首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In June 1981, dissolved Zn, Cd, Cu, Ni, Co, Fe, and Mn were determined from two detailed profiles in anoxic Baltic waters (with extra data for Fe and Mn from August 1979). Dramatic changes across the O2H2S interface occur in the abundances of Cu, Co, Fe, and Mn (by factors of ?100). The concentrations of Zn, Cd, and Ni at the redox front decrease by factors between 3 to 5.Equilibrium calculations are presented for varying concentrations of hydrogen sulfide and compared with the field data. The study strongly supports the assumption that the solubility of Zn, Cd, Cu, and Ni is greatly enhanced and controlled by the formation of bisulfide and(or) polysulfide complexes. Differences between predicted and measured concentrations of these elements are mainly evident at lower ΣH2S concentrations.Cobalt proved to be very mobile in anoxic regions, and the results indicate that the concentrations are limited by CoS precipitation. The iron (Fe2+) and manganese (Mn2+) distribution in sulfide-containing waters is controlled by total flux from sediment-water interfaces rather than by equilibrium concentrations of their solid phases (FeS and MnCO3). The concentrations of these metals are therefore expected to increase with prolonged stagnation periods in the basin.  相似文献   

2.
利用埋栖性双壳类生物泥蚶(Tegillarca granosa)重组铁蛋白富集锰铁的性质,在不同锰铁浓度下制备Fe-铁蛋白和Mn-铁蛋白磁性纳米颗粒,通过扫描电镜观察高、中和低三个浓度下制备Fe-铁蛋白和Mn-铁蛋白磁性纳米颗粒的表面形貌,通过PPMS综合物性测量系统测定Fe-铁蛋白和Mn-铁蛋白磁性纳米颗粒的磁学性质。结果显示,在低浓度(0.1mmol/L)锰铁制备的Fe-铁蛋白和Mn-铁蛋白磁性纳米颗粒粒径均一,分散性好;发现Fe-铁蛋白和Mn-铁蛋白的磁滞回线均表现为超顺磁性,且随着重组铁蛋白对锰铁富集量的增加,磁性强度随之增大,增加速率逐渐减小。通过本实验探索高、中和低三个浓度下制备Fe-铁蛋白和Mn-铁蛋白磁性纳米颗粒的磁化强度变化规律,为Fe-铁蛋白和Mn-铁蛋白磁性纳米颗粒的应用提供数据支持。  相似文献   

3.
A sulfur budget for the Black Sea anoxic zone   总被引:1,自引:0,他引:1  
A budget for the sulfur cycle in the Black Sea is proposed which incorporates specific biogeochemical process rates. The average sulfide production in the water column is estimated to be 30–50 Tg yr−1, occurring essentially in the layer between 500 and 2000 m. About 3.2–5.2 Tg sulfide yr−1 form during sulfate reduction in surface sediments of the anoxic zone. Total sulfur burial in anoxic sediments of 1 Tg yr−1 consists of 10–70% (ca. 40–50% is the average) water column formed (syngenetic) component, the rest being diagenetic pyrite. As a maximum, between 3 and 5 Tg yr−1 contribute sulfide to the bottom water or diffuse downward in the sediment. About 20–50 Tg yr−1 sulfide is oxidized mostly at the chemocline and about 10–20% of this amount (4.4–9.2 Tg yr−1) below the chemocline by the oxygen of the Lower Bosphorus Current. A model simulating the vertical distribution of sulfide in the Black Sea water column shows net consumption in the upper layers down to ca. 500 m, essentially due to oxidation at the chemocline, and net production down to the bottom. On the basis of the calculated budget anoxic conditions in the Black Sea are sustained by the balance between sulfide production in the anoxic water column and oxidation at the chemocline. On average the residence time of sulfide in the anoxic zone is about 90–150 yr, comparable to the water exchange time between oxic and anoxic zones. Hydrophysical control on the sulfur cycle appears to be the main factor regulating the extent of anoxic conditions in the Black Sea water column, rather than rates of biogeochemical processes.  相似文献   

4.
Studies of the Cariaco Basin on the continental shelf of Venezuela, as a part of the Carbon Retention In A Colored Ocean (CARIACO) program, have revealed that the chemistry of the deeper waters of the system is more variable than previously believed. Small oxygen maxima have been observed on a number of occasions at depths where oxygen was previously absent, suggesting the occurrence of intrusions of oxygenated water into the region of the oxic/anoxic interface (250–300 m). Apparently because of these events, the oxic/anoxic interface deepened by about 100 m during the period of our observations. We also observed a dramatic decrease in H2S concentrations at all depths below the oxic/anoxic interface during this same period. Bottom waters, for example, had an H2S concentration of about 75 μM in November 1995, but since November 1997, concentrations in bottom water have not exceeded 55 μM. Water of sufficient density to sink to the bottom of the Basin has been observed on one occasion at sill depth just north of the eastern sill. However, based on a simple box model, the decrease in deep-water sulfide does not appear to be due to intrusion of oxygenated water alone, as concentrations of other measured species, and of hydrographic parameters, have remained constant with time. Instead, we postulate that an earthquake that took place in July 1997 resulted in a turbidity current that transported large quantities of coastal sediment containing oxidized iron into the deep waters of the basin. If the final products of reaction were elemental sulfur and iron sulfide, the sediment associated with the oxidized iron would have produced a turbidite layer about 10 cm thick. Previous earthquakes have produced turbidites of similar thickness.  相似文献   

5.
New data are reported on the sulfur isotope composition and concentration of sulfide and sulfate in the upper part of the Black Sea anoxic zone as a function of the potential water density. The observations were performed at a station with the coordinates 44.489° N and 37.869° E three times a week every two days. A local negative deficiency in sulfate concentration up to 1.7% related to the sulfate reduction processes was recorded. This anomaly in sulfate concentration was short-lived and did not affect the sulfur isotope composition. In the upper part of the anaerobic zone, the δ34S(SO4) value varied from 21.2 to 21.5‰, which could have occurred from mixing of water masses from the oxic zone (21.1‰) and the Bottom Convective Layer (23.0 ± 0.2‰). The sulfur isotope composition of sulfide ranged from ?40.8% at a depth of 250 m to ?39.4‰ at the upper boundary of the anoxic zone with a H2S content of only 2.7 μM. Two models (mass balance and fractionation of sulfur isotopes using the Rayleigh equation) are considered to explain the differences in δ34S(H2S) values observed.  相似文献   

6.
Uldolmok waterway, located between an island off the southwestern tip of Korean peninsula and mainland, is famous for its strong tidal current that has a maximum current of about 6.0m/s. A series of field observations along with numerical modeling have been carried out in order to understand the tidal dynamics in terms of the force balance along the whole waterway and the energy balance in the narrowest part of the waterway. First, analysis of the ADCP current and the tide level variation data reveals that the tidal dynamics along the total waterway (channel) is balanced dominantly between the pressure gradient and linear bottom frictional forces, with the phase lag of sea level difference for the semi-diurnal constituents leading the current phase about by 10°. Secondly, the result of the numerical modeling reveals that the tidal energy flux vector flows toward the narrowest section, indicating that there should be related nonlinear processes. Through the numerical model experiment with multi-components, the convergence of (M2 + S2) tidal energy flux of 6.68 × 107 Joule/s in the narrow area of the Uldolmok waterway is explained mainly by the energy consumption of 73% through the nonlinear generation of shallow water components and by the bottom frictional energy dissipation of 27%. This reveals that the remarkably strong nonlinear process dominates in the narrowest section of the Uldolmok waterway, compared with other areas, such as Yellow and East China Seas where the total M2 energy flux through the open boundary is balanced in terms of the bottom dissipation (Kang et al. 2003; Choi 1980).  相似文献   

7.
Estuarine turbidity maxima (ETMs) are sites of intense mineralisation of land-derived particulate organic matter (OM), which occurs under oxic/suboxic oscillating conditions owing to repetitive sedimentation and resuspension cycles at tidal and neap-spring time scales. To investigate the biogeochemical processes involved in OM mineralisation in ETMs, an experimental set up was developed to simulate in vitro oxic/anoxic oscillations in turbid waters and to follow the short timescale changes in oxygen, carbon, nitrogen, and manganese concentration and speciation. We present here the results of a 27-day experiment (three oxic periods and two anoxic periods) with an estuarine fluid mud from the Gironde estuary. Time courses of chemical species throughout the experiment evidenced the occurrence of four distinct characteristic periods with very different properties. Steady oxic conditions were characterised by oxygen consumption rates between 10 and 40 μmol L−1 h−1, dissolved inorganic carbon (DIC) production of 9–12 μmol L−1 h−1, very low NH4+ and Mn2+ concentrations, and constant NO3 production rates (0.4 - 0.7 μmol L−1 h−1) due to coupled ammonification and nitrification. The beginning of anoxic periods (24 h following oxic to anoxic switches) showed DIC production rates of 2.5–8.6 μmol L−1 h−1 and very fast NO3 consumption (5.6–6.3 μmol L−1 h−1) and NH4+ production (1.4–1.5 μmol L−1 h−1). The latter rates were positively correlated to NO3 concentration and were apparently caused by the predominance of denitrification and dissimilatory nitrate reduction to ammonia. Steady anoxic periods were characterised by constant and low NO3 concentrations and DIC and NH4+ productions of less than 1.3 and 0.1 μmol L−1 h−1, respectively. Mn2+ and CH4 were produced at constant rates (respectively 0.3 and 0.015 μmol L−1 h−1) throughout the whole anoxic periods and in the presence of nitrate. Finally, reoxidation periods (24–36 h following anoxic to oxic switches) showed rapid NH4+ and Mn2+ decreases to zero (1.6 and 0.8–2 μmol L−1 h−1, respectively) and very fast NO3 production (3 μmol L−1 h−1). This NO3 production, together with marked transient peaks of dissolved organic carbon a few hours after anoxic to oxic switches, suggested that particulate OM mineralisation was enhanced during these transient reoxidation periods. An analysis based on C and N mass balance suggested that redox oscillation on short time scales (day to week) enhanced OM mineralisation relative to both steady oxic and steady anoxic conditions, making ETMs efficient biogeochemical reactors for the mineralisation of refractory terrestrial OM at the land-sea interface.  相似文献   

8.
Fluxes of dissolved forms of iron and manganese across the sediment–water interface were studied in situ in the Gulf of Finland and the Vistula Lagoon (Baltic Sea), and in the Golubaya Bay (Black Sea) from 2001 to 2005. Fluxes were measured using chamber incubations, and sediment cores were collected and sliced to assess the porewater and solid phase metal distribution at different depths. Measured and calculated benthic fluxes of manganese and iron were directed out of sediment for all sites and were found to vary between 70–4450 and 5–1000 µmole m− 2 day− 1 for manganese and iron, respectively. The behavior of the studied metals at various redox conditions in the near-bottom water and in the sediment was the main focus in this study. Our results show the importance of bottom water redox conditions for iron fluxes. We measured no fluxes at oxic conditions, intermediate fluxes at anoxic conditions (up to 200 μmole m− 2 day− 1) and high fluxes at suboxic conditions (up to 1000 μmole m− 2 day− 1). Total dissolved iron fluxes were generally dominated by iron(II). Contribution of iron(III) to the total iron flux did not exceed 20%. Obtained fluxes of manganese at all studied regions showed a linear correlation (r2 = 0.97) to its concentration in the porewater of the top sediment layer (0–5 mm) and did not depend on dissolved oxygen concentrations of bottom water. Organically complexed iron and manganese were in most cases not involved in the benthic exchange processes.  相似文献   

9.
Total arsenic, arsenate and arsenite concentration profiles for the water column of Saanich Inlet, an intermittently anoxic fjord located on Vancouver Island, B.C., Canada, were measured using independent analytical techniques for total arsenic and arsenic speciation to evaluate the accuracy of the speciation technique in both oxic and anoxic marine environments. Total arsenic profiles indicate a mid-depth minimum of about 1.0 ppb above the oxic—anoxic interface and an enrichment in the anoxic zone to about 2.0 ppb. This minimum may be due to either advection of arsenic-poor water into Saanich Inlet at mid-depth or arsenic incorporation onto solid phases within a bacteria- and manganese-rich particulate layer located immediately above the oxic—anoxic interface and subsequent removal via sinking particulate material. Ratios of total arsenic to phosphorus in the deep, anoxic waters of the basin are similar to those reported for marine algae, suggesting that the enrichment of total arsenic within the anoxic bottom layer may be due to its release upon organic matter decomposition.Arsenate and arsenite concentration versus depth profiles indicate a rapid (but incomplete in a thermodynamic sense) response to the oxic—anoxic interface. The arsenate/ arsenite concentration ratio is 15/1 in the oxic region of the water column and 1/12 in the anoxic zone. Arsenate—arsenite interconversion occurs at a depth shallower than ferric-ferrous but deeper than MnO2 —Mn2+ interconversions.Measurements of arsenite oxidation rates at near-ambient arsenite concentrations and temperatures using an 74As3+ radioactive tracer technique indicate that arsenite oxidation is initially ten times faster in seawater taken from the manganese-rich particulate layer at 165 m depth than in seawater collected near the surface at 50 m depth. Addition of antibiotics to seawater from 165 m depth initially suppressed the rate of arsenite oxidation, indicating that it may be partially microbially mediated.  相似文献   

10.
《Marine Chemistry》2001,74(1):29-51
Major electron donors (H2S, NH4+, Mn2+, Fe2+) and acceptors (O2, NO3, Mn(IV), Fe(III)), process rates (35SO42− reduction, dark 14CO2 fixation) and vertical fluxes were investigated to quantify the dominant biogeochemical processes at the chemocline of a shallow brackish fjord. Under steady-state conditions, the upward fluxes of reductants and downward fluxes of oxidants in the water column were balanced. However, changes in the hydrographical conditions caused a transient nonsteady-state at the chemocline and had a great impact on process rates and the distribution of chemical species. Maxima of S0 (17.8 μmol l−1), thiosulfate (5.2 μmol l−1) and sulfite (1.1 μmol l−1) occurred at the chemocline, but were hardly detectable in the sulfidic deep water. The distribution of S0 suggested that the high concentration of S0 was (a) more likely due to a low turnover than a high formation rate and (b) was only transient, caused by chemocline perturbations. Kinetic calculations of chemical sulfide oxidation based on actual conditions in the chemocline revealed that under steady-state conditions with a narrow chemocline and low reactant concentrations, biological sulfide oxidation may account for more than 88% of the total sulfide oxidation. Under nonsteady-state conditions, where oxic and sulfidic water masses were recently mixed, resulting in an expanded chemocline, the proportion of chemical sulfide oxidation increased. The sulfide oxidation rate determined by incubation experiments was 0.216 μmol l−1 min−1, one of the highest reported for stratified basins and about 15 times faster than the initial rate for chemical oxidation. The conclusion of primarily biological sulfide oxidation was consistent with the observation of high rates of dark 14CO2 fixation (10.4 mmol m−2 day−1) in the lower part of the chemocline. However, rates of dark 14CO2 fixation were too high to be explained only by lithoautotrophic processes. CO2 fixation by growing populations of heterotrophic microorganisms may have additionally contributed to the observed rates.  相似文献   

11.
Concentrations of U and Th isotopes in Okinawa Trough and East China Sea sediment cores were determined by isotope dilution inductively coupled plasma-mass spectrometry (ID-ICP-MS) to investigate the behavior of redox sensitive uranium in suboxic hemipelagic sediments and determine their significance in oceanic uranium balance. 238U concentrations and 238U/232Th activity ratios in the East China Sea sediments showed no remarkable variation with depth. However, 238U and 238U/232Th ratios in the Okinawa Trough sediments were low in the surface oxidizing layer but increased where the suboxic condition was encountered. The distribution profiles of 230Th and 232Th concentrations were relatively constant with depth in both the Okinawa Trough and East China Sea sediment cores. These results suggested that there has been post-depositional precipitation of authigenic uranium within the suboxic Okinawa Trough sediment column. The post-depositional precipitation rates of authigenic uranium were estimated to be 47 ± 5 to >62 ± 8 ng cm−2 yr−1; these rates were comparable to those previously reported for several anoxic sediments. A mechanism controlling precipitation of uranium may be the downward diffusion of uranium U(VI), reduction to U(IV) and finally precipitation onto the solid phase. The accumulation rate of uranium for the Okinawa Trough sediments was approximately eight times higher than the world average rate reported for suboxic sediments. This removal of uranium in the oceanic budget increases the importance of the suboxic sediment sink.  相似文献   

12.
A high-frequency (1.2 MHz) four-beam Acoustic Doppler Current Profiler (ADCP) moored on the sea bottom was used for the direct measurements of the turbulence parameters in the shallow (20 m) coastal zone of the eastern English Channel. The measurements were as long as four tidal cycles during the period of the spring tide development. The measurements in the ocean and estimates showed that the Reynolds stress variability coincided with the semidiurnal tide. Their maximum values during the flood phase were approximately 1.5 Pa, while, during the ebb phase, they reached −1.2 Pa. The variations of the turbulence’s kinetic energy (TKE) and the rate of its production (P) coincided with the period of the tidal harmonic M4. Their maximum values were found during the flood phase near the bottom, and they were approximately equal to 0.03 m2/s2 and 0.8 W/m3, respectively. These values decreased rapidly with the distance from the bottom. During the periods of low stagnant water, the values of TKE and P in the water column decreased to the minimum values (2 × 10−3 m2/s2 and 3 × 10−5 W/m3, respectively), which coincided with the moment of the current’s reversal flow. The results demonstrated the dominating role of the tidal motion, which controls the structure and intensity of the turbulence in the bottom layer, and revealed the characteristic asymmetry of its distribution related to the nonlinear character of the tidal cycle.  相似文献   

13.
Dissolved and total dissolvable manganese concentrations have been measured at four stations in the western North Atlantic Ocean. Total dissolvable manganese concentrations are high in surface waters, decrease to uniformly low levels throughout the bulk of the water column, and increase in the bottom nepheloid layer. Dissolved Mn (Mnd) concentrations follow the total dissolvable concentrations throughout the surface and deep waters but do not increase in the near-bottom waters.Deep water concentrations of Mnd decrease from 30 ng l?1 in the Newfoundland Basin to 20 ng l?1 in the Sargasso Sea. This change and other features of the deep water distribution of dissolved manganese could be associated with the slow oxidation of Mn2+ to MnO2. There is also evidence at one station of scavenging of manganese from the dissolved phase in the near-bottom layer which may again be related to the kinetics of manganese oxidation.  相似文献   

14.
为了解红树林与光滩磷、铁地球化学行为的差异,借助薄膜扩散梯度技术(ZrO-Chelex DGT),对厦门同安湾红树林及临近光滩孔隙水中溶解活性磷(DRP)、Fe~(2+)浓度进行了原位测量,并采集了相应沉积物柱状样进行测定分析。结果表明:(1)Fe~(2+)与DRP呈现较好的线性正相关,说明磷的吸附/解吸与铁氧化还原循环有关;(2)在不同深度,光滩孔隙水中DRP浓度均高于对应深度红树林。在浅层,由于溪水的补给造成光滩的磷富集;在深层,红树植物根部吸收导致磷浓度下降,光滩有机质含量较多,矿化释放DRP使其浓度较高;(3)孔隙水中的Fe~(2+)浓度分布表明,红树林区域随着深度的增加,逐渐由好氧环境进入厌氧环境;而光滩沉积物氧化还原环境可能受到红树林的影响,孔隙水Fe~(2+)在垂向上波动分布。  相似文献   

15.
Community metabolism and nutrient, iron (Fe) and manganese (Mn) cycling were examined in two intertidal, marine, microbial mat communities during short (4–5 days) incubations in closed, flow-through microcosms. Sediment microcosms were incubated under either light (light–dark cycles) or dark (continuous darkness) conditions to assess the effect(s) of photosynthetic oxygen production and microalgal activity on nutrient, Fe and Mn cycling. The effects of chemical redox reactions between reduced sulphur (S), Fe and Mn cycling were examined by blocking sulphate reduction, and reduced S production, with 25 mM molybdate while incubating under dark conditions.In light-incubated microcosms, negligible fluxes of nutrients (nitrogen and phosphorus) and trace metals were observed. A substantial sediment–water flux of reduced Fe (Fe2+) and Mn (Mn2+) was observed in microcosms incubated under continuous darkness; highest fluxes were observed in molybdate-amended microcosms. At both sites, biologically-mediated redox reactions accounted for a substantial (>50%) portion of the Fe2+and Mn2+flux. Both microbial mat communities exhibited similar rates of gross photosynthetic oxygen (O2) production, but dramatically different rates of net benthic O2flux. Distinct patterns of net O2production and trace metal cycling arose from differences in either trace metal oxide availability or reactivity (mineralogy), organic carbon mineralization rates, or sediment characteristics (porosity). Variations in the microbial community responsible for trace metal cycling could have also contributed to the pattern. The present data illustrate that chemically-mediated redox reactions between metal oxides and reduced S complicate interpretation of Fe and Mn fluxes, underscoring the need to separate chemical and biological reactions when attempting to determine the role of biological trace metal reduction in organic carbon oxidation.  相似文献   

16.
We report a simplified synthesis, and some performance characteristics, for 8-hydroxyquinoline (8-HOQ) covalently bonded to a chemically resistant TosoHaas TSK vinyl polymer resin. The resin was used to concentrate trace metals from stored, acidified seawater samples collected from Jellyfish Lake, an anoxic marine lake in the Palau Islands. The Mn, Fe, and Zn profiles determined from the 8-HOQ resin extraction were similar to those determined using Chelex-100 resin. The Zn and Cd profiles did not exhibit removal by sulfide “stripping” in contrast to other anoxic marine basins. The profiles of Co and Ni also exhibited elevated concentrations in the anoxic hypolimnion. The solution speciation and saturation states for the metals were calculated using revised metal-bisulfide stability constants. The calculations suggest that the MS(HS) species dominates the solution speciation for Mn, Co, Ni, Zn, Cd, and Pb. Cu(I) is modeled as the CuS or Cu(HS)2 species, while Fe(II) behaves as the free Fe2+ cation. The Mn, Co, Ni, Cu and Cd concentrations appeared to be at least 10-fold undersaturated, while the Fe(II), Zn, and Pb concentrations were close to saturation with respect to their metal sulfides.  相似文献   

17.
Beppu Bay is a shallow basin located at the western end of the Seto Inland Sea with a sill depth ofca. 40 m. The bottom water (belowca. 65 m in summer andca. 70 m in winter) was anoxic and contained high concentrations of hydrogen sulfide, phosphate and ammonium. Maximum concentrations of nitrate and nitrite appeared near the top of the thermocline, suggesting the occurrence of bacterial nitrification in this layer and of bacterial denitrification in the anoxic bottom water. Concentrations of particulate phosphorus and particulate iron were highest near the bottom of the thermocline. The distribution of phosphorus in this bay is probably controlled by a dissolution-diffusion-precipitation cycle of iron or its hydrous oxides.  相似文献   

18.
The presence of a strongly developed oxygen minimum zone (OMZ; [O2]<2 μM) in the northeastern Arabian Sea affords the opportunity to investigate whether oxygen deficiency in bottom waters enhances the preservation of organic matter in the underlying sediments. We explored if the observed patterns of organic matter accumulation could be explained by differences in productivity, sedimentation rate, water depth, and mineral texture. The differences in the burial rates of organic matter in sediments deposited within or below the OMZ could not be explained on the basis of these factors. All collected evidence points to a coupling of low oxygen concentrations and enhanced organic matter preservation. Under more oxygenated conditions bioturbation as well as the presence of labile manganese and iron oxides are probably important factors for a more efficient microbially mediated degradation of organic matter. Pore water profiles of dissolved Mn2+ and Fe2+ show that reduction of manganese and iron oxides plays a minor role in sediments lying within the OMZ and a larger role in sediments lying below the OMZ.  相似文献   

19.
Deep-sea nodules from the Southeast Pacific (northern sector of the Nazca Plate) have been studied regarding their metal content, shapes, and sedimentary environment. The area investigated lies in the southern boundary region of the equatorial zone of high biological productivity. The nodules accumulate by two different growth processes: (1) early diagenetic growth by supply from pore water and (2) hydrogenetic growth by supply from near-bottom sea-water. These growth processes lead to different genetic types of nodules. Considering the MnFe ratio, the examined basin can clearly be divided in three ferromanganese facies. The MnFe quotient increases generally from south to north, whereas Ni and Cu concentrations show a distinct maximum in the mid facies at a MnFe ratio of about 5. Computing the correlation of MnFe quotient versus (Ni+Cu), hyperbolic regressions show the best coefficients of correlation and separate the quantity of nodules in two groups. The ascending and the descending hyperbola represent two geochemical ranges which are controlled by different accumulation mechanisms.  相似文献   

20.
Depth profiles of the naturally-occurring radionuclides 238U, 234U, 226Ra, 228Ra and 228Th were obtained in two diverse anoxic marine environments; the permanently anoxic Framvaren Fjord in southern Norway and the intermittently anoxic Saanich Inlet in British Columbia. Concentrations of total H2S were over three orders of magnitude greater in the anoxic bottom waters of Framvaren Fjord compared to those in Saanich Inlet.In Framvaren Fjord, the O2/H2S interface was located at 17 m. While dissolved 238U behaved conservatively throughout the oxic and anoxic water columns, concentrations based on the 238U/salinity ratio in oxic oceanic waters were almost 30% lower. Dissolved 226Ra displayed a sharp maximum just below the O2/H2S interface, coinciding with dissolved Mn (II) and Fe (II) maxima in this zone. It is suggested that reductive dissolution of Fe-Mn oxyhydroxides remobilizes 226Ra in this region.In Saanich Inlet, the O2/H2S interface was located at 175 m. Dissolved 238U displayed a strongly nonconservative distribution. The depth profiles of dissolved 226Ra and 228Th correlated well with the distribution of dissolved Mn (II) in the suboxic waters above the O2/H2S interface, suggesting that reduction of particulate Mn regulates the behavior of 226Ra and 228Th in this region.Removal residence times for dissolved 228Th in the surface oxic waters of both systems are longer than those generally reported for particle-reactive radionuclides in coastal marine environments. In the anoxic waters of Framvaren Fjord and Saanich Inlet, however, the dissolved 228Th removal residence times are quite similar to values reported for dissolved 210Pb in the anoxic waters of the Cariaco Trench and the Orca Basin. This implies that the geochemistries of Th and Pb may be similar in anoxic marine waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号