首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
For the identification of natural processes taking place in surface water layer in the Sea of Okhotsk and nearby water areas, satellite data were used to determine seasonal variations of chlorophyll “a” concentration and the problem of water typification by satellite data in the visible light range was solved. Analysis of the annual cycle of phytoplankton concentration variations confirmed the presence of a short explosion in phytoplankton population in the southern Sea of Okhotsk during ice cover formation, which had been predicted before by model calculations. Classes of water reflecting different geoenvironmental situations were identified for characteristic regions of the Sea of Okhotsk. The dependences of chlorophyll “a” concentration growth on temperature were calculated, and corrections were introduced in the standard relationships used in biooptic algorithms for different parts of the Sea of Okhotsk.  相似文献   

2.
Based on eddy-permitting ocean circulation model outputs, the mesoscale variability is studied in the Sea of Okhotsk. We confirmed that the simulated circulation reproduces the main features of the general circulation in the Sea of Okhotsk. In particular, it reproduced a complex structure of the East-Sakhalin current and the pronounced seasonal variability of this current. We established that the maximum of mean kinetic energy was associated with the East-Sakhalin Current. In order to uncover causes and mechanisms of the mesoscale variability, we studied the budget of eddy kinetic energy (EKE) in the Sea of Okhotsk. Spatial distribution of the EKE showed that intensive mesoscale variability occurs along the western boundary of the Sea of Okhotsk, where the East-Sakhalin Current extends. We revealed a pronounced seasonal variability of EKE with its maximum intensity in winter and its minimum intensity in summer. Analysis of EKE sources and rates of energy conversion revealed a leading role of time-varying (turbulent) wind stress in the generation of mesoscale variability along the western boundary of the Sea of Okhotsk in winter and spring. We established that a contribution of baroclinic instability predominates over that of barotropic instability in the generation of mesoscale variability along the western boundary of the Sea of Okhotsk. To demonstrate the mechanism of baroclinic instability, the simulated circulation was considered along the western boundary of the Sea of Okhotsk from January to April 2005. In April, the mesoscale anticyclonic eddies are observed along the western boundary of the Sea of Okhotsk. The role of the sea ice cover in the intensification of the mesoscale variability in the Sea of Okhotsk was discussed.  相似文献   

3.
Academy Bay in the Sea of Okhotsk is an important summertime feeding ground for pelagic-feeding Bowhead whales (Balaena mysticetus) in the western subarctic North Pacific. The present work combines satellite observations with physical (CTD, currents, tides) and biological (zooplankton sampling) measurements. Data obtained aboard the RV Lugovoe in August–September 2003 and July–August 2004 show dense populations of zooplankton (such as copepods Calanus glacialis, Pseudocalanus sp., pteropods Limacina helicina, and chaetognaths Sagitta sp.) that are concentrated by physical mechanisms within this critically important ecosystem. We show that near-bottom, cold water intrusions from the northern Sea of Okhotsk associated with the estuarine circulation advect arctic herbivorous calanoids (Calanus glacialis) and mollusks Limacina helicina into the region.  相似文献   

4.
The conditions of transformations of biogenic substances and the redistribution of their concentrations in the shelf water of Sakhalin Island are studied. Preliminary works have given the results for the water area of La Perouse Strait and Aniva Bay (the Sea of Okhotsk), while this paper gives such results for Tatar Strait (the Sea of Japan). Three electronic instruments of oceanographic studies are applied: an adapted version of Bergen Oceanic Model (for the reconstruction of the space and time distribution of seawater temperature, salinity, and density; the circulation intensity of water masses; and water exchange parameters with nearby water areas and within the strait); GIS “Sakhalin Shelf” (for the reconstruction of annual variations in thermohaline characteristics on a standard grid and horizons of oceanographic stations, and the parameters of the aquatic environment); hydroecological CNPSi-model (for studying the annual dynamics of biogenic element compounds, the biomasses, biohydrochemical activity and bioproduction of microorganisms—bacteria, phytoplankton, and zooplankton, taking part in transformation of biogenic substances and petroleum hydrocarbons, as well as the internal fluxes of biogenic substances governed by the activity of microorganisms and the external load on the marine ecosystem). The results of modeling the spatial transport of biogenic substances through the outer boundaries of Tatar Strait water area and the boundaries of the three areas identified within it are presented and discussed.  相似文献   

5.
Simulation methods are used to study the self-purification capacity of water from Aniva Bay before the construction on the coast of the bay of the world's largest liquefied natural gas plant and oil loading terminals for ships with a displacement of 100 000 t or more. The calculations are made by using a hydro-ecological model and long-term data on Aniva Bay oceanography. Its water area was divided into five areas, and for these areas, we determined the hydrological and hydrochemical characteristics, evaluated fluxes through their boundaries, estimated petroleum hydrocarbon (PHC) loads, and calculated the annual dynamics of their concentrations and the biomasses of oil-oxidizing bacteria. PHC balances for the five water areas and Aniva Bay as a whole were calculated. PHC consumption by oil-oxidizing bacteria is the most important process of PHC transformation. The discrepancy of the estimated PHC balance in Aniva Bay was found to equal 2.61%, which is within the calculation accuracy.  相似文献   

6.
The combined analysis of geological-geophysical characteristics of active faults, morphotectonic features of the relief, and data of satellite measurements and on seismicity in the southeastern Aldan-Stanovoi block (the eastern flank of the Olekma-Stanovoi seismotectonic zone) made it possible to reconstruct the kinematic development of recent falt-block structures with the defining conjugate systems of main seismogenerating faults located in the zone of dynamic influence of three major lithospheric plates: Eurasian, Amur, and Sea of Okhotsk.  相似文献   

7.
Sea surface temperature (SST) variability over the Bay of Bengal (BoB) has the potential to trigger deep moist convection thereby affecting the active-break cycle of the monsoons. Normally, during the summer monsoon season, SST over the BoB is observed to be greater than 28°C which is a pre-requisite for convection. During June 2009, satellite observations revealed an anomalous basin-wide cooling and the month is noted for reduced rainfall over the Indian subcontinent. In this study, we analyze the likely mechanisms of this cooling event using both satellite and moored buoy observations. Observations showed deepened mixed layer, stronger surface currents, and enhanced heat loss at the surface in the BoB. Mixed layer heat balance analysis is carried out to resolve the relative importance of various processes involved. We show that the cooling event is primarily induced by the heat losses at the surface resulting from the strong wind anomalies, and advection and vertical entrainment playing secondary roles.  相似文献   

8.
This paper presents data for the temporal and spatial distribution of nutrients in Liverpool Bay between 2003 and 2009 and an analysis of inputs of nutrients from the major rivers. The spatial distribution of winter nutrient concentrations are controlled by the region of freshwater influence (ROFI) in Liverpool Bay through the mixing of riverine freshwater and Irish Sea water, with strong linear relationships between nutrient concentration and salinity between December and February. The location of highest spring and summer phytoplankton biomass reflects the nutrient distributions as controlled by the ROFI. Analysis of 7 years of data showed that the seasonal cycle of winter maximum nutrient concentrations in February and drawdown in April/May is a recurrent feature of this location, with the timing of the drawdown varying by several weeks between years. A comparison of observed nutrient concentrations in Liverpool Bay with those predicted from inputs from rivers has been presented. Nutrient concentrations in the rivers flowing into Liverpool Bay were highly variable and there was reasonable agreement between predicted freshwater nutrient concentrations using data from this study and riverine nutrient concentrations weighted on the basis of river flow, although the exact nature of mixing between the rivers could not be determined. Predicted Irish Sea nutrient concentrations in the winter were lower than those reported for the input waters of the North Atlantic, supporting findings from previous work that nitrogen is lost through denitrification in the Irish Sea.  相似文献   

9.
The cosmopolitan radiolarian Cycladophora davisiana usually comprises less than 5% of the radiolarian fauna in Holocene sediments. In recent sediments from the Sea of Okhotsk, however, this species frequently represents more than 20% of the radiolarian assemblage. At times during the late Pleistocene, abundances of this species in excess of 40% are recorded in marine sediments from high-latitude oceans (> 40°) of both hemispheres. The Sea of Okhotsk apparently represents a modern analogue of climatic and oceanographic conditions that existed throughout large portions of high-latitude oceans at times during the late Pleistocene.The near-surface water structure of the Sea of Okhotsk is characterized by a low-salinity surface layer with a strong temperature minimum near its base. The low surface salinities are responsible for maintaining near-freezing subsurface temperatures as well as establishing relatively stable temperatures and salinities at depths below the temperature minimum. This water structure is produced, at least in part, by intense freezing of sea ice in winter with subsequent summer melting. The physical characteristics of the upper water column affect the abundance and activity of shallow-dwelling flora and fauna, while providing a stable subsurface environment for deeper-dwelling fauna.  相似文献   

10.
鄂霍茨克海的地球物理场与地质构造   总被引:1,自引:0,他引:1  
鄂霍茨克海位于西太平泮边缘海最北部,受欧亚大陆板块和太平洋板块的作用,有十分复杂的地质地球物理特征,鄂霍茨克海不仅有海隆,还有三个著名的盆地,其中的千岛盆地,是研究鄂霍茨克海的一个窗口,本文通过对大量相关资料的二次开发,详细地讨论了鄂霍茨克海的地球物理场特征,沉积特点、热流分及深部结构特点,并对该边缘海的形成演化进行了初步的探讨,我们认为,对鄂霍茨克海研究的结果,将对中国边缘海地质特征的研究起到帮助和借鉴作用。  相似文献   

11.
The tectonic structure and anomalous distributions of geophysical fields of the Sea of Okhotsk region are considered; the lack of reliable data on the age of the lithosphere beneath basins of various origins in the Sea of Okhotsk is noted. Model calculations based on geological and geophysical data yielded an age of 65 Ma (the Cretaceous-Paleocene boundary) for the Central Okhotsk rise underlain by the continental lithosphere. This estimate agrees with the age (the end of the Cretaceous) derived from seismostratigraphic data. A comparative analysis of theoretical and measured heat fluxes in the Akademii Nauk Rise, underlain by a thinned continental crust, is performed. The analysis points to a higher (by 20%) value of the measured thermal background of the rise, which is consistent with a high negative gradient of gravity anomalies in this area. Calculations yielded an age of 36 Ma (the Early Oligocene) and a lithosphere thickness of 50 km for the South Okhotsk depression, whose seafloor was formed by processes of backarc spreading. The estimated age of the depression is supported by kinematic data on the region; the calculated thickness of the lithosphere coincides with the value estimated from data of magnetotelluric sounding here. This indicates that the formation time (36 Ma) of the South Okhotsk depression was estimated correctly. Numerical modeling performed for the determination of the basement age of rifting basins in the Sea of Okhotsk gave the following estimates: 18 Ma (the Early Miocene) for the Deryugin basin, 12 Ma (the Middle Miocene) for the TINRO basin, and 23 Ma (the Late Oligocene) for the West Kamchatka trough. These estimates agree with the formation time (Oligocene-Quaternary) of the sedimentary cover in rifting basins of the Sea of Okhotsk derived from geological and geophysical data. Model temperature estimates are obtained for lithologic and stratigraphic boundaries of the sedimentary cover in the Deryugin and TINRO basins and the West Kamchatka trough; the temperature analysis indicates that the latter two structures are promising for oil and hydrocarbon gas generation; the West Kamchatka trough possesses better reservoir properties compared to the TINRO and Deryugin basins. The latter is promising for the generation of hydrocarbon gas. Paleogeodynamic reconstructions of the Sea of Okhotsk region evolution are obtained for times of 90, 66, and 36 Ma on the basis of kinematic, geomagnetic, structural, tectonic, geothermal, and other geological and geophysical data.  相似文献   

12.
Sea surface temperature satellite imagery and a regional hydrodynamic model are used to investigate the variability and structure of the Liverpool Bay thermohaline front. A statistically based water mass classification technique is used to locate the front in both data sets. The front moves between 5 and 35 km in response to spring–neap changes in tidal mixing, an adjustment that is much greater than at other shelf-sea fronts. Superimposed on top of this fortnightly cycle are semi-diurnal movements of 5–10 km driven by flood and ebb tidal currents. Seasonal variability in the freshwater discharge and the density difference between buoyant inflow and more saline Irish Sea water give rise to two different dynamical regimes. During winter, when cold inflow reduces the buoyancy of the plume, a bottom-advected front develops. Over the summer, when warm river water provides additional buoyancy, a surface-advected plume detaches from the bottom and propagates much larger distances across the bay. Decoupled from near-bed processes, the position of the surface front is more variable. Fortnightly stratification and re-mixing over large areas of Liverpool Bay is a potentially important mechanism by which freshwater, and its nutrient and pollutant loads, are exported from the coastal plume system. Based on length scales estimated from model and satellite data, the erosion of post-neap stratification is estimated to be responsible for exporting approximately 19% of the fresh estuarine discharge annually entering the system. Although the baroclinic residual circulation makes a more significant contribution to freshwater fluxes, the episodic nature of the spring–neap cycle may have important implications for biogeochemical cycles within the bay.  相似文献   

13.
A consolidated picture of oil pollution for the northern Indian Ocean is presented. Oil slicks were sighted on 5582 observations, about 83.5% of the total observations of 6689. The range of concentrations, of the floating tar balls, is 0–6.0 mg/m2 in the Arabian Sea. Similarly, the oil tanker route in the Bay of Bengal has the range of 0–69.75 mg/m2. North of this route, the Bay of Bengal is comparatively free from this floating tar. Mean concentrations of dissolved and dispersed hydrocarbons for 0–20 m are 32.5 and 24.1 μg kg?1, respectively, in the Arabian Sea and the Bay of Bengal.  相似文献   

14.
In the years 1999 and 2001, three intense tropical cyclones formed over the northern Indian Ocean—two over the Bay of Bengal during 15–19 and 25–29 October, 1999 and one over the Arabian Sea during 21–28 May, 2001. We examined the thermal, salinity and circulation responses at the sea surface due to these severe cyclones in order to understand the air-sea coupling using data from satellite measurements and model simulations. It is found that the Sea Surface Temperature (SST) cooled by about 0.5 °–0.8 °C in the Bay of Bengal and 2 °C in the Arabian Sea. In the Bay of Bengal, this cooling took place beneath the cyclone center whereas in the Arabian Sea, the cooling occurred behind the cyclone only a few days later. This contrasting oceanic response resulted mainly from the salinity stratification in the Bay of Bengal and thermal stratification in the Arabian Sea and the associated mixing processes. In particular, the cyclones moved over the region of low salinity and smaller mixed layer depth with a distinct mixed layer deepening to the left side of the cyclone track. It is envisaged that daily satellite estimates of SST and Sea Surface Salinity (SSS) using Outgoing Longwave Radiation (OLR) and model simulated mixed layer depth would be useful for the study of tropical cyclones and prediction of their path over the northern Indian Ocean.  相似文献   

15.
The deep-focus Sea of Okhotsk earthquake that occurred on May 24, 2013 (h = 630 km, M w = 8.3) was accompanied by anomalous effects that were unknown previously. A combined analysis of published data concerning the source rupture evolution and some features of the deep structure provided an explanation of some anomalous effects, such as the large number of aftershocks and the low level of ground shaking in the epicentral area. However, GPS observations revealed high coseismic vertical displacements in the area. The seafloor uplift in the Sea of Okhotsk and the adjacent coasts was 3–12 mm, peaking at the approximate center of the sea, while Kamchatka and the North Kuril Islands subsided by 3–18 mm, peaking at the Apacha station 190 km east of the earthquake epicenter. These maximum estimates are 1.2–1.8 times the analogous values (10 mm) for the Chile mega-earthquake of May 20, 1960 (M w ~ 9.5). It is known that the large distances at which ground shaking is felt during deep-focus earthquakes are due to the fact that the body waves travel through the high-Q lower mantle. However, this does not explain the paradox of the present earthquake in the Sea of Okhotsk, viz., a constant intensity of shaking (two grades) in the range of epicentral distances between 1300 and 9500 km. The explanation requires consideration of the earth’s free oscillations excited by the earthquake.  相似文献   

16.
To clarify the generation and dissipation mechanisms of diurnal coastal-trapped waves (CTWs) over the Sakhalin shelf, a series of numerical experiments were conducted using a three-dimensional tidal model of the Okhotsk Sea with density stratification. The tidal model used has good reproduction owing to the careful fitting to the recent observations. The numerical experiments suggested that diurnal CTWs are primarily (~60%) generated by the conversion of tidal energy at the northern corner of the Sakhalin shelf, and further amplified by vorticity generation due to the water column oscillation from Sakhalin Bay and the influence of Kashevarov Bank. From the observations, it was found that diurnal CTWs are effectively dissipated by the strong spin-down due to bottom friction. The conventional turbulent closure model cannot reproduce the observed damping of diurnal CTWs, which raises a caution in modeling the tidal fields in high-latitude regions where diurnal CTWs exist. To resolve this underestimation of the damping, the vertical eddy viscosity was parameterized using its dependence on the observed major axis length of the diurnal tidal current ellipses, which improves the model reproduction on the damping of diurnal CTWs. The model also suggests that the spin-down effects due to friction associated with the sea-ice cover play an important role in the tidal current reduction in the region where diurnal CTWs exist, as the observations suggested.  相似文献   

17.
We applied a three-dimensional ecosystem-physical coupled model including iron the effect to the Okhotsk Sea. In order to clarify the sources of iron, four dissolved iron compartments, based on the sources of supply, were added to Kawamiya et al.'s [1995, An ecological-physical coupled model applied to Station Papa. Journal of Oceanography, 51, 635-664] model (KKYS) to create our ecosystem model (KKYS-Fe). We hypothesized that four processes supply iron to sea water: atmospheric loadings from Northeastern Asia, input from the Amur River, dissolution from sediments and regeneration by zooplankton and bacteria. We simulated one year, from 1 January 2001 to 31 December 2001, using both KKYS-Fe and KKYS. KKYS could not reproduce the surface nitrate distribution after the spring bloom, whereas KKYS-Fe agreed well with observations in the northwestern Pacific because it includes iron limitation of phytoplankton growth. During the spring bloom, the main source of iron at the sea surface is from the atmosphere. The contribution of riverine iron to the total iron utilized for primary production is small in the Okhotsk Sea. Atmospheric deposition, the iron flux from sediment and regeneration of iron in the water column play important roles in maintaining high primary production in the Okhotsk Sea.  相似文献   

18.
Hirose  Nariaki  Usui  Norihisa  Sakamoto  Kei  Tsujino  Hiroyuki  Yamanaka  Goro  Nakano  Hideyuki  Urakawa  Shogo  Toyoda  Takahiro  Fujii  Yosuke  Kohno  Nadao 《Ocean Dynamics》2019,69(11):1333-1357

We developed a new system to monitor and forecast coastal and open-ocean states around Japan for operational use by the Japan Meteorological Agency. The system consists of an eddy-resolving analysis model based on four-dimensional variational assimilation and a high (2-km) resolution forecast model covering Japanese coastal areas that incorporates an initialization scheme with temporal and spatial filtering. Assimilation and forecast experiments were performed for 2008 to 2017, and the results were validated against various observation datasets. The assimilation results captured well the observed variability in sea surface temperature, coastal sea level, volume transport, and sea ice. Furthermore, the volume budget for the Japan Sea was significantly improved by the use of the 2-km resolution forecast model compared with the 10-km resolution analysis model. The forecast results indicate that this system has a predictive limit longer than 1 month in many areas, including in the Kuroshio current area south of Japan and the southern Japan Sea. In the forecast results of case studies, the 2017 Kuroshio large meander was well predicted, and warm water intrusions accompanying Kuroshio path variations south of Japan were also successfully reproduced. Sea ice forecasts for the Sea of Okhotsk largely captured the evolution of sea ice in late winter, but sea ice in early winter included relatively large errors. This system has high potential to meet operational requirements for monitoring and forecasting ocean phenomena at both meso- and coastal scales.

  相似文献   

19.
Seasonal variation of upper layer circulation in the northern part of the East/Japan Sea and its mechanism were investigated using empirical orthogonal function (EOF) analysis with satellite sea surface heights over the northern East/Japan Sea and a three-dimensional circulation model. The spatial structure and temporal variation of first EOF mode, which explains about 64% of the total variance, indicate that a large cyclonic circulation in the northern East/Japan Sea shows a semi-annual variation with maximum strength in summer and winter. According to numerical model result, the Liman Cold Current, accepted as a major current in the northern East/Japan Sea, is well mixed vertically by the winter monsoon and the current in the upper layer has a relatively deep structure, with a maximum westward speed of about 20 cm/s in winter. On the other hand, in summer the current has a stronger baroclinic structure of velocity than in winter. Numerical experiments showed that in summer the temporal variation of upper layer circulation is controlled by thermal forcing, such as sea surface heat flux and inflow of heat transport into the East/Japan Sea through the Korea/Tsushima Strait. Moreover, the cyclonic circulation in the upper layer of the northern East/Japan Sea is also generated and strengthened by the positive wind stress curl occupying most of the East/Japan Sea during the winter. The seasonal variation of each forcing that drives the circulation is responsible for the strength or weakness of the upper layer circulation in the northern East/Japan Sea. The contribution of each forcing to the seasonal variation of the upper layer circulation is examined through sensitivity experiments. According to these numerical experiments, the upper layer circulation in the northern East/Japan Sea is strengthened twice a year, in winter and summer, and this semi-annual variation is determined by a combination of wind (winter) and thermal (summer) forcing.  相似文献   

20.
Cd, Cu, Fe, Mn, Ni, Pb, Zn concentration in the organs (muscle, gonads, mantle, gills, digestive gland, kidney) of mussel Modiolus modiolus was studied. Mussels were collected from shelf upwelling sites of Kuril Is. Sea of Okhotsk (104 and 85 m) and, for comparison, coastal high contaminated and clean sites (Peter the Great Bay, Sea of Japan). It was found that mussels from shelf upwelling regions accumulated unusually high Cd concentration in studied organs, excepting digestive gland. Shelf mussels have evolved passive adaptation to elevated level of ambient heavy metals (distribution of heavy metal load between all organs, especially, muscle). In contrast, mussels from high contaminated sites have evolved active adaptation (strong regulation of metal concentration in the organs at the maximal permissible concentration due to increased kidney function). We supported that under natural condition, passive adaptation of aquatic organisms to increased ambient metal level have been evolved only under constant low-water temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号