首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  国内免费   1篇
大气科学   1篇
地球物理   3篇
海洋学   8篇
天文学   12篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2014年   2篇
  2012年   1篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
We present multi-instrument observations of active region (AR) 8048, made between 3 June and 5 June 1997, as part of the SOHO Joint Observing Program 33. This AR has a sigmoid-like global shape and undergoes transient brightenings in both soft X-rays and transition region (TR) lines. We compute a magneto-hydrostatic model of the AR magnetic field, using as boundary condition the photospheric observations of SOHO/MDI. The computed large-scale magnetic field lines show that the large-scale sigmoid is formed by two sets of coronal loops. Shorter loops, associated with the core of the SXT emission, coincide with the loops observed in the hotter CDS lines. These loops reveal a gradient of temperature, from 2 MK at the top to 1 MK at the ends. The field lines most closely matching these hot loops extend along the quasi-separatrix layers (QSLs) of the computed coronal field. The TR brightenings observed with SOHO/CDS can also be associated with the magnetic field topology, both QSL intersections with the photosphere, and places where separatrices issuing from bald patches (sites where field lines coming from the corona are tangent to the photosphere) intersect the photosphere. There are, furthermore, suggestions that the element abundances measured in the TR may depend on the type of topological structure present. Typically, the TR brightenings associated with QSLs have coronal abundances, while those associated with BP separatrices have abundances closer to photospheric values. We suggest that this difference is due to the location and manner in which magnetic reconnection occurs in two different topological structures. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1013302317042  相似文献   
2.
Sakamoto  Kei  Tsujino  Hiroyuki  Nakano  Hideyuki  Urakawa  Shogo  Toyoda  Takahiro  Hirose  Nariaki  Usui  Norihisa  Yamanaka  Goro 《Ocean Dynamics》2019,69(10):1181-1202
Ocean Dynamics - In order to expand the coastal ocean monitoring and forecasting system of the Japan Meteorological Agency from the Seto Inland Sea to the entire coastal seas of Japan, a 2-km...  相似文献   
3.
Using ichthyoplankton samples collected in the Kuroshio Subgyre during early summer cruises, we examined spatial distributions of scyllarid phyllosoma larvae in the Subgyre, particularly of the genus Scyllarus. The present study has two objectives: (1) to reveal species composition of Scyllarus phyllosoma larvae in the Kuroshio Subgyre, and (2) to examine larval recruitment of Scyllarus species as contrasted with that of Panulirus, particularly P. japonicus, the larval recruitment of which has been examined in detail. A total of 218 phyllosoma larvae collected in the present study belonged to two families (Palinuridae and Scyllaridae) representing 5 genera and 11 species. Phyllosoma larvae of two Scyllarus species (S. cultrifer and Scyllarus sp. c) were abundant among the collected larvae, and were found mainly in the following three regions located within the Kuroshio-Counter Current region south of Kuroshio Current: the water east of Okinawa Is., the water far east of Okinawa Is. (or far south of Shikoku Is.), and the water around Hachijojima Is. Larvae of each of the above two Scyllarus species collected in the three regions may belong to different populations: larvae collected in the water around Hachijojima Is. may come from their benthic populations along the Pacific coast of Honshu and Shikoku Is., central Japan, while larvae collected in the other two regions may come from their benthic populations of the Ryukyu Archipelago and Taiwan. Judging from their shorter larval period and current systems within the Kuroshio Subgyre, these Scyllarus larvae may be destined for death. An erratum to this article is available at .  相似文献   
4.
Phyllosoma larvae were identified and their distribution was examined, based on the larvae in ichthyoplankton samples collected in the Japanese Eel Expedition to the spawning area of A. japonica in the western North Pacific from August 30 to September 13, 1986 (Leg. 1), and from September 22 to 25, 1986 (Leg. 2), on board the R/V Hakuho-maru. Phyllosoma larvae belonged to 3 families (Scyllaridae, Palinuridae and Synaxidae) representing 6 genera and 14 species. A total of 336 palinurid and synaxid phyllosoma larvae were collected, of which 233 larvae (about 70%) were identical with P. longipes s. l, while a total of 362 scyllarid phyllosoma larvae were collected, of which 274 larvae (about 76%) were identical with S. cultrifer. Phyllosoma larvae of P. longipes s. l and S. cultrifer showed a similar distribution to each other. The larvae were abundant in the water close to Mariana Islands, although late stage examples were abundant in waters of Luzon and eastern Taiwan. Distributions of these larvae may be related intimately with the North Equatorial Current existing along 15°N. The North Equatorial Current approaches the eastern coast of the Philippines and then separates into two branches of northward and southward flows. The northward flow contributes to generating the Kuroshio Current while the southward flow goes to generate the Mindanao Current. Judging from distributions of phyllosoma larvae in the present study, it is assumed that the larvae of the above two species may have been released in Mariana Islands and transported westward from there through the North Equatorial Current. These larvae may then be transported to eastern Taiwanese waters.  相似文献   
5.
The evolution of hot thermal plasma in solar flares is analyzed by a single-temperature model applied to continuum emission in the 5 keV < E ? 13 keV spectral range. The general trend that the thermal plasma observed in soft X-rays is heated by the non-thermal electrons that emit as the hard X-ray bursts is confirmed by the observation of an electron temperature increase at the time interval of hard X-ray spikes and a quantitative comparison between thermal energy content and hard X-ray energy input. Non-thermal electrons of 10 keV < E < 30 keV energy may play an important role in pre- and post-burst phases.  相似文献   
6.
Large-scale, wave-like disturbances in extreme-ultraviolet (EUV) and type II radio bursts are often associated with coronal mass ejections (CMEs). Both phenomena may signify shock waves driven by CMEs. Taking EUV full-disk images at an unprecedented cadence, the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory has observed the so-called EIT waves or large-scale coronal propagating fronts (LCPFs) from their early evolution, which coincides with the period when most metric type II bursts occur. This article discusses the relation of LCPFs as captured by AIA with metric type II bursts. We show examples of type II bursts without a clear LCPF and fast LCPFs without a type II burst. Part of the disconnect between the two phenomena may be due to the difficulty in identifying them objectively. Furthermore, it is possible that the individual LCPFs and type II bursts may reflect different physical processes and external factors. In particular, the type II bursts that start at low frequencies and high altitudes tend to accompany an extended arc-shaped feature, which probably represents the 3D structure of the CME and the shock wave around it, and not just its near-surface track, which has usually been identified with EIT waves. This feature expands and propagates toward and beyond the limb. These events may be characterized by stretching of field lines in the radial direction and may be distinct from other LCPFs, which may be explained in terms of sudden lateral expansion of the coronal volume. Neither LCPFs nor type II bursts by themselves serve as necessary conditions for coronal shock waves, but these phenomena may provide useful information on the early evolution of the shock waves in 3D when both are clearly identified in eruptive events.  相似文献   
7.
The Neogene marine sedimentary rock area in the eastern marginal region of the Japan Sea is an area with some of the highest landslide densities in Japan. Some of the landslides in this area have been known to involve saline groundwater, which can be the cause of these landslides. In order to demonstrate the relationships between landslides and saline water, topographic, geological, groundwater, and electromagnetic surveys were performed in the eastern marginal region of the Japan Sea. Many landslides and gravitational slope deformations with linear depressions and small scarps were recognized in the study area. The resistivity profile obtained by an electromagnetic survey suggests that there is a wide zonal distribution of saline water with salt concentrations equivalent to seawater at depths of 50–100 m or more and that the groundwater shallower than 50 m has an electrical conductivity of less than 100 mS/m. The shallow resistive groundwater is inferred to be meteoric water that replaced the saline groundwater, which likely weakened the bedrock, resulting in landslides. A ridge of competent tuff overlying mudstone has many linear depressions from gravitational slope deformation and low‐resistivity water to a depth of 600 m, which suggests that the mudstone was weakened by water replacement and deformed under the tuff caprock. The saline groundwater is inferred to be fossil seawater trapped in pores during sediment deposition, which is brought near the ground surface along with rocks by tectonic movement in the hills. Thus, the saline water and its fresh water replacement are among the important basic causes of the landslides. The oil well data obtained in the eastern marginal region of the Japan Sea suggest that such saline water replacement has occurred widely and that replacement is likely one of the predispositions for the frequent landslides there.  相似文献   
8.
We generated an event catalog with an automated detection algorithm based on the entire EUVI image database observed with the two Solar Terrestrial Relations Observatory (STEREO)-A and -B spacecraft over the first six years of the mission (2006?–?2012). The event catalog includes the heliographic positions of some 20?000 EUV events, transformed from spacecraft coordinates to Earth-based coordinates, and information on associated GOES flare events (down to the level of GOES A5-class flares). The 304 Å wavelength turns out to be the most efficient channel for flare detection (79?% of all EUVI event detections), while the 171 Å (4?%), 195 Å (10?%), and the 284 Å channel (7?%) retrieve substantially fewer flare events, partially due to the suppressing effect of EUV dimming, and partially due to the lower cadence in the later years of the mission. Due to the Sun-circling orbits of STEREO-A and -B, a large number of flares have been detected on the farside of the Sun, invisible from Earth, or seen as partially occulted events. The statistical size distributions of EUV peak fluxes (with a power-law slope of α P =2.5±0.2) and event durations (with a power-law slope of α T =2.4±0.3) are found to be consistent with the fractal-diffusive self-organized criticality model. The EUVI event catalog is available on-line at secchi.lmsal.com/EUVI/euvi_autodetection/euvi_events.txt and may serve as a comprehensive tool to identify stereoscopically observed flare events for 3D reconstruction and to study occulted flare events.  相似文献   
9.
We performed for the first time stereoscopic triangulation of coronal loops in active regions over the entire range of spacecraft separation angles (?? sep??6°,43°,89°,127°,and 170°). The accuracy of stereoscopic correlation depends mostly on the viewing angle with respect to the solar surface for each spacecraft, which affects the stereoscopic correspondence identification of loops in image pairs. From a simple theoretical model we predict an optimum range of ?? sep??22°??C?125°, which is also experimentally confirmed. The best accuracy is generally obtained when an active region passes the central meridian (viewed from Earth), which yields a symmetric view for both STEREO spacecraft and causes minimum horizontal foreshortening. For the extended angular range of ?? sep??6°??C?127° we find a mean 3D misalignment angle of ?? PF??21°??C?39° of stereoscopically triangulated loops with magnetic potential-field models, and ?? FFF??15°??C?21° for a force-free field model, which is partly caused by stereoscopic uncertainties ?? SE??9°. We predict optimum conditions for solar stereoscopy during the time intervals of 2012??C?2014, 2016??C?2017, and 2021??C?2023.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号