume experiments. The existence of an entrapment factor associated with the sorting observed from the bed to active layer was modeled based on the modified critical shear stress to estimate the grain-size fractions in the transport layer under given hydraulic conditions. The efficiency of these models was tested with the observed data. Subsequently, the patterns of observed grain-size distributions in the transport layer were tested to identify the distributions developed in the active layer due to sorting using three probability density functions (pdf), such as, log-normal, log-hyperbolic and log-skew-Laplace. Tests indicated that a log-skew-Laplace distribution fitted best for 49%, a log-hyperbolic for 31%, and a log-normal for 20% out of forty-five bedload samples collected under unidirectional flow with changes in flow discharge and bed roughness. The results of this study would be useful to specify the grain-size distributions in the bedload formed under different hydrodynamic conditions in various sedimentary environments.  相似文献   

5.
Log-probability plots of grain-size distribution from the Platte, North Platte, and South Platte rivers are composed of four or five straight line segments. The line segments are grouped, dividing each curve into three regions. These regions are interpreted as subpopulations moved by different transport mechanisms. Consideration of the criterion for suspension and calculation of shear velocities associated with dominant discharges support this interpretation. The grain size cumulative curves are similar to each other but distinct from curves of fluvial systems transporting only fine-grained material, the difference being the presence of a subpopulation of grains moved in traction transport. One of two possible relationships seems to exist between the grain-size distributions and flow conditions within the Platte River system. Estimated shear velocities derived by varying flow conditions within reasonable limits predict a range of grain sizes within which the break between the intermittent suspension and traction loads should occur. This break appears to be associated with intermediate shear velocities if truncated normal distributions are assumed; but if overlapping distributions are assumed, the ‘break'is associated with estimated maximum shear velocities.  相似文献   

6.
Hilda Glacier, a small cirque glacier in the Canadian Rocky Mountains, yields two principal types of sediment: ablation till, deficient in fine material and produced by rockfalls and avalanches falling on to the glacier surface, and basal lodgement till, rich in fines and formed mainly by subglacial erosion. Recent recession from its Neoglacial maximum has exposed large areas of basal till with thin veneers of ablation till which, when combined with present subglacial and supraglacial debris, provide abundant material for erosion and transport by the mcltwatcr stream. Sediment transport measurements over two summers (1977–1978) showed that bed load and suspended load occur in approximately equal proportions and that dissolved loads are minor. Local source variations, especially bank slumps, are a major cause of scatter in sediment rating curves. Suspended-sediment concentrations are greater early in the melt season due to availability of loose sediment produced by freezing and thawing. Other contributors to scatter in suspended-sediment rating curves include rain showers and diurnal hysteretic effects. Although the distinction between bed load and suspended load is never sharp, available data suggest that the sand/ gravel grain-size boundary (-1ø) approximates the suspendcd-load/bed-load division for characteristic Hilda flows transporting gravel. This approximation, combined with till grain-size analyses, suspended-sediment measurements, and spatial distributions of till types, leads to the following computations of fluvial sediment sources: for suspended load - 6% supraglacial, 47% subglacial, 47% channel banks; for bed load - 46% supraglacial, 27% each subglacial and channel banks. Supraglacial debris provides only about one-fourth of all fluvial sediment, but nearly half of the bed load.  相似文献   

7.
Multivariate statistics were used to characterize and test the effectiveness of grain-size frequencies as environmental discriminators. Sediment from the following two depositional systems along eastern Lake Michigan were studied: (1) a closed system with respect to available grain sizes (Little Sable Point), and (2) an open system (Sleeping Bear Point-Manitou Passage). Principal components analysis shows that grain-size distributions are composed of two or more subgroups that reflect surface creep bedload, mixed suspension bedload, and uniform suspension. Discriminant function and principal latent vector analyses of the Little Sable Point environments show that, when available sediment is limited with respect to grain size (0.5 φto 3.0 φ), similar size distributions can occur in environments supposedly characterized by different energy conditions. Sediment in the Sleeping Bear Point-Manitou Passage system is not restricted to available grain sizes and the environments discriminated very well (α < 0.001). The grain-size distributions are such that they reflect differences in energy conditions within the environments. It is apparent that the grain sizes available to a depositional system control to a great extent the effectiveness of environmental discrimination.  相似文献   

8.
Computation of the grain-size distribution of the suspended load above a sand bed must take into consideration: (1) sorting processes from the bed to the bed layer and (2) sorting between the bed layer and suspension. Grain-size distributions of the bed layers above sand beds of three different types have been computed in this work, both by the Einstein and the Gessler methods. Using these as references, suspended load distributions have been obtained in each case by the Rouse suspension equation. A new formula has also been developed in partial modification of Hunt's method for direct computation of bed load and suspended load from a bed's grain-size distribution and flow parameters. Comparison of the computed data with actual observations in laboratory flumes show that no one method is particularly superior to the others, but the present method is advantageous because it affords direct computation of the suspended load from a bed's grain-size distribution, without going through an intermediate stage (bed load). The possible sources of error in each of the methods have been discussed.  相似文献   

9.
冲绳海槽南部沉积层序的粒度特征   总被引:2,自引:1,他引:2  
李军  高抒  孙有斌  曾志刚 《沉积学报》2003,21(3):461-466
对取自冲绳海槽南部的A2 3孔经前处理后的沉积物样品进行了粒度测试,探讨了陆源沉积层序的粒度特征。沉积物平均粒径、分选系数、偏态、峰态等粒度参数的变化显示出A2 3孔的沉积层序以 4 0 0cm为界可分为上、下两段,下段各参数稳定,代表了比较稳定的水动力条件的沉积环境;上段则波动较大,小规模浊流沉积频繁发育,暗示了不稳定的沉积环境。浊流层内粗粒与细粒组分含量及粒度分布的变化具有明显的规律性。通过分析A2 3孔陆源沉积层序的各沉积参数特征,认为冲绳海槽南部的沉积环境和动力在时间尺度上有较大的变化,东海陆架物质向南部海槽的输运可能是以峡谷为通道的重力作用引起的床底沉积作用为主。另外,对陆源碎屑和全样粒度结果的对比,显示了前处理方法对于海洋沉积物粒度分析的重要性.  相似文献   

10.
三峡水库蓄水运用后,城汉河段悬移质输沙量大幅度减少,推移质输沙量所占比重增加,造床作用日益凸显,故开展其推移质输沙率计算公式研究具有理论与实际意义。利用螺山和汉口水文站实测资料建立了推移质输沙率与流量之间的指数关系式,并据此推算了两站逐日推移质输沙率,结果表明:螺山站、汉口站输沙率均与流量的0.912 78次方成正比,多年(2009—2015年)平均推移质输沙量分别为137万t、152万t,主要集中在汛期。利用推移质实测资料对Engelund、Einstein、Yalin 3个公式进行了检验与修正,结果表明:修正前各公式计算结果比较分散,且与实测值偏差很大;修正后各公式计算精度显著提高,综合比较发现,修正后的Yalin公式精度最高,Engelund公式、指数关系式次之,Einstein公式精度相对较低。因此,修正后的Yalin公式更适合于城汉河段推移质输沙率计算,可用于该河段的演变分析与数学模型计算。  相似文献   

11.
The dynamics of a river bend: a study in flow and sedimentary processes   总被引:4,自引:0,他引:4  
Comprehensive field measurements of flow and sedimentary processes have been made with the aid of stable scaffolding bridges spaced along the length of a bend of the River South Esk, Scotland. At river stages between about two-thirds full and bankfull, channel width, mean depth and mean flow velocity at a cross-section vary little in the streamwise direction. Flow resistance reaches a maximum at these stages, and the bed topography is stable and in equilibrium with flow and bedload transport. Stable flow geometry is thus related in some way to energy conservation, and to maximization of flow resistance. Detailed observations over a large range of river stages of mean velocity distributions, secondary circulation, water surface configuration, bed shear stress and resistance to flow, bed configurations and bed load transport rates agree with much (but not all) of the comparable published experimental studies and selected theoretical work. Generalized physical models of flow and sediment transport in natural curved channels (Engelund, 1974; Bridge, 1977) are demonstrated to be sound in basis and can simulate the bend studied very well. Although there is a pressing need for further development of these models, the results lend confidence to their use in simulating ancient river sedimentation. Sediment deposited on point bars is the result mainly of bedload transport over a range of near-bankfull stages. The areal distribution of grain-size characteristics and bed configurations at these stages give rise, with lateral deposition, to vertical facies sequences that vary substantially in the streamwise direction.  相似文献   

12.
Bedload is moved down the East Fork River in distinct wavelike pulses that have the form of composite dune fields The moving material consists mostly of coarse sand and fine gravel The wavelengths of the pulses are about 500–600 m, a distance that is predetermined by the pattern of stoage of bed sediment in the river during low water As the river discharge increases, the bed sediment is scoured from the storage areas, and it is moved onto and across the interventing riffles As the river discharge decreases, the bed sediment is scoured off the riffles and moved into the next storage area downstream Each successive pulse of water discharge sets into motion a wave of bedload that continues to move unitil it reaches the next storage area  相似文献   

13.
Grain size distributions of the suspended loads above a bed of bimodal size distribution (size range 2-00-0.04 mm) were studied in a laboratory flume at water velocities varying from 42 to 160 cm/s. With increase of velocity the phi (logarithmic) size distribution of the suspended particles (at 5-20 cm above the bed) changed from a strongly skewed to a nearly symmetrical, unimodal form (nearly lognormal) through an intermediate bimodal stage. At low velocity the skewness of the distribution changed from positive to negative with increase of height. The experiments indicate that lognormality of‘weight frequency’ distribution of grain sizes is a transitional feature, attained through size sorting within a critical range of velocity and height above a sand bed of a given composition. The observed changes in the size distribution patterns were effected by a differential rate of increase in weight in the different size classes in suspension with increase of flow velocity. The phenomenon could be explained by the equation of relative suspension concentration which relates the relative concentration of a suspended particle of a particular diameter to the flow velocity of the turbulent fluid and the height of suspension above the bed.  相似文献   

14.
ABSTRACT Temporally and spatially averaged models of bedload transport are inadequate to describe the highly variable nature of particle motion at low transport stages. The primary sources of this variability are the resisting forces to downstream motion resulting from the geometrical relation (pocket friction angle) of a bed grain to the grains that it rests upon, variability of the near‐bed turbulent velocity field and the local modification of this velocity field by upstream, protruding grains. A model of bedload transport is presented that captures these sources of variability by directly integrating the equations of motion of each particle of a simulated mixed grain‐size sediment bed. Experimental data from the velocity field downstream and below the tops of upstream, protruding grains are presented. From these data, an empirical relation for the velocity modification resulting from upstream grains is provided to the bedload model. The temporal variability of near‐bed turbulence is provided by a measured near‐bed time series of velocity over a gravel bed. The distribution of pocket friction angles results as a consequence of directly calculating the initiation and cessation of motion of each particle as a result of the combination of fluid forcing and interaction with other particles. Calculations of bedload flux in a uniform boundary and simulated pocket friction angles agree favourably with previous studies.  相似文献   

15.
The partitioning of the total sediment load of a river into suspended load and bedload is an important problem in fluvial geomorphology, sedimentation engineering and sedimentology. Bedload transport rates are notoriously hard to measure and, at many sites, only suspended load data are available. Often the bedload fraction is estimated with ‘rule of thumb’ methods such as Maddock’s Table, which are inadequately field‐tested. Here, the partitioning of sediment load for the Pitzbach is discussed, an Austrian mountain stream for which high temporal resolution data on both bedload and suspended load are available. The available data show large scatter on all scales. The fraction of the total load transported in suspension may vary between zero and one at the Pitzbach, while its average decreases with rising discharge (i.e. bedload transport is more important during floods). Existing data on short‐term and long‐term partitioning is reviewed and an empirical equation to estimate bedload transport rates from measured suspended load transport rates is suggested. The partitioning averaged over a flood can vary strongly from event to event. Similar variations may occur in the year‐to‐year averages. Using published simultaneous short‐term field measurements of bedload and suspended load transport rates, Maddock’s Table is reviewed and updated. Long‐term average partitioning could be a function of the catchment geology, the fraction of the catchment covered by glaciers and the extent of forest, but the available data are insufficient to draw final conclusions. At a given drainage area, scatter is large, but the data show a minimal fraction of sediment transported in suspended load, which increases with increasing drainage area and with decreasing rock strength for gravel‐bed rivers, whereby in large catchments the bedload fraction is insignificant at ca 1%. For sand‐bed rivers, the bedload fraction may be substantial (30% to 50%) even for large catchments. However, available data are scarce and of varying quality. Long‐term partitioning varies widely among catchments and the available data are currently not sufficient to discriminate control parameters effectively.  相似文献   

16.
A computer code using sequential fragmentation/transport theory was used to deconvolute and characterize a large grain-size data set taken from the AD 79 Vesuvio deposits. The results allow us to interpret transport and deposition processes. Four principal morphological classes of grain-size spectra were recognized in the AD 79 deposits: 1 unimodal distributions with coarse modes and very good sorting; 2 polymodal distributions in which relative fractions of each subpopulation are considerably variable; 3 polymodal distributions, but with one mode greatly prevailing over the other ones; 4 flat spectra in which a large number of size classes show the same loading. Because different eruptive, transport and deposition conditions may have operated on pyroclasts which occur in the same bed, we have assigned grain-size subpopulations, with different modes to specific mechanisms of particle movement and sedimentation depending on the size range of the particles and the textures of the beds. The fragmentation/transport processes considered here occur either within dilute flows (as fall, traction, saltation and suspension loads) or in high-concentration flows (as a fluidized system or one with an extremely high sedimentation rate). Variation in strength and position of modes throughout the entire vertical section of AD 79 products illustrates changes in transport and deposition processes with time. Size spectra from Vesuvio quantitatively demonstrate contemporaneous deposition from fall and surge mechanisms as well as contributions from different levels of hydrovolcanic products. In contrast, vertical variations in size spectra within individual pyroclastic flow deposits suggest variation from high particle concentration near the base of the bed to more dilute depositional conditions towards the top. Lateral variations in size spectra for one marker horizon show how a local pyroclastic flow in a channel grades into a surge on the margins. This study supports the model of continuous modification in loadings of several discrete subpopulations during deposition from a single explosive cloud.  相似文献   

17.
Grain size distribution in suspension from bed materials   总被引:1,自引:0,他引:1  
Experimental results show that the grain size distribution of suspended material is related to flow parameters and grain size distribution in the bed. A theoretical model has been developed to compute the suspension grain size distribution on the basis of diffusion equations, taking into account the effect of hindered settling due to the increased concentration in suspension. Fluid velocity closest to the bed is estimated by using the concept of migration velocities of particles in the bed layer. Comparisons of data computed by the proposed method and data from actual observations show generally good agreement.  相似文献   

18.
Theoretical and empirical analyses of flow structure, sediment transport, and sediment size characteristics at the crest of dune-like bedforms indicate that it is possible to describe, at least semi-quantitatively, the diffusion and deposition of sediment on the leeside of such structures. A numerical program based on this analysis simulates the grain-size distribution and deposition rate on the leeside of dunes for specified flow conditions and bed material. Evaluation of flow and sediment variables through the numerical simulation program shows that flow velocity, flow depth and sediment size have a strong influence on the deposition rate and texture of leeside sediment before avalanching. Sorting of the bed material, in particular, appears to exert a strong control on both the grain-size and the deposition-rate gradients.  相似文献   

19.
Interactions between catchment variables and sediment transport processes in rivers are complex, and sediment transport behaviour during high‐flow events is not well documented. This paper presents an investigation into sediment transport processes in a short‐duration, high‐discharge event in the Burdekin River, a large sand‐ and gravel‐bed river in the monsoon‐ and cyclone‐influenced, semi‐arid tropics of north Queensland. The Burdekin's discharge is highly variable and strongly seasonal, with a recorded maximum of 40 400 m3 s?1. Sediment was sampled systematically across an 800 m wide, 12 m deep and straight reach using Helley‐Smith bedload and US P‐61 suspended sediment samplers over 16 days of a 29‐day discharge event in February and March 2000 (peak 11 155 m3 s?1). About 3·7 × 106 tonnes of suspended sediment and 3 × 105 tonnes of bedload are estimated to have been transported past the sample site during the flow event. The sediment load was predominantly supply limited. Wash load included clay, silt and very fine sand. The concentration of suspended bed material (including very coarse sand) varied with bedload transport rate, discharge and height above the bed. Bedload transport rate and changes in channel shape were greatest several days after peak discharge. Comparison between these data and sparse published data from other events on this river shows that the control on sediment load varies between supply limited and hydraulically limited transport, and that antecedent weather is an important control on suspended sediment concentration. Neither the empirical relationships widely used to estimate suspended sediment concentrations and bedload (e.g. Ackers & White, 1973) nor observations of sediment transport characteristics in ephemeral streams (e.g. Reid & Frostick, 1987) are directly applicable to this river.  相似文献   

20.
In this study, we utilized environmental magnetic in combination with sedimentological and hydrodynamic data to investigate the formative processes of mudbanks along southwest coast of India. We document the linkages between enrichment of silt-sized magnetic particles and formation processes of mudbanks along Alappuzha coast. A trend of increasing magnetite concentration and coarsening in magnetic grain size is observed at mudbank stations M2 and M3, while the mud-deficient station (M1) showed an opposite trend. A strong relationship between magnetic and physical grain size for all samples implies that the magnetic particle size and clastic grain size are largely adjunct. Analysis of rock magnetic and grain size data of surficial and suspended sediments from non-mudbank (M1) and two mudbank stations (M2, M3) reflect the differential sediment partitioning and transport regimes which controlled the formation of mudbanks along Alappuzha coast. Two plausible mechanisms responsible for the formation of mudbanks are identified: grain size-selective entrainment is the dominant process during pre-monsoon; weaker hydrodynamics (waves and bottom currents) favors accumulation of silt-sized (fine and coarse) magnetic and non-magnetic fractions resulting in the formation of magnetically low-enriched sediment bed of mixed grain sizes. At the onset of monsoon, wave-induced energetic bottom currents enhance the suspension of entire sediment bedload at stations M2, M3 to form fluid mud. Concurrently, mineral-density-based selective fractionation allows the settling of coarse silt-sized magnetic particles, while the fine magnetic silt-size particles accumulate forming thick fluid mud as a suspension load resulting in the formation of mudbanks. An observed increase in magnetic susceptibility and coarsening in magnetic grain size of surficial sediments at mudbank stations (M2, M3) during monsoon period supports the interpretation. Our findings are summarized in a conceptual model which can be very well applied to investigate sediment dynamics associated with mudbank formation in coastal and shelf sedimentary systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号