首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New petrological and isotope–geochemical data are obtained for rocks from the South China Sea shelf zone (Thu, Cu-Lao Re, Hong Jo islands and Katuik–Ile des Cendres island group). These data are correlated with the available published data on the volcanic rocks of the terrestrial part of Vietnam and with data on the basaltoids of the South China Sea, Thailand, and the northern part of Hainan island. Despite the fact that the studied volcanic rocks belong to different structural zones—continental margin, shelf zone, marginal sea—their formation is related to the same type of rift volcanism. Owing to this, the different compositions of the primary magmatic melts indicate, first of all, the heterogeneity of the mantle sources. The uniformity of manifestations of volcanism over the entire studied territory within the age boundaries excludes any zoning at the transition from one structure to another. The leading role of mantle diapirism in the evolution of volcanism throughout the entire Indochina region is shown. It is proposed that the formation of alkaline series and “alkaline” trends of changes in their compositions are consequences of fractionation of melts which originated from an asthenosphere plume chamber. Meanwhile, the tholeiitic magma series are of reactionary origin and “tholeiitic” trends record the processes of mixing of melts generated during melting of the lithospheric mantle with those of a plume chamber. Individual samples show insignificant contamination of melts by crustal material.  相似文献   

2.
Late Cenozoic volcanic province in Central and East Asia   总被引:2,自引:0,他引:2  
The paper presents materials on the inner structure of the Late Cenozoic within-plate volcanic province in Central and East Asia, in which two subprovinces are distinguished: Central Asian and Far Eastern, which comprise a number of autonomously evolving volcanic areas. Some of the volcanic areas are proved to have evolved for a long time, starting in the Late Mesozoic. In spite of differences in their age and structural setting, the volcanic areas evolved according to similar scenarios in the Late Cenozoic. Magmatism in the province was related to a mantle source of the within-plate type. The magmatic associations are dominated by mafic alkaline high-K rocks. The rocks are geochemically close to basalts of the OIB type, and their isotopic composition corresponds to a combination of mantle sources of the PREMA, EMI, and EMII types at the predominance of PREMA. Geological, geochemical, and isotopic lines of evidence suggest that magmatism in the province was related to mantle plumes. This is consistent with geophysical data, which testify that the volcanic areas are underlain by upwellings of the asthenospheric mantle or plumes. Seismic tomography data indicate that the “stems” of the plumes can be traced down to the upper and lower mantle. The province is thought to have been produced when the eastern margin of the Asian plate overlapped one of the branches of the Pacific superplume at approximately 160 Ma. This branch of the superplume is pronounced in the modern mantle structure as a cluster of mantle plumes that control (according to seismic tomography data) the interaction zone of the Pacific and Asian lithospheric plates.  相似文献   

3.
Tombel graben and Mounts Bambouto are two volcanic fields of the typical system of alternating graben and horst structure of the Cameroon Volcanic Line. Tombel graben is a young volcanic field, whereas Mounts Bambouto horst is an old stratovolcano with calderas. Volcanic products in both settings have a signature close to that of Ocean Island Basalt implying a major role of FOZO (focal zone) component and varied contribution of depleted mantle (DMM) and enriched mantle (EM) components. The Cameroon Volcanic Line is a hot line essentially resulting from passive rifting. Eocene to Recent intraplate basaltic volcanism in the study area was probably a result of mantle upwelling coupled with lithospheric extension. The olivine basaltic magma of horst volcanoes evolved in a large-scale, steady-state magmatic reservoir via crystal fractionation and limited contamination to highly differentiated alkaline lavas (trachyte and phonolite). Conversely, rapid ascent of lavas along multiple fault lines of graben structures produced less evolved lavas (hawaiite) within small reservoirs. This model, evaluated for the study area, involves mantle upwelling inside zones of weakness in the lithosphere after intra-continental extension. It can be applied to other parts of the Cameroon Volcanic Line as well, and is similar to that described in other intra-continental rift-related areas in Africa.  相似文献   

4.
A GIS layout of the map of recent volcanism in North Eurasia is used to estimate the geodynamic setting of this volcanism. The fields of recent volcanic activity surround the Russian and Siberian platforms—the largest ancient tectonic blocks of Eurasia—from the arctic part of North Eurasia to the Russian Northeast and Far East and then via Central Asia to the Caucasus and West Europe. Asymmetry in the spatial distribution of recent volcanics of North Eurasia is emphasized by compositional variations and corresponding geodynamic settings. Recent volcanic rocks in the arctic part of North Eurasia comprise the within-plate alkaline and subalkaline basic rocks on the islands of the Arctic Ocean and tholeiitic basalts of the mid-ocean Gakkel Ridge. The southern, eastern, and western volcanic fields are characterized by a combination of within-plate alkaline and subalkaline basic rocks, including carbonatites in Afghanistan, and island-arc or collision basalt-andesite-rhyolite associations. The spatial distribution of recent volcanism is controlled by the thermal state of the mantle beneath North Eurasia. The enormous mass of the oceanic lithosphere was subducted during the formation of the Pangea supercontinent primarily beneath Eurasia (cold superplume) and cooled its mantle, having retained the North Pangea supercontinent almost unchanged for 200 Ma. Volcanic activity was related to the development of various shallow-seated geodynamic settings and deep-seated within-plate processes. Within-plate volcanism in eastern and southern North Eurasia is controlled, as a rule, by upper mantle plumes, which appeared in zones of convergence of lithospheric plates in connection with ascending hot flows compensating submergence of cold lithospheric slabs. After the breakdown of Pangea, which affected the northern hemisphere of the Earth insignificantly, marine basins with oceanic crust started to form in the Cretaceous and Cenozoic in response to the subsequent breakdown of the supercontinent in the northern hemisphere. In our opinion, the young Arctic Ocean that arose before the growth of the Gakkel Ridge and, probably, the oceanic portion of the Amerasia Basin should be regarded as a typical intracontinental basin within the supercontinent [48]. Most likely, this basin was formed under the effect of mantle plumes in the course of their propagation (expansion, after Yu.M. Pushcharovsky) to the north of the Central Atlantic, including an inferred plume of the North Pole (HALIP).  相似文献   

5.
The conditions of magma formation were reconstructed on the basis of characteristic features of the evolution of the Kurile-Kamchatka island-arc system, structural and chemical zoning patterns of volcanic complexes, and available published data on peridotite and basalt melting and stability of hydrous minerals. It was shown that the volcanic arc of the Sredinnyi Range of Kamchatka occurs now at the final stage of subduction, whereas subduction beneath the volcanic arc of eastern Kamchatka began at the end of the Miocene, after its jump into the present-day position. The volcanism of Southern Kamchatka and the Kuriles has occurred under steady-state subduction conditions since the Miocene and is represented by typical island-arc magmas. The latter are generated in a mantle wedge, where the melting of water-saturated peridotite occurs in a high-temperature zone under the influence of fluid. The formation of the frontal and rear volcanic zones was related to the existence of two levels of water release from various hydrous minerals. During the initial and final stages of subduction, as well as in the zone of Kamchatka—Aleutian junction, partial melting is possible in the upper part of the subducted slab in contact with a hotter mantle material compared with the mantle in a steady-state regime. This is responsible for the coexistence of predominant typical island-arc rocks, rocks with intraplate geochemical signatures, and highly magnesian rocks, including adakites.  相似文献   

6.
Magmatism of the Uda sector enclosed within the West Transbaikalian rift zone (WTRZ) is discussed in this paper. Seven stages of the Late Mesozoic-Cenozoic volcanism have been recognized within span 174–51 Ma. On the border about 135 Ma the nature of volcanism changed noticeably: (a) the volume of volcanic rocks essentially reduced; (b) transition from differentiated to basaltic associations proceeded with the disappearance of volcanics containing SiO2 over 54 wt.%; (c) alkali and subalkaline basaltoids appeared in the associations, their volume increasing at later stages. Geochemical features of the Uda volcanics are determined by participation in their formation of the mantle source close in composition to the source with OIB parameters. They are responsible for high concentrations of incompatible elements in magmatic products. The isotope characteristics of rocks indicate conformity of this mantle source to the varying behavior of EMII and PREMA with the role of the latter strengthening in time. The basaltoids of initial stages show the deficit of Ti, Nb, and Ta caused by involvement of water-saturated lithosphere mantle in magma formation. The main specifics of the Uda volcanics composition and the pattern of their variability in time correspond to those in WTRZ, as well as in the other Late Mesozoic-Cenozoic rift zones of Central Asia. This evidence suggests similar geodynamic settings for origination and development of rifting processes, when continuously evolving mantle plume affects the regional lithosphere. The magmatism of the Uda sector, as in the entire WTRZ, differs considerably from magmatic processes developing over the convergent boundaries of the Mongol-Okhotsk belt; their products are represented by differentiated magmatic associations with geochemical properties common for the rocks of suprasubduction zones.  相似文献   

7.
Field investigations, K-Ar age determinations and chemical data were used to describe the development of an intraplate volcanic province, the Darfur Dome, Sudan. Magmatism started 36 Ma ago at a small subvolcanic complex (Jebel Kussa) in the center of the dome and was active in the same area between 26 and 23 Ma. Two major volcanic fields (Marra Mountains and Tagabo Hills) developed between 16 and 10 Ma. Volcanism started again at 6.8 Ma with a third volcanic field (Meidob Hills) and at 4.3 Ma in the Marra Mountains and with the reactivation of the center. Activity then continued until the late Quaternary. Having started in the center of the Darfur Dome, volcanism moved in 36 Ma 200 km towards the NNE and 100 km SSW No essential difference in the alkaline magma types (basanitic to phonolitic-trachytic, with different amounts of assimilation of crustal material) in the different fields, was observed. Magmatism is thought to have been produced by a rising mantle plume and volcanism was triggered by stress resolution along the Central African Fault Zone.  相似文献   

8.
The Late Mesozoic and Cenozoic location of volcanic zones in the Central Asian intraplate volcanic province has been reconstructed. The anomalous-mantle regions related to magmatism in the province changed in shape in the Cretaceous and Cenozoic. In the early Early Cretaceous, the anomalous-mantle regions spanned from 42° to 61° N (about 2000 km in latitude), and their location might have remained unchanged throughout the Cretaceous. Magmatism in the province took place in the lithospheric regions of the Eurasian Plate with a thickness close to or smaller than that of the oceanic lithosphere. Late Mesozoic magmas originated mainly from hydrated mantle sources with isotopic compositions typical of PREMA or EM-II. In the Early Cenozoic (50 Ma), the anomalous mantle was considerably less active than in the Early Cretaceous. Magmatic melts were generated only in two mantle regions: the local South Hangay hotspot and, apparently, the fairly extensive (at least 800 km wide) mantle region north and northeast of it. The entire anomalous mantle spanned from 46° to 59° N (about 1300 km in latitude). Magmas of OIB type originated from slightly hydrated sources with isotopic compositions typical of PREMA or EM-I. In the Miocene, the mantle might have again “ejected” heated decompressed anomalous matter. The ejection led to an outburst of magmatism and expansion of the volcanic province up to 2000 km in latitude. The lithosphere in all the volcanic zones was thin, including the entire Eurasian territory over the South Hangay hotspot.  相似文献   

9.
A tectonotype of volcanic passive margins exemplified in the conjugate Norwegian and East Greenland margins is considered, with discussion of the Paleogene igneous complexes and the regional rift structure before continental breakup. Fragments of asymmetrical rift have been retained on both sides of the ocean. Large Cretaceous pre-rift sedimentation basins marking the initial stage of the ocean opening are included into the passive margin as well. The continental breakup was accompanied by intense basaltic magmatism over a short time span. This magmatic episode was distinguished by (1) the formation of widespread plateau-basalt complexes on continents and in near-shore areas of the ocean; (2) the development of thick lava series that are recorded in seaward dipping reflector wedges; (3) thick high-velocity lower crust, resulting from magmatic underplating; (4) asymmetrical accretion of the crust and structure formation. The discussion is based on published seismic data and reference sections selected for each margin with consideration of the composition and thickness of the igneous rocks, their lateral variations, source composition, and eruption and crust formation conditions. The characteristic feature of both sections is the two-member structure of volcanic complexes with substantial geochemical differences between the rocks from the lower and upper parts of the section, which correspond to the pre-breakup and breakup phases. At the initial phase, small magma volumes were melted out from the lithosphere. The geochemical signatures of the upper parts of the sections testify to the melting of the asthenospheric mantle. Their spatiotemporal variations reflect the ascent and melting of the deep plume, which was active during and after continental breakup. In the Greenland area, near the central part of the plume, a N-MORB-type mantle magma source gave way to a depleted Iceland-type mantle, while apart from the central part of the plume, its effect is expressed only in the enormous volume of mantle-derived melt without migration of its source. A variety of evidence is provided for the plume’s activity: the great thickness of the volcanic complexes and the relatively stable composition of the melt; the elevated temperature in the mantle; the specific geochemistry of the breakup-related lavas and their lateral zoning; conclusions on the necessity of dynamic support of volcanic eruptions; and recent results of seismographic tomography. The continental breakup inherited a system of older sedimentary basins in the zone of prolonged extension of the lithosphere in the North Atlantic. The continuous dynamic support of extension was most likely provided by long-term ascent of the Iceland plume. The comparison of the considered tectonotype with other volcanic and non-volcanic margins opens the way to further elucidation of the geodynamic processes responsible for the ocean opening.  相似文献   

10.
Based on generalization of available geochronological data, Late Mesozoic magmatic associations in the northeastern part of the Amurian microcontinent are divided into three groups: 142–125, 124–115, and <110 Ma. The age of these associations decreases with approaching the Pacific margin of Asia. In the same direction, they show a change in sources of their parental melts: continental crust (142–125 Ma) → continental crust + PREMA (DM) (124–115 Ma) → continental crust + PREMA (DM) + EMII (<110 Ma). Isotope-geochemical (Sr-Nd) study indicates that intrusive and volcanic rocks of the Late Mesozoic magmatic associations in the northeastern part of the Amurian microcontinent were originated in geodynamic settings that provided access of enriched mantle sources to magma formation. The most probable of these settings are as follows: (1) plate sliding accompanying by the formation of slab window beneath continental margin; (2) passage of the Asian margin over the East Asian mantle hot field in the Late Mesozoic; (3) asthenospheric upwelling due to delamination of the lower crust during closure of the Mongolian-Okhotsk ocean caused by collision between the Amurian microcontinent, Dzhugdzhur-Stanovoy, and Selenga-Stanovoy superterranes in the Central Asian fold belt.  相似文献   

11.
南秦岭元古宙板内火山作用特征及构造意义   总被引:18,自引:2,他引:18  
南秦岭元古宙火山岩主要由两大类岩石构成,一类为SiO245%-57%的基性火山岩系,另一类为SiO267%-78%的酸性火山岩系,主要岩石类型为细碧岩、玄武岩和石英角班岩、流纹岩。基性火山岩整体上属拉斑玄武岩系列,酸性火山岩属钙碱系列。火山岩强烈富集稀土元素,尤其是轻稀土元素,酸性火山岩和基性火山岩有相似的稀土元素特征,显示了源区特征的不同。基性火山岩富集强不相容元素,相对亏损Nb和Ti, 成于大陆裂谷环境,具有大陆拉斑玄武岩的特征。同位素特征表明基性火山作用与地幔柱活动密切相关。南秦岭的中、晚元古代大陆拉张及由古地幔柱活动所引发的陆裂火山岩浆活动是古秦岭洋打开的先兆。  相似文献   

12.
Prolonged intraplate volcanism along the 4000 km-long East Australian margin for ca 100 Ma raises many genetic questions. Studies of the age-progressive pulses embedded in general basaltic activity have spawned a host of models. Zircon U–Pb dating of inland Queensland central volcanoes gives a stronger database to consider the structure and origin of Australian age-progressive volcanic chains. This assists appraisal of this volcanism in relation to plate motion and plate margin tectonic models. Inland Queensland central volcanoes progressed south-southeast from 34 to 31 Ma (~5.4 cm/yr) until a surge in activity led to irregular southerly progression 31 to 28 Ma. A new inland southeastern Queensland central volcano line (25 to 22 Ma), from Bunya Mountains to North Main Range, followed 3 Ma behind the adjacent coastal progression. The Australian and Tasman Sea age-progressive chains are compared against recent plate motion modelling (Indian Ocean hotspots). The chain lines differ from general vector traces owing to west-facing swells and cessations in activity. Tectonic processes on the eastern plate margin may regulate these irregularities. These include subduction, rapid roll-back and progressive detachment of the Loyalty slab (43 to 15 Ma). West-flowing Pacific-type asthenosphere, related to perturbed mantle convection, may explain the west-facing volcanic surges. Such westward Pacific flow for over 28 Ma is known at the Australian–Antarctic Discordance, southeast of the present Australian plume sites under Bass Strait–West Tasman Sea. Most basaltic activity along eastern Australia marks asthenospheric melt injections into Tasman rift zone mantle and not lithospheric plate speed. The young (post-10 Ma) fields (Queensland, Victoria–South Australia) reflect new plate couplings, which altered mantle convection and stress regimes. These areas receive asthenospheric inputs from deep thermal zones off northeast Queensland and under Bass Strait.  相似文献   

13.
阳江?一统暗沙断裂带是南海北部珠江口盆地极其重要的中?新生代构造带和转换带.基于钻井资料和大范围、高密度的二维、三维地震资料,本文初步揭示阳江?一统暗沙断裂带走向为NW-NWW向、宽约30 km,沿着断裂走向从陆架至洋陆边界断裂带可分为北?中?南三段,断裂在新生代选择性活化,具有多重走滑断裂叠合和基底岩浆底辟强烈等特点...  相似文献   

14.
The paper considers the conditions and mechanisms of the formation of linear volcanic structures in the Brazil Basin, South Atlantic. Among these objects, those related to the ascent of deep mantle plumes predominate. It is shown that the ascent of melts from plume sources leads to the formation of (a) hot spot tracks in the form of linear volcanic ridges and (b) active hot lines in the form of submarine mountain chains with trends differing from those of hot spot tracks and with a more variable character of the age distribution of volcanic rocks. Fault tectonics affects the character of plume activity. In addition, plume material from a hot spot area is dragged by a moving plate as a flow or a sublithospheric lens, which leads to the long-term existence of particular independent segments of linear structures and sometimes to late volcanism reactivation within their limits. Decompression melting of the asthenospheric mantle in zones where thin lithosphere undergoes tension causes the formation of passive hot lines. The main mantle source for the considered volcanic rocks was a mixture of DMM and HIMU mantle components, with the latter abruptly dominating. In marginal oceanic regions, the EM1 component is also present (the EM2 component is found more rarely) within fragments of tectonically delaminated continental mantle that was trapped by the oceanic mantle during the breakup of Gondwana.  相似文献   

15.
地幔柱大辩论及如何验证地幔柱假说   总被引:21,自引:1,他引:20  
目前关于地幔柱存在与否的争论主要集中在地幔柱学说的三个假设上:(1)起源于地球核幔边界缓慢上升的细长柱状热物质流;(2)热点下具有异常高温地幔;(3)地幔柱是相对静止的。这三个方面的验证需要今后深部地球物理探测、岩石学和古地磁等学科的综合运用和进一步的工作。文中认为,地幔柱学说依然能合理地解释地球上一级地质现象,反对地幔柱的学者过分强调了一些小尺度的与地幔柱理论不符的细节,而小尺度地壳特征显然还受到其他许多因素的影响。可以从以下5个方面来鉴别老地幔柱:(1)大规模火山作用前的地壳抬升;(2)放射状岩墙群;(3)火山作用的物理特征;(4)火山链的年代学变化;(5)地幔柱产出岩浆的化学组成。研究表明,峨眉山大火成岩省满足其中的3到4个指标,因此地幔柱是形成峨眉山玄武岩的主要动力学机制。  相似文献   

16.
The West Siberian Basin (WSB) records a detailed history of Permo-Triassic rifting, extension and volcanism, followed by Mesozoic and Cenozoic sedimentation in a thermally subsiding basin. Sedimentary deposits of Permian age are absent from much of the basin, suggesting that large areas of the nascent basin were elevated and exposed at that time. Industrial seismic and well log data from the basin have enabled extension and subsidence modelling of parts of the basin. Crustal extension (β) factors are calculated to be in excess of 1.6 in the northern part of the basin across the deep Urengoy graben. 1-D backstripping of the Triassic to Cenozoic sedimentary sequences in this region indicates a period of delayed subsidence during the early Mesozoic. The combination of elevation, rifting and volcanism is consistent with sublithospheric support, such as a hot mantle plume.

This interpretation accords with the geochemical data for basalts from the Siberian Traps and the West Siberian Basin, which are considered to be part of the same large igneous province. Whilst early suites from Noril'sk indicate moderate pressures of melting (mostly within the garnet stability field), later suites (and those from the West Siberian Basin) indicate shallow average depths of melting. The main region of magma production was therefore beneath the relatively thin (ca. 50–100 km) lithosphere of the basin, and not the craton on which the present-day exposure of the Traps occurs. The indicated uplift, widespread occurrence of basalts, and short duration of the volcanic province as a whole are entirely consistent with published models involving a mantle plume. The main argument against the plume model, namely lack of any associated uplift, appears to be untenable.  相似文献   


17.
In the Late Cenozoic, the volcanism of the South Khangai Volcanic Region (SKhVR) spanned the Khangai Range and its framing. Geochronological, petrochemical, geochemical, and isotope studies were performed for volcanic rocks of this region, which are represented by high-K basic and intermediate rocks of OIB affinity. Initial Sr, Nd, and Pb isotope ratios in the volcanic rocks of the SKhVR are close to those of the volcanic rocks of Pitcairn Island and form trends between PREMA, EMI, and EMII sources.  相似文献   

18.
Khromykh  S. V.  Semenova  D. V.  Kotler  P. D.  Gurova  A. V.  Mikheev  E. I.  Perfilova  A. A. 《Geotectonics》2020,54(4):510-528

Studies of volcanic rocks in orogenic troughs of Eastern Kazakhstan were carried out. The troughs were formed at late-orogenic stages of evolution of Hercynian Altai collision system. Volcanic rocks are represented by basalts, andesites, dacites and rhyolites. Based on geochemical and isotopic data, the basalts and andesites derived from mafic magmas that formed as a result of partial melting of garnet peridotites in the upper mantle under the orogen. U–Pb zircon data prove two volcanic stages: more-scaled Middle Carboniferous (~311 Ma) and less-scaled Early Permian (297–290 Ma). Basalts and andesites in lower parts of the orogenic troughs and independent dacite-rhyolite structures were formed at the Middle Carboniferous stage. Parental mafic magmas were formed as a result of partial melting of mantle substrates in local transtensional zones along large shear faults. The formation of dacites and rhyolites could have been caused by partial melting of crustal substrates under effect of mafic magmas. Transtensional movements in the lithosphere of orogenic belts may indicate the beginning of collapse of orogens. A smaller volume of basalts and andesites formed at the Early Permian stage. Geochemical data prove the independent episode of partial melting in upper mantle. Synchronous basalts and andesites also appeared at wide territory in Tian Shan, Central Kazakhstan, and Central and Southern Mongolia. Early Permian volcanism indicates general extension of the lithosphere at the postorogenic stages. Large-scaled Early Permian mafic and granitoid magmatism in Central Asia has been interpreted in recent years as the Tarim Large Igneous Province caused by Tarim mantle plume activity. Thus, the extension of the lithosphere and associated volcanism in the Early Permian can be an indicator of the onset of the plume–lithosphere interaction process.

  相似文献   

19.
Basalts developed on the right bank of the Matai River belong to the Samarka terrane (Central Sikhote Alin), which is a fragment of the Jurassic accretionary prism. They associate with Carboniferous-Permian reef limestones, Permian pelagic cherts, Jurassic hemipelagic cherty-clayey deposits, and terrigenous rocks of the near-continental sedimentation area. The petrogeochemical features of the basalts provide insight into the character of the volcanism in different settings of the ancient Pantalassa ocean. In terms of chemistry, the Carboniferous-Permian basalts are similar to the within-plate ocean-island basalts related to plume mantle sources. They were presumably formed in an oceanic area with numerous islands and seamounts. The Permian basalts associated with cherts are tholeiitic in composition and were formed from depleted mantle in a spreading center located in the pelagic area. The Jurassic basalts are of plume origin and, in terms of geochemistry, occupy an intermediate position between OIB and E-MORB. They were presumably formed in a convergent zone in a geodynamic setting of rapid oblique subduction.  相似文献   

20.
The Plio-Quaternary Balhaf–Bir Ali volcanic field (BBAVF) constitutes one of the largest volcanic fields in SE Yemen, covering some 500 km2. It comprises cinder cones complexes associated with vesicular lava flows and scoria–spatter cones. In many places, ultramafic xenoliths are encountered within these volcanics. The explosive volcanism is mainly of alkaline character including alkali olivine basalt, hawaiite and mugearite together with subordinate tuffaceous trachytes. Major, trace and REEs data from the basaltic rocks of the BBAVF are interpreted in terms of a mantle-lithospheric origin in which crustal contribution during the initial stage of rift magmatism has occurred. Magma genesis may have resulted from plume-derived melt introducing into the base of the lithosphere. A mantle plume source is proposed for the Balhaf–Bir Ali basaltic lavas that are here interpreted as having been generated by partial melting of garnet lherzolite in the uppermost part of asthenosphere. The magmatic evolution of Balhaf–Bir Ali volcanic field may be accounted for by the recent models developed for plume structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号