首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoxic-to-anoxic conditions (2–0 mg O2 l− 1) occur in the bottom waters of the northern Gulf of Mexico on the Louisiana shelf west of the Mississippi river delta during late spring and summer where the rate of oxygen consumption exceeds its rate of input from physical transport plus photosynthetic generation. Although consumption of oxygen in the water column primarily via oxic respiration is an important process, the loss of oxygen at and near the seafloor may also be an important sink contributing to seasonal low oxygen conditions in the relatively shallow overlying waters in this region. Associated with the flux of oxygen into the sediments is the flux of nutrients out of the sediments from the remineralization of sedimentary organic matter via a number of possible electron acceptors. The nutrients that are released from the sediment can potentially stimulate further primary production. This can lead to generation of oxygen in the water column and production of organic matter, much of which can be transported to the seafloor where it again becomes a sink for oxygen.A non-steady-state data driven numeric benthic–pelagic model was developed to investigate the role of sediment and water-column metabolism in the development of hypoxia on the Louisiana shelf. The model simulations bare out the importance of sediment oxygen demand as the primary sink for oxygen at the beginning and end of a hypoxic event on the shelf, but once hypoxia has developed, the sediments, now isolated from the oxygen-rich surface waters, are driven into a more anoxic mode, becoming more dependent on sulfate and metal reduction. As a result, the bottom water near the pycnocline becomes the major sink for oxygen.Model simulations also suggest that there is a delay of several weeks between metabolite production (especially ammonium) and its efflux from the sediments. Thus the maximum sediment ammonium export occurs in September and October in time to fuel autumnal phytoplankton production, thereby continuing a biogeochemical cycle that expands the temporal and spatial scales of hypoxia on the Louisiana shelf.  相似文献   

2.
Recently evidence has been obtained for reproductive impairment in estuarine populations of Atlantic croaker exposed to seasonal hypoxia. However, it is not known whether a similar disruption of reproductive function occurs in croaker inhabiting a much larger hypoxic area, the extensive dead zone in coastal regions of the northern Gulf of Mexico extending from the Mississippi Delta to East Texas. Gonadal development in male Atlantic croaker collected in September 2008 at six sites in the dead zone was compared to that in male fish sampled from three reference sites east of the Mississippi Delta which do not experience persistent hypoxia. Croaker testes collected from the dead zone were at an earlier stage of spermatogenesis than those from the reference sites. Histological examination of the testes collected from the dead zone showed that their tubules had small lumens that contained very little sperm compared to the lumens of the reference fish. Overall, sperm production was 26.2% that of the control fish at the reference sites. This decrease in spermatogenesis at the dead zone sites was accompanied by an approximately 50% decrease in testicular growth compared to that in the reference fish. The results suggest that reproductive impairment can occur over regional scales in marine fish populations exposed to extensive seasonal hypoxia in dead zones with potential long-term impacts on population abundance.  相似文献   

3.
Three sediment cores were collected off the Mississippi River delta on the Louisiana Shelf at sites that are variably influenced by recurring, summer-time water-column hypoxia and fluvial loadings. The cores, with established chronology, were analyzed for their respective carbon, nitrogen, and sulfur elemental and isotopic composition to examine variable organic matter inputs, and to assess the sediment record for possible evidence of hypoxic events. Sediment from site MRJ03-3, which is located close to the Mississippi Canyon and generally not influenced by summer-time hypoxia, is typical of marine sediment in that it contains mostly marine algae and fine-grained material from the erosion of terrestrial C4 plants. Sediment from site MRJ03-2, located closer to the mouth of the Mississippi River and at the periphery of the hypoxic zone (annual recurrence of summer-time hypoxia >50%), is similar in composition to core MRJ03-3, but exhibits more isotopic and elemental variability down-core, suggesting that this site is more directly influenced by river discharge. Site MRJ03-5 is located in an area of recurring hypoxia (annual recurrence >75%), and is isotopically and elementally distinct from the other two cores. The carbon and nitrogen isotopic composition of this core prior to 1960 is similar to average particulate organic matter from the lower Mississippi River, and approaches the composition of C3 plants. This site likely receives a greater input of local terrestrial organic matter to the sediment. After 1960 and to the present, a gradual shift to higher values of δ13C and δ15N and lower C:N ratios suggests that algal input to these shelf sediments increased as a result of increased productivity and hypoxia. The values of C:S and δ34S reflect site-specific processes that may be influenced by the higher likelihood of recurring seasonal hypoxia. In particular, the temporal variations in the C:S and δ34S down-core are likely caused by changes in the rate of sulfate reduction, and hence the degree of hypoxia in the overlying water column. Based principally on the down-core C:N and C:S ratios and δ13C and δ34S profiles, sites MRJ03-3 and MRJ03-2 generally reflect more marine organic matter inputs, while site MRJ03-5 appears to be more influenced by terrestrial deposition.  相似文献   

4.
《Marine Chemistry》2005,93(2-4):159-177
Sediment core samples were collected from two sites in the lower Mississippi River, an oxic shelf site and a hypoxic shelf site (in September 1998 and July 1999), and from a cross-shelf transect (in April 2000), to examine the differential effects of redox and sedimentation rate on carbon decay dynamics in a river-dominated margin. Downcore distribution of pigments, bulk organic carbon and nitrogen, and radioactive isotopes (210Pb, 7Be) were used to evaluate the decomposition and preservation of pigments and bulk organic carbon. The distinctly different sedimentary regimes and dynamic nature of the LA shelf limit the application of diagenetic models. Sedimentation processes in the lower Mississippi River and oxic shelf sites were significantly impacted by the river discharge. In areas with low sedimentation, the depth of the surface mixed layer fluctuated with seasonal variation of weather forcing. It was observed that pigment decay rate constants in the mixed layer (7.52 year−1 for chlorophyll-a) were greater than those in the accumulation layer (0.14–0.22 year−1 for chlorophyll-a) by 1–2 orders of magnitude. This suggests that enhanced decomposition of reactive organic carbon occurred in the mixed layer at locations with low sedimentation rates—due to higher decay rates. Conversely, at locations with high sedimentation rates (>10 cm year−1), the reactive carbon pool was rapidly buried below the mixed layer. The surface mixed layer likely worked as a biogeochemical reactor receiving high inputs of phytodetritus, supported by an active microbial community. We propose that despite the frequency of occurrence of bottom water hypoxia on the Louisiana shelf, sedimentation rate and lability of organic matter are more important in controlling the preservation of organic carbon.  相似文献   

5.
The primary focus of this paper is to better understand carbon burial on the Louisiana continental margin using spatial scales that covered various shelf depositional areas far-field and near-field (sediment and organic carbon inputs relative to river mouth proximity) and covering a variety of sedimentation rates. Box-cores samples were collected in July 2003; cores were collected along two depositional transects extending westward and southward from the Southwest Pass (SW Pass). A key difference between the two transects sampled in this study was the greater occurrence of mobile muds derived from spillover from shallower regions along the westward 50 m isobaths. The dominant mechanism for mixing in the surface active zone (SAZ) on the inner Louisiana shelf was due to physical, not biological, forces. Burial efficiencies for organic carbon (57.2–91.5%) and total nitrogen (44.2–86.9%) ranged widely across all shelf stations. Lower burial efficiencies for bulk organic carbon, total nitrogen, and pigment biomarkers were associated with mobile muds west of Southwest Pass. Chlorophyll a concentrations were significantly higher than pheopigments at depth at the Mississippi River and Southwest Pass stations, making up 40.4 and 77.4% of total pigment concentrations in the (SAZ) and 46.2 and 63.2% in the accumulation zone (AZ), respectively. These results are in agreement with earlier plant pigment studies which showed that a large fraction of the phytodetritus delivered to the inner shelf was derived from coastal and river diatoms. The amount of lignin preserved with depth decreased with increasing residence time in the SAZ and diagenetic zone (DZ) along the canyon transect but not along the western transect. Trends for lignin concentration followed previously identified surface sediment trends indicating overall lower burial of refractory terrestrial material at depth with greater distance offshore.  相似文献   

6.
近年来全球大型河口区低氧事件频发,严重威胁环境和生态系统健康.因缺少长时间序列的观测资料,人们对历史时期河口陆架区域生态环境演化,尤其是低氧事件发生的历史认识不足.本文基于210Pb、137Cs和光释光测年技术,以长江水下三角洲现代低氧区沉积物柱状样为研究对象,通过分析沉积物的粒度参数、氧化还原敏感元素、TOC、TN和...  相似文献   

7.
《Marine Geology》2005,214(4):411-430
The Atchafalaya River in Louisiana shares the third largest drainage basin in the world with the Mississippi River. Sediment cores and seismic profiles were used to examine the development and impact on land accretion of an early-stage subaqueous delta accumulating on the shallow (<25 m water depth) continental shelf seaward of the Atchafalaya River mouths in the period (∼100 years) since the Atchafalaya has captured a significant fraction of the overall Mississippi discharge. The subaqueous clinoform is muddy (70–100% finer than 63 μm) and extends approximately 21–26 km seaward of the shell reef (to 8 m water depth) across the mouth of the Atchafalaya Bay, with a discontinuous, and, in places, mobile modern mud layer <20 cm thick covering a relict deltaic shoal area further seaward. The sigmoidal clinoform has a topset surface that steepens from east to west (1:2500 to 1:1600), a foreset with maximum slopes of about 1:550, and a limited bottomset region (<0.5 km wide). 210Pb and 137Cs geochronology show maximum sediment accumulation rates (>3 cm/year) correspond to the foreset and bottomset region, with rates decreasing to as low as 0.9 cm/year on the shelf topset region and its extension inside Atchafalaya Bay. Seven sedimentary facies are observed in the subaqueous delta, with differences created by degree of biological destruction of physical stratification, which is inversely related to sediment accumulation rate, and by the proximity of an area to the riverine sand source. There is a marked alongshore sediment dispersal pattern observed by the progressive winnowing of sand and coarse silt to the west. There is also a significant increase in shell content in Atchafalaya Bay relative to shelf facies. The resulting sigmoidal clinoform deposit (<3 m thick) more closely resembles strata geometries of subaqueous mud deltas associated with energetic systems (e.g., Amazon, Ganges–Brahmaputra, Fly), than it does the mature Mississippi delta 180 km to the east, albeit on a smaller scale and in shallow water.  相似文献   

8.
The data of meteorological and oceanographic observations on the northwest shelf of the Black Sea for 1973–2000 are used to compute the characteristics of the entire area in the presence of hypoxia of waters under the pycnocline in the summer–autumn period and the area of surface waters with a level of salinity lower than 17.5‰ in May. The time of onset of the spring warming of air (stable transition through a temperature of 5°) is determined. A statistically significant positive trend of the air temperature (0.8° per 100 yr) is revealed in Odessa. The process of warming was observed mainly for the winter (1.5° per 100 yr) and spring (0.8° per 100 yr) periods and became especially intense since the beginning of the 1990s. On the basis of the data of correlation analyses, we establish a statistically significant relationship between the large-scale atmospheric processes [the index of North Atlantic Oscillation (NAO) and the wind conditions], the area of surface waters whose salinity is lower than 17.5‰, and the total area with hypoxia in the summer–autumn periods. For positive mean values of the NAO index (in January–March), we most often observe early spring with elevated repetition of the south and west winds with subsequent development of hypoxia in large areas of the northwest shelf. We propose an empirical regression model for the prediction of the total area of summer–autumn hypoxia of waters with predictors: the onset of the spring warming of air and the area of propagation of waters whose salinity is lower than 17.5‰ in May. The maximum error of prediction of the area with hypoxia does not exceed 5.5 ⋅ 103 km2, i.e., less than 2% of the total area of the northwest shelf in the Black Sea (to the north of 45°N).  相似文献   

9.
Stable isotope ratios (δ13C) of total organic carbon were measured in surface sediments from the continental margins of the northern and western Gulf of Mexico, the north coast of Alaska and the Niger Delta. Gulf of Mexico outer-shelf isotope ratios were in the same range as has been reported for Atlantic coastal shelf sediments, ?21.5 to ?20‰. Off large rivers including the Mississippi, Niger and Atchafalaya (Louisiana), δ13C values increased from terrigenous-influenced (around ?24‰) to typically marine (~?20‰) within a few tens of kilometers from shore. This change was accompanied by a decrease in the amount of woody terrigenous plant remains in the sediment. Alaskan continental margin samples from the cold Beaufort Sea had isotopically more negative carbon (?25.5 to ?22.6‰) than did warmer-water sediments. The data indicate that the bulk of organic carbon in Recent sediments from nearshore to outer continental shelves is marine derived.  相似文献   

10.
The magnetic properties from 200 trigger core-top and Van Veen grab sediment samples recovered from throughout the Gulf of Mexico have been analyzed and used to characterize sediment source and flow pattern distributions. Magnetic parameters included are anhysteretic remanent magnetism (ARM) and magnetic susceptibility (MS) measurements. Results from these measurements are compared to previously determined calcium carbonate percentages, and clay and hematite influx trajectories into the Gulf of Mexico for the same samples reported by Balsam and Beeson [Balsam, W.L. and Beeson, J.P., 2003. Sea-floor sediment distribution in the Gulf of Mexico, Deep-Sea Res. I, 50, 1421–1444.]. The ARM results give an estimate of magnetic grain size distributions, and by analogy, grain size distributions in general, whereas MS patterns show high detrital sediment accumulation zones within the Gulf. The dominant influx of modern high susceptibility sediment into the Gulf of Mexico appears to originate from the Red River, flow into Atchafalaya River Basin and out into the Gulf from Atchafalaya Bay, with significant additional contributions from the Mississippi River through the Southwest Pass of the Mississippi River Delta. This material then moves across the continental shelf and down through the Mississippi Canyon into the deep Gulf where it is redistributed at depths > 3600 m. The eastern shelf margins in the Gulf, offshore from Alabama and Florida, are accumulating calcite- or quartz-rich medium to fine-grained sediment that has a very low or diamagnetic MS signature. From the Louisiana to Texas Gulf coast margins, MS is moderate to high, suggesting a river influx of magnetic constituents from the volcanic fields in New Mexico, and from igneous and metamorphic sources in the Mississippi Basin. Offshore from western Mexico, the MS is high to moderate, but the Yucatan Shelf margin is characterized by low to diamagnetic MS values due to sediment dominated by calcite sands and oozes, a trend that continues to the east onto the West Florida Shelf. Additional measurements of samples collected in association with sites characterized by hydrocarbon seepage exhibit anomalously low MS values. The samples from the lower shelf and slope areas are typified by iron reduction by bacterial organisms in these samples. These results produce anomalous localized lows in the MS trends observed.  相似文献   

11.
The purpose of this study was to determine if and how a large, modern estuarine system, situated in the middle of an ancient carbonate platform, has affected its adjacent inner shelf both in the past during the last, post-glacial sea-level rise and during the present. An additional purpose was to determine if and how this inner shelf seaward of a major estuary differed from the inner shelves located just to the north and south but seaward of barrier-island shorelines. Through side-scan sonar mosaicking, bathymetric studies, and ground-truthing using surface grab samples as well as diver observations, two large submarine sand plains were mapped – one being the modern ebb-tidal delta and the other interpreted to be a relict ebb-tidal delta formed earlier in the Holocene. The most seaward portion of the inner shelf studied consists of a field of lobate, bathymetrically elevated, fine-sand accumulations, which were interpreted to be sediment-starved 3D dunes surrounded by small 2D dunes composed of coarse molluscan shell gravel. Additionally, exposed limestone hardbottoms supporting living benthic communities were found as well. This modern shelf sedimentary environment is situated on a large, buried shelf valley, which extends eastward beneath the modern Tampa Bay estuary. These observations plus the absence of an incised shelf valley having surficial bathymetric expression, and the absence of sand bodies normally associated with back-tracking estuarine systems indicate that there was no cross-shelf estuarine retreat path formed during the last rise in sea level. Instead, the modern Tampa Bay formed within a mid-platform, low-relief depression, which was flooded by rising marine waters late in the Holocene. With continued sea-level rise in the late Holocene, this early embayment was translated eastward or landward to its present position, whereby a larger ebb-tidal delta prograded out onto the inner shelf. Extensive linear sand ridges, common to the inner shelves to the north and south, did not form in this shelf province because it was a low-energy, open embayment lacking the wave climate and nearshore zone necessary to create such sand bodies. The distribution of bedforms on the inner shelf and the absence of seaward-oriented 2D dunes on the modern ebb-tidal delta indicate that the modern estuarine system has had little effect on its adjacent inner shelf.  相似文献   

12.
The narrow shelf along the coast of central Vietnam is seasonally supplied by large amounts of sediment from the adjacent mountainous hinterland following monsoonal precipitation. This study examines the fate of these sediments, and their accumulation rates along two transects across the shelf, based on analyses of radionuclides (210Pb, 137Cs), sediment texture and structure, as well as carbonate content. The inner shelf is covered by sands, and probably serves as bypass zone for fine sediments transported offshore. Sediment characteristics suggest that the transport to the mid and outer shelf is related to flood events. Averaged over the last century, the 210Pb-based mud mass accumulation rates on the mid and outer shelf vary between 0.25 g cm −2 and 0.56 g cm −2 year −1 (corresponding to linear sediment accumulation rates of 0.20–0.47 cm year −1). Along with high excess 210Pb inventories, these high accumulation rates suggest a significant sediment depocentre on the mid shelf. The 210Pb-derived sediment accumulation rates were found to be several times higher than 14C-derived rates previously reported for the Holocene, at the same location on the outer shelf. This is probably due to the incompleteness of the Holocene record, and an overestimation of the modern rate. Another explanation would be increased erosion within the rivers’ drainage basins, due to 20th century deforestation. This hypothesis is supported by the difference between recent (less sand, more lithic grains in the sand fraction) and older sediments. In terms of modern sedimentation processes and rates, the central Vietnam shelf, although being a part of a narrow passive continental margin, is similar to active flood-dominated continental margins.  相似文献   

13.
By transforming fixed nitrogen (N) into nitrogen gas, the biochemical processes that support denitrification provide a function critical to maintaining the integrity of ecosystems subjected to increased loading of N from anthropogenic sources. The Louisiana coastal region receives high nitrate (NO3?) concentrations (> 100 µM) from the Mississippi–Ohio–Missouri River Basin and is also an area undergoing high rates of wetland loss. Ongoing and anticipated changes in the Louisiana coastal region promise to alter biogeochemical cycles including the net rate of denitrification by ecosystems. Projecting what these changes could mean for coastal water quality and natural resources requires an understanding of the magnitude and patterns of variation in denitrification rates and their connection to estuarine water quality at large temporal and spatial scales under current conditions. We compile and review denitrification rates reported in 32 studies conducted in a variety of habitats across coastal Louisiana during the period 1981– 2008. The acetylene inhibition and 15N flux were the preferred techniques (95%); most of the studies used sediment slurries rather than intact sediment cores. There are no estimates of denitrification rates using the N2/Ar ratio and isotope pairing techniques, which address some of the problems and limitations of the acetylene inhibition and 15N flux techniques. These studies have shown that sediments from estuaries, lakes, marshes, forested wetlands, and the coastal shelf region are capable of high potential denitrification rates when exposed to high NO3? concentrations (> 100 µM). Maximum potential denitrification rates in experimental and natural settings can reach values > 2500 µmol m2 h? 1. The lack of contemporary studies to understand the interactions among critical nitrogen transformations (e.g., organic matter mineralization, immobilization, aquatic plant assimilation, nitrification, nitrogen fixation, dissimilatory nitrate reduction to ammonium (DNRA) and anaerobic ammonium oxidation (annamox) limits our understanding of nitrogen cycling in coastal Louisiana, particularly the role of respiratory and chemolithoautotrophic denitrification in areas undergoing wetland restoration.  相似文献   

14.
Based on the seasonal surveying data and long-term data, the annual changes in the geographical locations, occurrence frequency, affected areas and the minimum oxygen level as well as the formation mechanism of the summer hypoxia off the Changjiang estuary are summarized and discussed in this paper. The historical data indicates that there were episodes of hypoxia in the past 50 years but not every year, and the event of summer hypoxia could be traced back to as early as late 1950s off the Changjiang estuary. The minimum oxygen levels in the hypoxia zone did not show any decline in the past 50 years, but all the events with large size of affected area (>5000 km2) were observed after the late 1990s, suggesting an enlarging trend. The author argues that the development of summer hypoxia off the Changjiang estuary was related not only to stratification and input of suspended particulate matter, but also to the inflow of Taiwan warm current water as well as the bottom topography.  相似文献   

15.
Cyclic sequences occur worldwide in nearly every stratigraphic sequence; they are particularly well-developed in fluvial and deltaic sediments that have been influenced by high-frequency eustatic sea-level fluctuations. The large data base for this study (including 471 deep foundation borings, thousands of line kilometers of high-resolution seismic, and sedimentological and dating analyses) represents the most complete information on high-resolution chronostratigraphy and lithostratigraphy that is available on any modern continental shelf/upper slope. These data are used to document sedimentological characteristics and high-resolution seismic responses during three complete sea-level cycles over the entire continental shelf/upper slope of offshore Louisiana. Examination of high-resolution seismic records indicates that well-defined, high-amplitude, laterally continuous reflectors correlate with rising and high stand condensed sedimentary sequences and that the deposits laid down during falling and low-stand periods (expanded sections) are characterized by a wide range of acoustic responses. Discontinuous reflectors with high-amplitude variability, continuous parallel reflectors, and chaotic and amorphous zones are common acoustic responses. The association between a particular lithofacies and a specific acoustic response on 3.5-kHz records was found to be very poor.  相似文献   

16.
The effects of hypoxic bottom water, an annual event, were documented on the inner shelf off Cameron, Louisiana during the summer of 1981. Populations of most species of macrobenthos were dramatically reduced. In an area of fine sediment that was numerically dominated by polychaetous annelids, the most severely affected populations were those of tube-dwelling and surface-feeding species. Burrowing species were less influenced by the hypoxia.  相似文献   

17.
A sediment budget for the South Otago continental shelf and coast, between Nugget Point and Otago Peninsula, reveals modern (post 6500 y) sediment input is dominated by the Clutha River (total 3.14 Mt y‐1; Mt = 106 tonnes). Contributions from the Taieri River (0.6 Mt y‐1), the adjacent Southland shelf (0.4 Mt y‐1), and the biogenic production of calcareous shell debris (0.25 Mt y‐1) account for only 28% of the input. About half of the bedload (sand and gravel) reaching the Otago shelf is stored within a large nearshore sand wedge in the protected waters of Molyneux Bay, off the Clutha River. Bedload that escapes storage (1.1 Mt y‐1) is transported north‐eastwards to be deposited on beach and inner shelf environments just north of Otago Peninsula. Suspended load (mud) accounts for over half of the sediment input (2.33 Mt y‐1) and is nearly all transported from the study area to accumulate in north‐easterly shelf and slope depocentres.  相似文献   

18.
Cyclic sequences occur worldwide in nearly every stratigraphic sequence; they are particularly well developed in marine deposits associated with large river systems. Superimposed on those cycles attributed to shifting sites of deposition are those related to high-frequency sea level changes. The large data base for this study (including 471 deep foundation borings, thousands of line kilometers of high-resolution seismic, and sedimentological and dating analyses) represents the most complete information on high-resolution chronostratigraphy and lithostratigraphy that is available on any modern continental shelf/upper slope. These data are used to document sedimentological characteristics and spatial depositional patterns during three complete sea level cycles over the entire continental shelf/upper slope of offshore Louisiana. Sedimentation during periods of high sea level is characterized by: 1) thin, slowly accumulated depositional sequences, referred to as condensed sections, 2) calcareous-rich deposits, including hemipelagic sediments and shell hashes, and 3) wide lateral continuity. Sedimentation during periods of low sea level is characterized by; 1) variable-thickness, rapidly accumulated sequences referred to as expanded sections, 2) coarse-grained elastic deposits, including abundant sands and gravels, and 3) well-defined depositional trends. Even though the data set covers only a short period of geologic time (240 000 yrs), these high frequency events are responsible for the deposition of excellent reservoir-quality facies in well-defined and predictable trends.  相似文献   

19.
Several shore-parallel marine sand bodies lie on the Louisiana continental shelf. They are Trinity Shoal, Ship Shoal, Outer Shoal, and the St. Bernard Shoals. These shoals mark the submerged positions of ancient shorelines associated with abandoned deltas. Three of these shoals are single elongate deposits. The fourth shoal, the St. Bernard Shoals, consists of a group of discrete sand bodies ranging in size from 44 to 0.05 km2, 25 km southeast of the Chandeleur Islands in 15–18 m of water. The St. Bernard Shoals are stratigraphically above the St. Bernard delta complex, which was active 2,500–1,800 years b.p. Understanding the evolution of the St. Bernard Shoals is necessary to reconstruct the Holocene chronology of the St. Bernard delta complex and the eastern Louisiana continental shelf. For this study, 47 vibracores and 400 km of shallow seismic reflection data collected in 1987 across the Louisiana shelf were analyzed. In June 2008, 384 km of higher-resolution seismic reflection data were acquired across the study area and appended to the preexisting datasets. Vibracores were integrated with seismic profiles to identify facies and their regional distribution. Our results demonstrate that the deltaic package stratigraphically below the St. Bernard Shoals is chronologically younger than the northern distributaries, but derived from the same trunk distributary channel (Bayou la Loutre). The river eventually bypassed the northern distributaries, and began to deposit sediment further onto the continental shelf. After abandonment, the overextended delta lobe was rapidly transgressed, creating a transgressive shoreline that eventually coalesced with earlier shorelines in the region to form the Chandeleur Islands. The St. Bernard Shoals formed by the reworking of the relict distributary deposits exposed on the inner to mid shelf during and subsequent to shoreface ravinement.  相似文献   

20.
A combination of CTD casts, discrete bottle sampling and in situ voltammetric microelectrode profiling was used to examine changing redox conditions in the water column at a single station south of the Bay Bridge in the upper Chesapeake Bay in late July/early August, 2002–2005. Short-term (2–4 h) fluctuations in the oxic/suboxic/anoxic interface were documented using in situ voltammetric solid-state electrodes. Profiles of dissolved oxygen and sulfide revealed tidally-driven vertical fluctuations of several meters in the depth and thickness of the suboxic zone. Bottom water concentrations of sulfide, Mn2+ and Fe2+ also varied over the tidal cycle by approximately an order of magnitude. These data indicate that redox species concentrations at this site varied more due to physical processes than biogeochemical processes. Based on analysis of ADCP data, tidal currents at this station were strongly polarized, with the principal axis of tidal currents aligned with the mainstem channel. Together with the chemical data, the ADCP analysis suggests tidal flushing of anoxic bottom waters with suboxic water from north of the site. The present study is thus unique because while most previous studies have focused on processes across relatively stable redox interfaces, our data clearly demonstrate the influence of rapidly changing physical mixing processes on water column redox chemistry.Also noted during the study were interannual differences in maximum bottom water concentrations of sulfide, Mn2+ and Fe2+. In 2003, for example, heavy spring rains resulted in severe hypoxia/anoxia in June and early July. While reported storm-induced mixing in late July/early August 2003 partially alleviated the low-oxygen conditions, bottom water concentrations of sulfide, Mn2+ and Fe2+ were still much higher than in the previous year. The latter implies that the response time of the microbial community inhabiting the suboxic/anoxic bottom waters to changing redox conditions is slow compared to the time scale of episodic mixing events. Bottom water concentrations of the redox-sensitive chemical species should thus be useful as a tracer to infer prior hypoxic/anoxic conditions not apparent from ambient oxygen levels at the time of sampling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号