首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. The Kunyang rift on western margin of Yangtze Platform is a continental rift, and also a rare Precambrian Fe-Cu mineralization zone in China. The Wuding-Lufeng mineralization area in the middle section of the rift is an important part of the zone, and an elliptic-shaped volcanic collapsed basin, controlled by a ring fracture system with carbonatitic volcanic rocks mainly occurring along the northwestern edge of the basin. The Hetaoqing Fe-Cu ore deposit at the western side of the basin is hosted in carbonatitic volcanic rocks and pyroclastic sedimentary rocks. The original ore bodies occur as layers, bands and lenses conformable to the host carbonatitic rocks. The ores usually appear as massive, impregnated and granular in carbonatitic rocks, and as brecciform and sandy in pyroclastic sedimentary rocks. Ore-forming minerals are magnetite, hematite, chalcopy-rite, bornite, pyrite, carrollite, molybdenite, cobaltite and skinnerite, and secondary minerals limonite, chalcocite, azurite, malachite and tenorite. Gangue minerals are calcite, dolomite, ankerite, common hornblende, arfvedsonite, augite, aegirine-augite, albite, phlogopite, biotite, chlorite and apatite. Evidences of mineral chemistry, trace elements and isotopic ratios of ores, as well as geological features, suggest that the original ores are igneous in origin. Chemical features of magnetites in the deposit belong to carbonatite type, and are similar to those from the Bayan Obo carbonatites. The ores are rich in iron, titanium, rare earth elements, niobium, tantalum, gold, silver, phosphor and sulfur. These features indicate that the Fe-Cu deposit associated with volcanic activity in the Wuding-Lufeng basin is alkali-carbonatite volcanic type.  相似文献   

2.
The particularity of the formation of the skarn lodes of the Cretaceous-Paleogene Belogorsk deposit is the intense replacement of the early mineral assemblages (the decomposition of garnet, pyroxene, and pyroxenoids) with decreasing temperature, the increase in the amount of magnetite at the expense of Fe released from the decomposed minerals, and the formation of quartz and volatile-rich compounds (calcite, fluorite, amphibole, and sulfides). The geochemical and mineralogical similarity suggests a genetic relation between the manganese skarn lodes of the Belogorsk deposit (the Ol’ginsk ore district) and the stratabound bodies of the manganese silicate rocks (the Triassic contact metamorphosed metalliferous sediments) of the adjacent Shirokaya Pad area (as a source of matter).  相似文献   

3.
Summary The Dachang Sn-polymetallic ore district is one of the largest tin producing districts in China. Its origin has long been in dispute between magmatic-hydrothermal replacement and submarine exhalative-hydrothermal origin. The Dachang ore district comprises several types of ore deposits, including the Lamo magmatogenic skarn deposit near a granite intrusion, the Changpo-Tongkeng bedded and vein-type sulfide deposit, and the Gaofeng massive sulfide deposit. Sulfide minerals from the Lamo skarn ores show δ34S values in the range between −3 and +4‰ with a mean close to zero, suggesting a major magmatic sulfur source that likely was the intrusive Longxianggai granite. Sulfide minerals from the Gaofeng massive ores show higher δ34S values between +5 and +12‰, whereas sulfide minerals from the Changpo-Tongkeng bedded ores display lighter δ34S values between −7 and −0.2‰. The difference in the sulfur isotope ranges in the two deposits can be interpreted by different degrees of inorganic thermochemcial reduction of marine sulfate using a one-step batch separation fractionation model. Sulfur isotopic compositions from the vein-type ores at Changpo-Tongkeng vary widely from −8 to +4‰, but most of the data cluster around −2.9‰, which is close to that of bedded ores (−3.6‰). The sulfur in vein-type ores might be derived from bedded ores or it represents a mixture of magmatic- and sedimentary-derived sulfur. Pb isotopic compositions of sulfide minerals in the Dachang ore district reveal a difference between massive and bedded ores, with the massive ores displaying more radiogenic Pb isotope ratios. Correlations of 206Pb/204Pb and 207Pb/204Pb or 208Pb/204Pb for the massive and bedded ores are interpreted as two-component mixing of Pb leached from sedimentary host rocks and from deep-seated Precambrian basement rocks composed of metamorphosed volcano-sedimentary rocks. Pb isotopic compositions of sulfide minerals from vein-type ores overlap with those of bedded sulfides. Similar to the sulfur, the lead in vein-type ores might be derived from bedded ores. Skarn ores at Lamo show very limited variations in Pb isotopic compositions, which may reflect a major magmatic-hydrothermal lead source. Helium isotope data of fluid inclusions trapped in sulfides indicate that He in the massive and bedded ores has a different origin than He in fluorite of granite-related veins. The 3He/4He ratios of 1.2–2.9 Ra of fluid inclusions from sulfides at Gaofeng and Changpo-Tongkeng imply a contribution of mantle-derived fluids. Overall our data support a submarine exhalative-hydrothermal origin for the massive and bedded ore types at Dachang. Supplementary material to this paper is available in electronic form at Appendix available as electronic supplementary material  相似文献   

4.
The Cu-Zn Obrazek ore deposit is reinterpreted as metamorphosed volcanogenic-type rather than epigenetic vein-type. Enclosed by undeformed, non-metamorphosed mafic-ultramafic rocks of the Ransko complex, the ore is a highly folded, intensely metamorphosed (Zn-rich) association of banded, massive sphalerite-barite-pyrite-pyrrhotite-chalcopyrite and (Cu-rich)pyrite-chalcopyrite-pyrrhotite. Cu-rich ores are disseminated in deformed metamorphic assemblages of quartz, sillimanite, cordierite, anthophyllite, orthopyroxene and gahnite. Textural and compositional features in the metamorphic rocks suggest that the cordierite-anthophyllite assemblage was produced by regional metamorphism of rocks associated with the ore deposit. Inclusion of the Cu-Zn deposit and associated rocks in the Ransko intrusive complex produced contact metamorphic hornfelses of quartz, cordierite, orthopyroxene and Al-spinel. The occurrence and compositions of Zn-rich chromian spinel and minor intercumulus sulfides in anorthosite, troctolite and norite of the Ransko complex near the Obrazek ore body are interpreted to result from contamination of the Ransko parent magma by the Cu-Zn deposit and associated rocks.  相似文献   

5.
The mineralogy of slightly metamorphosed manganese ore at the South Faizulino hydrothermalsedimentary deposit in the southern Urals has been studied; 32 minerals were identified. Quartz, hausmannite, rhodochrosite, tephroite, ribbeite, pyroxmangite, and caryopilite are major minerals; calcite, kutnahorite, alleghanyite, spessartine, rhodonite, clinochlore, and parsettensite are second in abundance. This mineralic composition was formed in the process of gradual burial of ore beneath the sequence of Middle Devonian-Lower Carboniferous rocks. The highest parameters of metamorphism are T ≈ 250°C and P ≈ 2.5 kbar. The relationships between minerals and their assemblages made it possible to reconstruct the succession of ore transformation with gradually increasing temperature and pressure. Manganese accumulated in the initial sediments as oxides and a gel-like Mn-Si phase. Rhodochrosite and neotocite were formed at the diagenetic stage. In the course of a further increase in temperature and pressure, neotocite was replaced with caryopilite; ribbeite, tephroite, pyroxmangite, and other silicates crystallized afterwards. In addition to the PT parameters, the formation of various metamorphic mineral assemblages was controlled by the Mn/(Mn + Si) ratio in ore and X CO2 in pore solution. The latter parameter was determined by the occurrence of organic matter in the ore-bearing rocks. Ore veinlets as products of local hydrothermal redistribution of Mn, Si, and CO2 were formed during tectonic deformations in the Middle Carboniferous and Permian.  相似文献   

6.
Abstract: Manganese carbonate ore beds and host rock manganiferous phyllites at the Nsuta mine, western Ghana, contain well developed garnet crystals. Individual crystals are idioblastic, sometimes porphyroblastic, and homogeneous, and are associated with rhodochrosite (with or without kutnahorite), quartz and muscovite. The conspicuous absence of chlorite in garnet-rich assemblages, and of garnet in chlorite-rich rocks, suggest chemical constraints may have been important in the formation of the two minerals. Gondite bands within carbonate ores are interpreted to have resulted from localised processes in which manganese carbonates, in environments rich in alumino-silicate minerals, may have been completely exhausted during metamorphic reactions.  相似文献   

7.
The Parnok ferromanganese deposit is confined to the black shales of the western slope of the Polar Urals. The deposit area is made up of weakly metamorphosed terrigenous-carbonate rocks formed in a marine basin at a passive continental margin. Ore-bearing sequence is composed of coaliferous clayey-siliceous-calcareous shales comprising beds and lenses of pelitomorphic limestones, and iron and manganese ores. The iron ores practically completely consist of micrograined massive magnetite. The manganese ores are represented by lenticular-bedded rocks consisting of hausmannite, rhodochrosite, and diverse manganese silicates. With respect to relations between indicator elements (Fe, Mn, Al, Ti), the shales are ascribed to pelagic sediments with normal concentrations of Fe and Mn, the limestones correspond to metalliferous sediments, ferruginous sediments are ore-bearing sediments, while manganese rocks occupy an intermediate position. It was found that the concentrations of trace elements typical of submarine hydrothermal solutions (As, Ge, Ni, Pb, Sb, Zn, etc.) in both the ore types are in excess of those in lithogenic component. At the same time, the indicator elements of terrigenous material (Al, Ti, Hf, Nb, Th, Zr, and others) in the ores are several times lower than those in the host shales (background sediments). REE distribution patterns in iron ores show the positive Eu anomaly, while those in manganese ores, the positive Ce anomaly. In general, the chemical composition of the ores indicates their formation in the hydrothermal discharge zone. The peculiar feature of the studied object is the manifestation of hydrothermal vents in sedimentary basin without evident signs of volcanic activity. Hydrothermal solutions were formed in terrigenous-carbonate sequence mainly at the expense of buried sedimentation waters. The hydrothermal system was likely activated by rejuvenation of tectonic and magmatic processes at the basement of sedimentary sequences. Solutions leached iron, manganese, and other elements from sedimentary rocks and transported them to the seafloor. Their discharge occurred in relatively closed marine basin under intermittent anaerobic conditions. Eh-pH variations led to the differentiation of Fe and Mn and accumulation of chemically contrasting ore-bearing sediments.  相似文献   

8.
The results of geological-mineralogical study of stratificated manganese ores in Famennian rocks of the Lemva facies in Pai-Khoi are presented. Carbonate manganese ores make up conformable stratified and lenticular bodies (up to 0.6 m thick) in the interval between the Gromashor and Silovayakha formations that are composed of jasperoids and carbonate-siliceous rocks. Ores are characterized by fine wavy bedding and development of transverse quartz veinlets. The ores are mainly composed of kutnahorite. Secondary minerals are represented by dolomite, calcite, pyrite, ransayite, and cryptomelane (?). Mn-muscovite, micro-cline, pyrophanite, galena, barite, apatite, and monazite are accessory minerals. The average MnO content is 23.81 wt %. The interval also includes a long (up to 40 m) lens of rhodonite rocks (Silovayakha occurrence) that replace carbonate ores along the strike. The major minerals in these rocks are represented by rhodochrosite, rhodonite, pyroxmangite, and quartz. Secondary minerals are observed as tephroite, alleghanyite, friedelite, caryopilite, neotocite, sussexite, pyrite, and supergene manganese oxides. Spessartine, albandine, barite, and apatite are accessory minerals. Based on the analysis of factual material, we suggest that ore material was derived from hydrothermal paleoceanic systems associated with Devonian volcanism. Ore concentration in the sedimentation zone was related to the stagnant reduced setting of bottom water. Ore deposition was promoted by the delivery of fresh portions of ocean water. Ore matter was accumulated mainly by chemogenic mechanism and partly with the’ participation of bacteria. It is suggested that boundary between the Gromashor and Silovayakha formations should be corrected to unite rocks of the Famennian manganiferous association into a single formation.  相似文献   

9.
Manganese silicate rocks, interbanded with manganese oxide orebodies, constitute an important stratigraphic horizon in the Mansar formation of the Sausar Group of Precambrian age in India. The manganese silicate rocks of Gowari Wadhona occupy the westernmost flank of the manganese belt of the Sausar Group. These rocks are constituted of spessartite, calcium-rich rhodonite, quartz, manganoan diopside, blanfordite (manganese bearing member of diopside-acmite series), brown manganese pyroxene (manganese bearing aegirine-augite), winchite (manganese bearing richterite-tremolite), juddite (manganese bearing amphibole with richterite, tremolite, magnesioriebeckite and glaucophane molecules), tirodite (manganese bearing amphibole with richterite, cummingtonite and glaucophane molecules), manganophyllite, alurgite, piedmontite, braunite, hollandite (and other lower oxides of manganese) with minor apatite, plagioclase, calcite, dolomite and microcline. A complete mineralogical account of the manganese-bearing phases has been given in the text. It has been shown that the juxtaposition of manganese silicate rocks with dolomitic marble, regional metamorphism to almandine-amphibolite facies and assimilation of pegmatite veins cutting across the manganese formation, were responsible for the development of these manganese silicate rocks and the unusual chemical composition of some of the constituent minerals. It has been concluded that the manganese silicate rocks of Gowari Wadhona were originally laid down as sediments comprising manganese oxides admixed with clay, silica etc. and were later regionally metamorphosed to almandine-amphibolite facies. All evidences indicate that rhodochrosite was not present in the original sediment and the bulk composition of the sediments was rich in manganese. These rocks agree entirely to the detailed nomenclature of the gondites enunciated by Fermor (1909) and amplified by Roy and Mitra (1964) and Roy (1966).  相似文献   

10.
The studied ophiolite‐hosted manganese prospects are located in southeast of Birjand, South Khorasan, in the east of Iran. The manganese ores within the ophiolitic sequence in this region occur as small discrete patches, associated with radiolarian chert and shale. Manganese ores in the host rocks are recognizable as three distinct syngenetic, diagenetic, and epigenetic features. The syngenetic manganese ores occurred as bands associated with light‐red radiolarian chert. The diagenetic Mn ores occurred as lenses accompanied by dark‐red to brown radiolarian chert. The epigenetic Mn ores occurred as veins/veinlets within the green radiolarian shale. The major manganese ore minerals are pyrolusite, braunite, bixbyite, ramsdellite, and romanechite showing replacement, colloidal, and brecciated textures. The high mean values of Mn/Fe (15.32) and Si/Al (15.65), and the low mean concentration values of trace elements, such as Cu (85.9 ppm), Ni (249.9 ppm), and Zn (149 ppm), as well as the high concentration values of Si, Fe, Mn, Ba, Zn, Sr, and As in the studied manganese ores furnished sufficient evidence to postulate that the sea‐floor Mn‐rich hydrothermal exhalatives were chiefly responsible for the ore formation, and the hydrogenous processes had negligible role in generation of the ores. The further geological and geochemical evidence also revealed that the ores deposited on the upper parts of the ophiolitic sequence by submarine exhalatives. The intense hydrothermal activities caused leaching of elements such as Mn, Fe, Si, Ba, As and Sr from the basaltic lavas (spilites). After debouching of the sea‐floor exhalatives, these elements entered the sedimentary basin. The redox conditions were responsible for separation of Fe from Mn.  相似文献   

11.
苏丹哈佳吉金矿床稀土元素地球化学特征   总被引:1,自引:0,他引:1  
通过对苏丹哈佳吉金矿床矿石和围岩稀土元素含量的研究,发现该矿床近矿围岩稀土总量较矿石稀土总量明显要高,轻重稀土元素分馏明显,Eu呈现中等程度或弱的负异常,Ce含量则相对较稳定,表明成矿环境为还原环境。根据近矿围岩的稀土元素C1球粒陨石标准化曲线及北美页岩标准化曲线,可以推断该区古老变质基底所处的构造环境应属大洋岛弧环境...  相似文献   

12.
广西东平-足荣大型锰矿床位于桂西南锰矿带上,是广西重要的锰矿富集区。其含矿地层为三叠系北泗组,是一套以硅-泥-灰为主浅海台盆相含锰碳酸盐岩沉积,含锰矿物主要为钙菱锰矿、锰方解石和锰白云石。本文对矿区锰矿层顶部的沉凝灰岩及含锰岩系开展了详细的岩石学、岩石地球化学和锆石U-Pb年代学研究,进而对锰矿成矿时代、成因、沉积环境、沉凝灰岩源区和大地构造背景进行了探讨。锆石SHRIMP U-Pb定年结果显示,3件沉凝灰岩样品的锆石呈自形-半自形板柱状,发育良好的岩浆锆石振荡环带结构。~(206) Pb/~(238)U年龄加权平均值分别为250.8±2.1Ma(MSWD=0.98)、250.6±2.2Ma(MSWD=0.49)和243.6±2.3Ma(MSWD=0.44)。进一步限定了"东平"式锰矿的成矿时代为早-中三叠世(不晚于241~246Ma的范围内)。沉凝灰岩的构造环境判别图解及微量、稀土元素特征显示其岩浆可能形成于与俯冲消减作用相关的碰撞-弧相关或活动大陆边缘相关背景,推测东平-足荣锰矿的形成可能受到广西凭祥-东兴火山作用的影响。含锰岩系的U、V和Mo元素含量及U/Th、V/Cr、V/(V+Ni)、Ni/Co 比值显示东平-足荣锰矿形成于氧化-次氧化的沉积环境。logU-logTh、Fe/Ti-Al/(Al+Fe+Mn)图解及微量元素Ba含量、Ba/Sr值均指示成矿作用受到热水作用的影响。综合矿床地质研究,东平-足荣锰矿形成于弧后盆地拉张构造背景中,锰成矿受同期火山及海底热液作用影响,水体沉积环境为氧化-次氧化条件。  相似文献   

13.
Major regularities in the formation of manganese rocks and ores have been established on the basis of available published and original data. The proposed genetic classification of main manganese deposits (with model examples) is as follows: sedimentary-diagenetic (Nikopol, Bol’she-Tokmak; Ukraine), (volcanogenic) hydrothermal-sedimentary (deposits of the Atasui area, Kazakhstan; Magnitogorsk Trough, South Urals), epigenetic (catagenetic) (deposits of the Kalahari manganese ore field, South Africa; Usinsk deposit, Kuznetsk Alatau), and supergene (residual, infiltrational, cavern filling, and pisolitic deposits in India, Brazil, South Africa, and Australia). The results suggest the following conclusions: (1) all primary manganese rocks and ores at the known deposits are hydrothermal- and diagenetic-sedimentary formations of marine environments; (2) manganese concentrations achieve the size of deposits at postsedimentary stages of the initial manganiferous sediment and manganese rock transformation (diagenesis, catagenesis, and retrograde diagenesis); (3) indispensable participation of the isotopically light carbon dioxide related to the destruction of organic matter (OM) is a characteristic feature of manganese carbonate formation during diagenesis; and (4) the role of organic carbon in manganese ore formation becomes notable since early stages of Mn accumulation in the Precambrian sedimentary basins (terminal Archean-initial Early Proterozoic).  相似文献   

14.
庐枞盆地龙桥铁矿床中菱铁矿的地质特征和成因意义   总被引:6,自引:0,他引:6  
龙桥铁矿床是庐枞火山岩盆地中的一个大型的铁矿床,多年来对其矿床成因的认识存在较大的争论.文章在野外地质研究工作的基础上,通过对矿床中菱铁矿的岩矿分析鉴定和电子探针测试,确定了矿床纹层状矿石中的菱铁矿为沉积成因.通过对菱铁矿的产出特征分析,并结合龙桥铁矿床的部分地质地球化学研究成果,认为在该矿床形成过程中,早期沉积形成了纹层状的菱铁矿层,在燕山期的岩浆热事件中,部分沉积菱铁矿被交代形成了磁铁矿和具有残余骸晶结构等一系列矿石交代组构特征的矿物.纹层状矿石既具有沉积特征,也具有热液改造特征,证实了矿床的形成存在早期(三叠纪)的沉积成矿(菱铁矿)作用和晚期(燕山期)的热液成矿(磁铁矿)作用.菱铁矿的研究为进一步确定龙桥铁矿床的成因提供了新的佐证.  相似文献   

15.
Bedded manganese ore deposits occur in many localities within the accretionary belts of the Shikoku region, SW Japan. The deposits occur mostly in bedded chert or its metamorphosed equivalent. These chert-hosted manganese deposits are considered to have been manganese nodule/crust-bearing siliceous sediments on deep-sea floor and have been converted to manganese ores by low-grade metamorphism through subduction-accretion process. The mineral assemblages of the ores reflect the metamorphic grade of the accretionary complexes. On the other hand, iron-manganese deposits and some manganese deposits occurring directly over basalt are considered to have been the hydrothermal precipitates associated with submarine volcanism.  相似文献   

16.
新疆阿尔泰南缘巴利尔斯铁矿床稀土元素地球化学研究   总被引:1,自引:0,他引:1  
巴利尔斯铁矿是阿尔泰南缘麦兹盆地新近发现的中型铁矿床。赋存于上志留—下泥盆统康布铁堡下亚组第二岩性段变粒岩、浅粒岩及斜长角闪岩中, 矿体及其周围发育大量矽卡岩矿物。本文对矿体围岩、矽卡岩矿物和矿石进行了稀土元素地球化学研究, 结果表明磁铁矿矿石、矽卡岩与围岩斜长角闪岩的REE特征具有相似性, 暗示磁铁矿矿石与矽卡岩具有亲缘性, 斜长角闪岩可能提供部分成矿物质。矽卡岩和矿石发育Eu正异常及所有矿石的负Ce异常, 表明铁成矿作用发生在高温氧化环境。  相似文献   

17.
The paper presents results of the detailed study of phosphorites from manganiferous beds of the Chiatura deposit. The relatively high-grade (P2O5 20–28%) phosphorites are represented by various rocks ranging from the variety dominated by massive phosphates with a rare aleuritic admixture of quartz and feldspar grains to rocks mainly composed of terrigenous material with phosphates in the matrix. Phosphates make up the matrix of various organic remains: differently preserved diatom algae and microbial species. Some relatively large organic remains (in particular, sponge spicules) are typically composed of iron minerals (with manganese admixture) rather than phosphates. Manganese ores comprise phosphorite fragments composed of phosphatized cyanobacterial mat. Phosphorites of the Chiatura deposit were likely formed in a shallow-water zone away from the continental land.  相似文献   

18.
斜长岩体中Fe-Ti-P矿床的特征与成因   总被引:3,自引:0,他引:3       下载免费PDF全文
岩体型斜长岩为由90%以上斜长石组成的岩浆岩,具变压结晶的特点,仅形成于元古宙(2.1~0.9Ga),常赋存有Fe-Ti-P矿床。Fe-Ti-P矿体既呈整合层状也呈透镜状和席状等不规则形式产出;矿石类型有块状和侵染状,前者矿石矿物含量>70%,后者矿石矿物含量为20%~70%;矿物组成上,不同矿床稍有差别:部分矿床的Fe-Ti氧化物以钛磁铁矿为主、钛铁矿次之,而其他矿床则以赤钛铁矿为主、磁铁矿次之。一些矿床磷灰石含量较高,出现仅由Fe-Ti氧化物和磷灰石组成的铁钛磷灰岩。研究表明,Fe-Ti-P矿床由富Fe、Ti的岩浆演化形成,其母岩浆是在深部岩浆房中大量结晶斜长石后的残余岩浆。部分学者认为不同矿石经正常的结晶分异作用并堆晶形成,但该机制很难解释呈不规则状产出的矿石;其他学者则认为不混熔作用对矿石的富集(尤其是脉状、席状的铁钛磷灰岩)有重要作用,但该机制缺乏岩相学和地球化学方面的证据。河北大庙Fe-Ti-P矿体呈透镜状、席状等不连续地分布于斜长岩中,矿体不发育明显岩浆分层,但仍出现不同矿石的相带。依据详细的岩相学、矿体中矿物含量和成分的变化规律以及全岩地球化学特征,我们判断大庙矿床中不同矿石为堆晶矿物和晶隙流体的混合产物,它们由铁闪长质岩浆经结晶分异和堆晶作用形成,与不混熔作用关系不大。矿体不规则状产出的特点可能与岩浆动力分异作用有关,并伴随有小范围的亚固相迁移。  相似文献   

19.
Under and climate conditions the chemical weathering of manganese ores is govermed by the fugacities of O2,CO2 and S2 in the atmosphere and soils.Manganese minerals exhibit solid phase transformations without migration of Fe and Mn.Under tropical and subtropical humid climate condi-tions low-valent Mn is instable and apt to be oxidized into high valency state.High-valent Mn miner-als are stable and easy to form secondary high-grade Mn ores.Secondary concentration is possible for Mn ores in carbonate formations,while those in clastic rocks tend to migrate and may be washed away.Such differences are the main obstacles in prospecting Mn ore deposits.  相似文献   

20.
新疆东昆仑迪木那里克铁矿床地质特征及找矿方向   总被引:3,自引:1,他引:2  
迪木那里克铁矿床处于新疆东昆仑西段,位于阿尔金陆缘地块祁漫塔格古生代复合沟弧带中.矿体主要赋存于中-上奥陶统祁漫塔格群浅变质碎屑岩-火山碎屑岩中,矿体多呈似层状、条带状产出,与地层产状基本一致,层控作用比较明显,矿体塑性变形较强;矿石主要为条带状石英-磁铁矿和块状磁铁矿矿石;矿石品位较低(TFe=20%~40%);围岩蚀变特征明显.文章从成矿地质背景和矿床地质特征出发,重点从矿床规模、矿体产状、赋矿层位、围岩性质、矿石特征等方面探讨了迪木那里克铁矿床的成因,并提出在该区寻找同类矿床的标志.该铁矿床属海相火山沉积变质型铁矿,可利用矿区地层、构造、围岩蚀变、航磁异常等作为找矿标志.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号