首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand the response of the Greenland ice sheet to climate change the so-called ablation zone is of particular importance, since it accommodates the yearly net surface ice loss. In numerical models and for data analysis, the bulk aerodynamic method is often used to calculate the turbulent surface fluxes, for which the aerodynamic roughness length (z 0) is a key parameter. We present, for the first time, spatial and temporal variations of z 0 in the ablation area of the Greenland ice sheet using year-round data from three automatic weather stations and one eddy-correlation mast. The temporal variation of z 0 is found to be very high in the lower ablation area (factor 500) with, at the end of the summer melt, a maximum in spatial variation for the whole ablation area of a factor 1000. The variation in time matches the onset of the accumulation and ablation season as recovered by sonic height rangers. During winter, snow accumulation and redistribution by snow drift lead to a uniform value of z 0≈ 10−4 m throughout the ablation area. At the beginning of summer, snow melt uncovers ice hummocks and z 0 quickly increases well above 10−2 m in the lower ablation area. At the end of summer melt, hummocky ice dominates the surface with z 0 > 5  ×  10−3 m up to 60 km from the ice edge. At the same time, the area close to the equilibrium line (about 90 km from the ice edge) remains very smooth with z 0 = 10−5 m. At the beginning of winter, we observed that single snow events have the potential to lower z 0 for a very rough ice surface by a factor of 20 to 50. The total surface drag of the abundant small-scale ice hummocks apparently dominates over the less frequent large domes and deep gullies. The latter results are verified by studying the individual drag contributions of hummocks and domes with a drag partition model.  相似文献   

2.
A simple new model is proposed to predict the distribution of wind velocity and surface shear stress downwind of a rough-to-smooth surface transition. The wind velocity is estimated as a weighted average between two limiting logarithmic profiles: the first log law, which is recovered above the internal boundary-layer height, corresponds to the upwind velocity profile; the second log law is adjusted to the downwind aerodynamic roughness and local surface shear stress, and it is recovered near the surface, in the equilibrium sublayer. The proposed non-linear form of the weighting factor is equal to ln(z/z 01)/ln(δ i /z 01), where z, δ i and z 01 are the elevation of the prediction location, the internal boundary-layer height at that downwind distance, and the upwind surface roughness, respectively. Unlike other simple analytical models, the new model does not rely on the assumption of a constant or linear distribution for the turbulent shear stress within the internal boundary layer. The performance of the new model is tested with wind-tunnel measurements and also with the field data of Bradley. Compared with other existing analytical models, the proposed model shows improved predictions of both surface shear stress and velocity distributions at different positions downwind of the transition.  相似文献   

3.
Surface-layer features with different prevailing wind directions for two distinct seasons (Southwest Monsoon and Northeast Monsoon) on the west coast of India are studied using data obtained from tower-based sensors at a site located about 500 m from the coast. Only daytime runs have been used for the present analysis. The surface boundary-layer fluxes have been estimated using the eddy correlation method. The surface roughnessz 0 obtained using the stability-corrected wind profiles (Paulson, 1970) has been found to be low for the Southwest monsson season. For the other season,z 0 is relatively high. The drag coefficientC D varies with height in the NE monsoon season but not in the season with lowz 0. This aspect is reflected in the wind profiles for the two seasons and is discussed in detail. The scaling behaviour of friction velocityu * and the turbulence intensity of longitudinal, lateral and vertical winds u, v and w, respectively) are further examined to study their dependence on fetch. Our study shows that for the non-dimensional case, u/u* and v/u* do not show any surface roughness dependence in either season. On the other hand, for w/u* for the season with lowz 0, the values are seen to agree well with that of Panofskyet al. (1977) for homogeneous terrain whereas for the other season with highz 0, the results seem to conform more to the values observed by Smedman and Högström (1983) for coastal terrain. The results are discussed in the light of observations by other investigators.  相似文献   

4.
Turbulence data collected with the gust probe system on the NOAA P-3 aircraft over the polynya downwind of St. Lawrence Island in the Bering Sea are used to study the fluxes of heat, momentum, and moisture from the polynya. The data also allow study of the effect of the topography of St. Lawrence Island on the atmospheric boundary-layer flow over the polynya and ultimately on ice production in the polynya. Two cases are studied: one (Feb. 15, 1982) where the topographic effects are minimal and the other (Feb. 18, 1983) where the topographic effects are dominant. Calculation of the surface drag coefficient, C D, for the Feb. 15, 1982 case over young grey/white ice gave a value of 1.2 × 10-3, which is in close agreement with previous results. The value of the drag coefficient for the grey/white ice regime on Feb. 18, 1983, where the upstream topography on St. Lawrence Island had an important influence on the flow over the polynya, was 3.2 × 10-3. It was determined that this higher value was related to the more efficient mixing of momentum downward by turbulent eddies generated by flow over and around the topography. The area-averaged heat transfer coefficient, C H, over the polynya was on the order of 1.1 × 10-3 for both days, but there were large variations in heat flux across the polynya due to variations in the flow caused by the topography. Conditional sampling techniques applied to the turbulence data showed that the fractional areas occupied by updrafts and downdrafts were 28% and 36%, respectively, and that these results were within the range of values found in previous studies for over-land and over-ocean conditions.  相似文献   

5.
Most atmospheric boundary-layer theories are developed over vegetative surfaces and their applicability at urban sites is questionable. Here, we study the intra-city variation of turbulence characteristics and the applicability of boundary-layer theory using building-morphology data across Helsinki, and eddy-covariance data from three sites: two in central Helsinki (400 m apart) and one 4 km away from the city centre. The multi-site measurements enable the analysis of the horizontal scales at which quantities that characterize turbulent transport vary: (i) Roughness characteristics vary at a 10-m scale, and morphometric estimation of surface-roughness characteristics is shown to perform better than the often used rule-of-thumb estimates (average departures from the logarithmic wind profile are 14 and 44 %, respectively). (ii) The drag coefficient varies at a 100-m scale, and we provide an updated parametrization of the drag coefficient as a function of z/z H (the ratio of the measurement height to the mean building height). (iii) The transport efficiency of heat, water vapour and CO2 is shown to be weaker the more heterogeneous the site is, in terms of sources and sinks, and strong scalar dissimilarity is observed at all sites. (iv) Atmospheric stability varies markedly even within 4 km across the city: the median difference in nocturnal sensible heat fluxes between the three sites was over 50W m?2. Furthermore, (v) normalized power spectra and cospectra do not vary between sites, and they follow roughly the canonical theory as developed over vegetated terrain.  相似文献   

6.
An examination of boundary-layer meteorological and avian aerodynamic theories suggests that soaring birds can be used to measure the magnitude of vertical air motions within the boundary layer. These theories are applied to obtain mixed-layer normalized thermal updraft intensity over both flat and complex terrain from the climb rates of soaring American white pelicans and from diagnostic boundary-layer model-produced estimates of the boundary-layer depth zi and the convective velocity scale w*. Comparison of the flatland data with the profiles of normalized updraft velocity obtained from previous studies reveals that the pelican-derived measurements of thermal updraft intensity are in close agreement with those obtained using traditional research aircraft and large eddy simulation (LES) in the height range of 0.2 to 0.8 zi. Given the success of this method, the profiles of thermal vertical velocity over the flatland and the nearby mountains are compared. This comparison shows that these profiles are statistically indistinguishable over this height range, indicating that the profile for thermal updraft intensity varies little over this sample of complex terrain. These observations support the findings of a recent LES study that explored the turbulent structure of the boundary layer using a range of terrain specifications. For terrain similar in scale to that encountered in this study, results of the LES suggest that the terrain caused less than an 11% variation in the standard deviation of vertical velocity.  相似文献   

7.
The aerodynamic drag coefficient (CD) is conjectured to change (or remains almost uniform) with the horizontal wind speed (U) over a flexible (or fixed) surface element, which is represented with the surface roughness (z0). This conjecture is tested for the near neutral atmospheric turbulence (i.e. when surface stability z/L is almost equal to 0, where z is the measurement height and L is Obukhov length) of monsoon and winter season at an on-slope and a ridge-top site in the Indian Himalaya, wherein the ridge-top site is associated with a higher degree of sensitivity to the roughness element and terrain attributes. This hypothesis is successfully verified for two conditions, (i) the monsoon period observations of ridge-top site are found to have higher z0 due to vegetative growth than the winter period for flows having similar terrain signature, and (ii) the monsoon and winter period observations of on-slope site are noted to have similar z0 for flows having signature of steep terrain. Subsequently, constants (i.e. a and b) of the power-law relationships between CD and U (i.e. CD = aUb), as a function of z0, are optimized. It is noted that the relationship between CD and U has higher sensitivity towards the terrain slope than the vegetative growth.  相似文献   

8.
Further development of the non-linear mixed spectral finite difference (NLMSFD) model of turbulent boundary-layer flow over topography is documented. This includes modifications and refinements to the solution procedure, the incorporation of second-order turbulence closures to the model and the three-dimensional extension of the model. Based on these higher order closures, linear limitations, boundary-layer approximation and non-linear effects are discussed. The impact of different turbulence closures on the prediction of the NLMSFD model is also demonstrated. Furthermore, sample results for 3D idealized topography (sinusoidal) are presented. The parameterization of drag over small-scale topography is also addressed.  相似文献   

9.
Numerical results indicate that advection of momentum in the boundary layer may significantly alter both the structure of the planetary boundary layer and its influence on the overlying free atmosphere. However, due to the nonlinearity of the inertial terms, it is always difficult to obtain the analytical solution of the boundary-layer model that retains the flow acceleration. In order to overcome this difficulty, the geostrophic momentum (hereafter GM) approximation has been introduced into boundary-layer models. By replacing the advected momentum with the geostrophic wind, the effect of the flow acceleration is partially considered and the original nonlinear partial differential equation set is converted to ordinary differential equations, the solutions of which can be obtained easily with standard techniques. However, the model employing GM fails to capture the features of the boundary layer when the spatio-temporal variation of the boundary-layer flow cannot be properly approximated by the geostrophic wind. In the present work, a modified boundary-layer model with the inertial acceleration in a different approximate form is proposed, in which the advecting wind instead of the advected momentum is approximated by the geostrophic wind (hereafter GAM).Comparing the horizontal velocity and boundary-layer pumping obtained from the classical Ekman theory, and the model incorporating (i) GM and (ii) GAM, it is found that the model with GAM describes most facets of the steady well-mixed layer beneath a north-westerly flow with embedded mesoscale perturbations that is considered in the present work. Inspection of the solution of the model with GAM shows that, within the limit of the validation of the model (i.e., the Rossby number RO is not very large and the drag coefficient CD is not too small), the horizontal convergence (divergence) is strengthened by the effect of the inertial acceleration in the region of maximum positive (negative) geostrophic vorticity. Consequently, the boundary-layer pumping there is intensified. It is found that the intensification is firstly strengthened and then weakened as RO or CD increases.  相似文献   

10.
The nonlinear version of the mixed spectral finite difference model of atmospheric boundary-layer flow over topography is reviewed. The relations between the stability of the iteration scheme and its relaxation parameter are discussed. Suitable choice of the relaxation factor improves the computational stability on terrain with maximum slope up to 0.5 or 0.6 in certain circumstances. Examples of relatively high slope terrain are used to test the stability. A two-dimensional version of the model is considered. More detailed simulations are studied and analyzed for a comparison with wind-tunnel flow over periodic sinusoidal surfaces. An application on real topography is given for Bolund hill in Roskilde, Denmark.  相似文献   

11.
Most natural landscapes are characterized by multiscale (often multifractal) topography with well-known scale-invariance properties. For example, the spectral density of landscape elevation fields is often found to have a power-law scaling behaviour (with a −2 slope on a log–log scale) over a wide span of spatial scales, typically ranging from tens of kilometres down to a few metres. Even though the effect of topography on the atmospheric boundary layer (ABL) has been the subject of numerous studies, few have focussed on multiscale topography. In this study, large-eddy simulation (LES) is used to investigate boundary-layer flow over multiscale topography, and guide the development of parametrizations needed to represent the effects of subgrid-scale (SGS) topography in numerical models of ABL flow. Particular emphasis is placed on the formulation of an effective roughness used to account for the increased aerodynamic roughness associated with SGS topography. The LES code uses the scale-dependent Lagrangian dynamic SGS model for the turbulent stresses and a terrain-following coordinate transformation to explicitly resolve the effects of the topography at scales larger than the LES resolution. The terrain used in the simulations is generated using a restricted solid-on-solid landscape evolution model, and it is characterized by a −2 slope of the elevation power spectrum. Results from simulations performed using elevation fields band-pass filtered at different spatial resolutions indicate a clear linear relation between the square of the effective roughness and the variance of elevation.  相似文献   

12.
A large-eddy simulation model with rotated coordinates and an open boundary is used to simulate the characteristics of katabatic flows over simple terrain. Experiments examine the effects of cross winds on the development of the slope-flow boundary layer for a steep (20°) slope and the role of drainage winds in preventing turbulence collapse on a gentle slope (1°). For the steep flow cases, comparisons between model average boundary-layer velocity, temperature deficit, and turbulence kinetic energy budget terms and tower observations show reasonable agreement. Results for different cross slope winds show that as the cross slope winds increase, the slope flow deepens faster and behaves more like a weakly stratified, sheared boundary layer. Analysis of the momentum budget shows that near the surface the flow is maintained by a balance between downslope buoyancy forcing and vertical turbulence flux from surface drag. Above the downslope jet, the turbulence vertical momentum flux reverses sign and acceleration of the flow by buoyancy is controlled by horizontal advection of slower moving ambient air. The turbulence budget is dominated by a balance between shear production and eddy dissipation, however, buoyancy and pressure transport both are significant in reducing the strength of turbulence above the jet. Results from the gentle slope case show that even a slight terrain variation can lead to significant drainage winds. Comparison of the gentle slope case with a flat terrain simulation indicates that drainage winds can effectively prevent the formation of very stable boundary layers, at least near the top of sloping terrain.  相似文献   

13.
Using a previous treatment of drag and drag partition on rough surfaces, simple analytic expressions are derived for the roughness length (z 0) and zero-plane displacement (d) of vegetated surfaces, as functions of canopy height (h) and area index (). The resulting expressions provide a good fit to numerous field and wind tunnel data, and are suitable for applications such as surface parameterisations in atmospheric models.  相似文献   

14.
Using the relationship between the bulk Richardson numberR z and the Obukhov stability parameterz/L (L is the Obukhov length), formally obtained from the flux-profile relationships, methods to estimatez/L are discussed. Generally,z/L can not be uniquely solved analytically from flux-profile relationships, and it may be defined using routine observations only by iteration. In this paper, relationships ofz/L in terms ofR z obtained semianalytically were corrected for variable aerodynamic roughnessz 0 and for aerodynamic-to-temperature roughness ratiosz 0/z T, using the flux-profile iteration procedure. Assuming the so-called log-linear profiles to be valid for the nearneutral and moderately stable region (z/L<1), a simple relationship is obtained. For the extension to strong stability, a simple series expansion, based on utilisation of specified universal functions, is derived.For the unstable region, a simple form based on utilisation of the Businger-Dyer type universal functions, is derived. The formulae yield good estimates for surfaces having an aerodynamic roughness of 10–5 to 10–1 m, and an aerodynamic-to-temperature roughness ratio ofz 0/z T=0.5 to 7.3. When applied to the universal functions, the formulae yield transfer coefficients and fluxes which are almost identical with those from the iteration procedure.  相似文献   

15.
The Influence of Hilly Terrain on Canopy-Atmosphere Carbon Dioxide Exchange   总被引:1,自引:1,他引:1  
Topography influences many aspects of forest-atmosphere carbon exchange; yet only a small number of studies have considered the role of topography on the structure of turbulence within and above vegetation and its effect on canopy photosynthesis and the measurement of net ecosystem exchange of CO2 (Nee) using flux towers. Here, we focus on the interplay between radiative transfer, flow dynamics for neutral stratification, and ecophysiological controls on CO2 sources and sinks within a canopy on a gentle cosine hill. We examine how topography alters the forest-atmosphere CO2 exchange rate when compared to uniform flat terrain using a newly developed first-order closure model that explicitly accounts for the flow dynamics, radiative transfer, and nonlinear eco physiological processes within a plant canopy. We show that variation in radiation and airflow due to topography causes only a minor departure in horizontally averaged and vertically integrated photosynthesis from their flat terrain values. However, topography perturbs the airflow and concentration fields in and above plant canopies, leading to significant horizontal and vertical advection of CO2. Advection terms in the conservation equation may be neglected in flow over homogeneous, flat terrain, and then Nee = Fc, the vertical turbulent flux of CO2. Model results suggest that vertical and horizontal advection terms are generally of opposite sign and of the same order as the biological sources and sinks. We show that, close to the hilltop, Fc departs by a factor of three compared to its flat terrain counterpart and that the horizontally averaged Fc-at canopy top differs by more than 20% compared to the flat-terrain case.  相似文献   

16.
Mesoscale models using a non-local K-scheme for parameterization of boundary-layer processes require an estimate of the planetary boundary layer (PBL) height z i at all times. In this paper, two-dimensional sea-breeze experiments are carried out to evaluate three different formulations for the advective contribution in the z i prognostic equation of Deardorff (1974).Poor representation of the thermal internal boundary layer in the sea breeze is obtained when z i is advected by the wind at level z i . However, significantly better results are produced if the mean PBL wind is used for the advecting velocity, or if z i is determined simply by checking for the first sufficiently stable layer above the ground.A Lagrangian particle model is used to demonstrate the effect of each formulation on plume dispersion by the sea breeze.  相似文献   

17.
Attempts to apply a computer model (Walmsley et al., 1980) to neutrally-stratified, boundary-layer flow over an isolated hill of moderate slope (Kettles Hill, Alberta) lead to velocity perturbation fields which probably overemphasize the impact of small-scale topographic features. Some numerical smoothing of the digitized terrain input field is found to be helpful in reducing this effect, although such a procedure is somewhat arbitrary. An extension of the original theory results in an improved representation of the effect of small-scale terrain components. These modifications are described and some results of an application of the extended model to Kettles Hill are presented.On contract to the Atmospheric Environment Service.  相似文献   

18.
Wind profile data within the first two kilometres of a coast have been used to study the wind field modification downstream of this surface discontinuity. The land area is generally very flat, having an overall roughness length of 0.04 m. A wind model, suitable for practical applications and inexpensive to run, has been tested against the data and was found to give satisfactory results. Knowing the climatological statistics of wind and stratification, e.g., at the coast, the model may thus be used to estimate, on a climatological basis, how the wind field is modified with distance inland, at least in areas with only minor topography. This type of information is of great importance when locating wind turbines. It is in these cases also important to know the statistics of the internal boundary-layer (IBL) height, as the turbulence intensity may be quite different in and above the IBL, which in turn may influence load and fatigue calculations. Using the wind profile data, the IBL height was clearly discernible in the majority of cases. Having very unstable stratification over land, the IBL height could, however, not be determined from the wind profiles, as the wind in these cases did not decrease inland. This result was also obtained using the wind model. A simple model of the type z IBL = a · x b, was instead tested, and was shown to give reasonable results.  相似文献   

19.
A case study of warm air advection over the Arctic marginalsea-ice zone is presented, based on aircraft observations with direct flux measurements carriedout in early spring, 1998. A shallow atmospheric boundary layer (ABL) was observed, which wasgradually cooling with distance downwind of the ice edge. This process was mainly connected with astrong stable stratification and downward turbulent heat fluxes of about 10–20 W m-2, but wasalso due to radiative cooling. Two mesoscale models, one hydrostatic and the other non-hydrostatic,having different turbulence closures, were applied. Despite these fundamental differences betweenthe models, the results of both agreed well with the observed data. Various closure assumptions had amore crucial influence on the results than the differences between the models.Such an assumption was, for example,the parameterization of the surface roughness for momentum (z0) and heat (zT). This stronglyaffected the wind and temperature fields not only close to the surface but also within and abovethe temperature inversion layer. The best results were achieved using a formulation for z0 that took intoaccount the form drag effect of sea-ice ridges together withzT = 0.1z0. The stability within theelevated inversion strongly depended on the minimum eddy diffusivity Kmin. A simple ad hocparameterization seems applicable, where Kmin is calculated as 0.005 timesthe neutral eddy diffusivity. Although the longwave radiative cooling was largest within the ABL, theapplication of a radiation scheme was less important there than above the ABL. This was related to theinteraction of the turbulent and radiative fluxes. To reproduce the strong inversion, it wasnecessary to use vertical and horizontal resolutions higher than those applied in most regional andlarge-scale atmospheric models.  相似文献   

20.
For flow over natural surfaces, there exists a roughness sublayer within the atmospheric surface layer near the boundary. In this sublayer (typically 50z 0 deep in unstable conditions), the Monin-Obukhov (M-O) flux profile relations for homogeneous surfaces cannot be applied. We have incorporated a modified form of the M-O stability functions (Garratt, 1978, 1980, 1983) in a mesoscale model to take account of this roughness sublayer and examined the diurnal variation of the boundary-layer wind and temperature profiles with and without these modifications. We have also investigated the effect of the modified M-O functions on the aerodynamic and laminar-sublayer resistances associated with the transfer of trace gases to vegetation. Our results show that when an observation height or the lowest level in a model is within the roughness sublayer, neglect of the flux-profile modifications leads to an underestimate of resistances by 7% at the most.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号