首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Regional frequency analysis is an important tool in estimating design flood for ungauged catchments. Index flood is an important component in regionalized flood formulas. In the past, many formulas have been developed based on various numbers of calibration catchments (e.g. from less than 20 to several hundred). However, there is a lack of systematic research on the model uncertainties caused by the number of calibration catchments (i.e. what is the minimum number of calibration catchment? and how should we choose the calibration catchments?). This study uses the statistical resampling technique to explore the impact of calibration catchment numbers on the index flood estimation. The study is based on 182 catchments in England and an index flood formula has been developed using the input variable selection technique in the data mining field. The formula has been used to explore the model uncertainty due to a range of calibration catchment numbers (from 15 to 130). It is found that (1) as expected, the more catchments are used in the calibration, the more reliable of the models developed are (i.e. with a narrower band of uncertainty); (2) however, poor models are still possible with a large number of calibration catchments (e.g. 130). In contrast, good models with a small number of calibration catchments are also achievable (with as low as 15 calibration catchments). This indicates that the number of calibration catchments is only one of the factors influencing the model performance. The hydrological community should explore why a smaller calibration data set could produce a better model than a large calibration data set. It is clear from this study that the information content in the calibration data set is equally if not more important than the number of calibration data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Modelling the global ocean tides: modern insights from FES2004   总被引:30,自引:2,他引:30  
During the 1990s, a large number of new tidal atlases were developed, primarily to provide accurate tidal corrections for satellite altimetry applications. During this decade, the French tidal group (FTG), led by C. Le Provost, produced a series of finite element solutions (FES) tidal atlases, among which FES2004 is the latest release, computed from the tidal hydrodynamic equations and data assimilation. The aim of this paper is to review the state of the art of tidal modelling and the progress achieved during this past decade. The first sections summarise the general FTG approach to modelling the global tides. In the following sections, we introduce the FES2004 tidal atlas and validate the model against in situ and satellite data. We demonstrate the higher accuracy of the FES2004 release compared to earlier FES tidal atlases, and we recommend its use in tidal applications. The final section focuses on the new dissipation term added to the equations, which aims to account for the conversion of barotropic energy into internal tidal energy. There is a huge improvement in the hydrodynamic tidal solution and energy budget obtained when this term is taken into account.  相似文献   

3.
Emulation modelling can be an effective alternative to traditional mechanistic approaches for complex environmental systems and, if carefully conceived, can offer significantly reduced run times and user expertise requirements. We present a case study of dynamic emulation for the domain of estuarine water quality modelling, by reporting the development and evaluation of a one-dimensional hydrodynamic model emulator. The proposed “neuroemulator” retains the dynamic nature of the process-based model utilizing a set of artificial neural networks. The underlying hydrodynamic model is routinely used for analysis and management of the northern reach of the San Francisco Bay-Delta estuary, a large complex region of strategic importance for water supply and ecosystem services on the Pacific coast of California, USA. The reduced computational expense of the emulator affords opportunities for direct use, as well as embedded use within other modelling frameworks such as those developed for reservoir operations and socio-hydrology.  相似文献   

4.
In order to predict the behaviour of plumes from three deep ocean outfalls for sewage off Sydney, three-dimensional numerical modelling was used. The modelling suite was driven by data generated by an oceanographic monitoring station measuring wind, ocean currents, temperature and wave characteristics. Three different modelling phases are implemented daily, a nearfield model, a hydrodynamic model and a water quality model. Model output can be used by the New South Wales Environment Protection Authority to predict water quality at ocean beaches and inform the community.  相似文献   

5.
A hydrodynamic model of the Bay of Toulon has been developed for use as a post-accident radionuclide dispersion simulation tool. Located in a Mediterranean urban area, the Bay of Toulon is separated into two basins by a 1.4-km long seawall. The Little Bay is semi-enclosed and connected to the Large Bay by a fairway channel. This channel is the site of significant water mass exchange as a result of both wind-driven currents and bathymetry. It is therefore a focal point for marine contamination. As part of the model calibration and validation process, the first step consisted of studying the water mass exchange between the two basins. An Acoustic Doppler Current Profiler was moored in the channel for 1 year. The present study analyses in situ data to determine the current intensity and direction, and also to better understand the vertical current profile, which is highly correlated with meteorological forcing. Comparisons of model-generated and measured data are presented, and various atmospheric forcing datasets are used to enhance computed results. It appears that accurate meteorological forcing data is needed to enhance the accuracy of the hydrodynamic model. This channel is an important location for water mass renewal in the Bay of Toulon, and model results are used to quantify these exchanges. The mean calculated annual water exchange time is approximately 3.4 days. However, this duration is strongly wind dependent and shortens during windy winter months. It ranges from 1.5 days during strong wind periods to 7.5 days during calm weather. Residence time values calculated through tracer dispersion modelling after release at the back of the Little Bay are found to be comparable to the mean exchange time values, especially for windy conditions.  相似文献   

6.
Phytoplankton biomass is an important factor for short-term forecasts of algal blooms. Our new hydrodynamic-phytoplankton model is primarily intended for simulating the spatial and temporal distribution of phytoplankton in Lake Taihu within a time frame of 1-5 days. The model combines two modules: a simple phytoplankton kinetics module for growth and loss; and a mass-transport module, which defines phytoplankton transport horizontally with a two dimensional hydrodynamic model. To adapt field data for model input and calibration, we introduce two simplifications: (a) exclusion of some processes related to phytoplankton dynamics like nutrient dynamics, sediment resuspension, mineralization and nitrification, and (b) use of monthly measured data of the nutrient state. Chlorophyll-α concentration, representing phytoplankton biomass, is the only state variable in the model. A sensitivity analysis was carried out to identify the most sensitive parameter set in the phytoplankton kinetics module. The model was calibrated with field data collected in 2008 and validated with additional data obtained in 2009. A comparison of simulated and observed chlorophyll-α concentration for 33 grid cells achieved an accuracy of 78.7%. However, mean percent error and mean absolute percent error were 13.4% and 58.2%, respectively, which implies that further improvement is necessary, e.g. by reducing uncertainty of the model input and by an improved parameter calibration.  相似文献   

7.
Output generated by hydrologic simulation models is traditionally calibrated and validated using split‐samples of observed time series of total water flow, measured at the drainage outlet of the river basin. Although this approach might yield an optimal set of model parameters, capable of reproducing the total flow, it has been observed that the flow components making up the total flow are often poorly reproduced. Previous research suggests that notwithstanding the underlying physical processes are often poorly mimicked through calibration of a set of parameters hydrologic models most of the time acceptably estimates the total flow. The objective of this study was to calibrate and validate a computer‐based hydrologic model with respect to the total and slow flow. The quick flow component used in this study was taken as the difference between the total and slow flow. Model calibrations were pursued on the basis of comparing the simulated output with the observed total and slow flow using qualitative (graphical) assessments and quantitative (statistical) indicators. The study was conducted using the Soil and Water Assessment Tool (SWAT) model and a 10‐year historical record (1986–1995) of the daily flow components of the Grote Nete River basin (Belgium). The data of the period 1986–1989 were used for model calibration and data of the period 1990–1995 for model validation. The predicted daily average total flow matched the observed values with a Nash–Sutcliff coefficient of 0·67 during calibration and 0·66 during validation. The Nash–Sutcliff coefficient for slow flow was 0·72 during calibration and 0·61 during validation. Analysis of high and low flows indicated that the model is unbiased. A sensitivity analysis revealed that for the modelling of the daily total flow, accurate estimation of all 10 calibration parameters in the SWAT model is justified, while for the slow flow processes only 4 out of the set of 10 parameters were identified as most sensitive. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Better parameterization of a hydrological model can lead to improved streamflow prediction. This is particularly important for seasonal streamflow forecasting with the use of hydrological modelling. Considering the possible effects of hydrologic non‐stationarity, this paper examined ten parameterization schemes at 12 catchments located in three different climatic zones in east Australia. These schemes are grouped into four categories according to the period when the data are used for model calibration, i.e. calibration using data: (1) from a fixed period in the historical records; (2) from different lengths of historical records prior to prediction year; (3) from different climatic analogue years in the past; and (4) data from the individual months. Parameterization schemes were evaluated according to model efficiency in both the calibration and verification period. The results show that the calibration skill changes with the different historic periods when data are used at all catchments. Comparison of model performance between the calibration schemes indicates that it is worth calibrating the model with the use of data from each individual month for the purpose of seasonal streamflow forecasting. For the catchments in the winter‐dominant rainfall region of south‐east Australia, a more significant shift in rainfall‐runoff relationships at different periods was found. For those catchments, model calibration with the use of 20 years of data prior to the prediction year leads to a more consistent performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
A specific characteristic of karst systems is the occurrence of time variant recharge areas. In our study we present a new type of hydrological karst model and a new calibration approach both considering this specific characteristic. The new model type considers the spatial variability of karst system properties by distribution functions, and is compared to a simple reservoir model. Both models are applied to a karst system in Southern Spain where objective functions applied on hydrodynamic and hydrochemical information helped to determine model parameters playing a role for hydrodynamic response. Thereafter, the recharge area is determined separately for individual hydrological years and for the entire time series by calibrating the model to match the water balance. We show that hydrochemical information is crucial to find a reasonable set of parameters for both models. Considering different hydrological years, we find that the recharge area is changing significantly (from 28 to 53 km2). The newly developed model is able to reproduce this variation and provide acceptable simulation results for the entire time series of available data. The classic reservoir model shows inferior performance concerning hydrodynamics and fails to reproduce the water balance because it does not consider variations of recharge area. Our calibration approach allows identifying a variable recharge area and our new model is able to reproduce its variability. Hence we obtain a more realistic system representation, which can be of high significance when models are used for prediction, i.e. beyond the conditions they were calibrated, e.g. for land-use or climate change scenarios.  相似文献   

10.
Uncertainty is inherent in modelling studies. However, the quantification of uncertainties associated with a model is a challenging task, and hence, such studies are somewhat limited. As distributed or semi‐distributed hydrological models are being increasingly used these days to simulate hydrological processes, it is vital that these models should be equipped with robust calibration and uncertainty analysis techniques. The goal of the present study was to calibrate and validate the Soil and Water Assessment Tool (SWAT) model for simulating streamflow in a river basin of Eastern India, and to evaluate the performance of salient optimization techniques in quantifying uncertainties. The SWAT model for the study basin was developed and calibrated using Parameter Solution (ParaSol), Sequential Uncertainty Fitting Algorithm (SUFI‐2) and Generalized Likelihood Uncertainty Estimation (GLUE) optimization techniques. The daily observed streamflow data from 1998 to 2003 were used for model calibration, and those for 2004–2005 were used for model validation. Modelling results indicated that all the three techniques invariably yield better results for the monthly time step than for the daily time step during both calibration and validation. The model performances for the daily streamflow simulation using ParaSol and SUFI‐2 during calibration are reasonably good with a Nash–Sutcliffe efficiency and mean absolute error (MAE) of 0.88 and 9.70 m3/s for ParaSol, and 0.86 and 10.07 m3/s for SUFI‐2, respectively. The simulation results of GLUE revealed that the model simulates daily streamflow during calibration with the highest accuracy in the case of GLUE (R2 = 0.88, MAE = 9.56 m3/s and root mean square error = 19.70 m3/s). The results of uncertainty analyses by SUFI‐2 and GLUE were compared in terms of parameter uncertainty. It was found that SUFI‐2 is capable of estimating uncertainties in complex hydrological models like SWAT, but it warrants sound knowledge of the parameters and their effects on the model output. On the other hand, GLUE predicts more reliable uncertainty ranges (R‐factor = 0.52 for daily calibration and 0.48 for validation) compared to SUFI‐2 (R‐factor = 0.59 for daily calibration and 0.55 for validation), though it is computationally demanding. Although both SUFI‐2 and GLUE appear to be promising techniques for the uncertainty analysis of modelling results, more and more studies in this direction are required under varying agro‐climatic conditions for assessing their generic capability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A number of challenges including instability, nonconvergence, nonuniqueness, nonoptimality, and lack of a general guideline for inverse modelling have limited the application of automatic calibration by generic inversion codes in solving the saltwater intrusion problem in real‐world cases. A systematic parameter selection procedure for the selection of a small number of independent parameters is applied to a real case of saltwater intrusion in a small island aquifer system in the semiarid region of the Persian Gulf. The methodology aims at reducing parameter nonuniqueness and uncertainty and the time spent on inverse modelling computations. Subsequent to the automatic calibration of the numerical model, uncertainty is analysed by constrained nonlinear optimization of the inverse model. The results define the percentage of uncertainty in the parameter estimation that will maintain the model inside a user‐defined neighbourhood of the best possible calibrated model. Sensitivity maps of both pressure and concentration for the small island aquifer system are also developed. These sensitivity maps indicate higher sensitivity of pressure to model parameters compared with concentration. These sensitivity maps serve as a benchmark for correlation analysis and also assist in the selection of observations points of pressure and concentration in the calibration process. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Many methods developed for calibration and validation of physically based distributed hydrological models are time consuming and computationally intensive. Only a small set of input parameters can be optimized, and the optimization often results in unrealistic values. In this study we adopted a multi‐variable and multi‐site approach to calibration and validation of the Soil Water Assessment Tool (SWAT) model for the Motueka catchment, making use of extensive field measurements. Not only were a number of hydrological processes (model components) in a catchment evaluated, but also a number of subcatchments were used in the calibration. The internal variables used were PET, annual water yield, daily streamflow, baseflow, and soil moisture. The study was conducted using an 11‐year historical flow record (1990–2000); 1990–94 was used for calibration and 1995–2000 for validation. SWAT generally predicted well the PET, water yield and daily streamflow. The predicted daily streamflow matched the observed values, with a Nash–Sutcliffe coefficient of 0·78 during calibration and 0·72 during validation. However, values for subcatchments ranged from 0·31 to 0·67 during calibration, and 0·36 to 0·52 during validation. The predicted soil moisture remained wet compared with the measurement. About 50% of the extra soil water storage predicted by the model can be ascribed to overprediction of precipitation; the remaining 50% discrepancy was likely to be a result of poor representation of soil properties. Hydrological compensations in the modelling results are derived from water balances in the various pathways and storage (evaporation, streamflow, surface runoff, soil moisture and groundwater) and the contributions to streamflow from different geographic areas (hill slopes, variable source areas, sub‐basins, and subcatchments). The use of an integrated multi‐variable and multi‐site method improved the model calibration and validation and highlighted the areas and hydrological processes requiring greater calibration effort. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Soil moisture is widely recognized as a fundamental variable governing the mass and energy fluxes between the land surface and the atmosphere. In this study, the soil moisture modelling at sub‐daily timescale is addressed by using an accurate representation of the infiltration component. For that, the semi‐analytical infiltration model proposed by Corradini et al. (1997) has been incorporated into a soil water balance model to simulate the evolution in time of surface and profile soil moisture. The performances of this new soil moisture model [soil water balance module‐semi‐analytical (SWBM‐SA)] are compared with those of a precedent version [SWBM‐Green–Ampt (GA)] where the GA approach was employed. Their capability to reproduce in situ soil moisture observations at three sites in Italy, Spain and France is analysed. Hourly observations of quality‐checked rainfall, temperature and soil moisture data for a 2‐year period are used for testing the modelling approaches. Specifically, different configurations for the calibration and validation of the models are adopted by varying a single parameter, that is, the saturated hydraulic conductivity. Results indicate that both SWBMs are able to reproduce satisfactorily the hourly soil moisture temporal pattern for the three sites with root mean square errors lower than 0.024 m3/m3 both in the calibration and validation periods. For all sites, the SWBM‐SA model outperforms the SWBM‐GA with an average reduction of the root mean square error of ~20%. Specifically, the higher improvement is observed for the French site for which in situ observations are measured at 30 cm depth, and this is attributed to the capability of the SA infiltration model to simulate the time evolution of the whole soil moisture profile. The reasonable models performance coupled with the need to calibrate only a single parameter makes them useful tools for soil moisture simulation in different regions worldwide, also in scarcely gauged areas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A hydrologic model calibration methodology that is based on groundwater data is developed and implemented using the US Geological Survey's precipitation-runoff modelling system (PRMS) and the modular modelling system (MMS), which performs automatic calibration of parameters. The developed methodology was tested in the Akrotiri basin, Cyprus. The necessity for the groundwater-based model calibration, rather than a typical runoff-based one, arose from the very intermittent character of the runoff in the Akrotiri basin, a case often met in semi-arid regions. Introducing a datum and converting groundwater storage to head made the observable groundwater level the calibration indicator. The modelling of the Akrotiri basin leads us to conclude that groundwater level is a useful indicator for hydrological model calibration that can be potentially used in other similar situations in the absence of river flow measurements. However, the option of an automatic calibration of the complex hydrologic model PRMS by MMS did not ensure a good outcome. On the other hand, automatic optimisation, combined with heuristic expert intervention, enabled achievement of good calibration and constitutes a valuable means for saving effort and improving modelling performance. To this end, results must be scrutinised, melding the viewpoint of physical sense with mathematical efficiency criteria. Thus optimised, PRMS achieved a low simulation error, good reproduction of the historic trend of the aquifer water level evolution and reasonable physical behaviour (good hydrologic balance, Reasonable match of aquifer level evolution, good estimation of mean natural recharge rate).  相似文献   

15.
Constructed wetlands are being utilized worldwide to effectively reduce excess nutrients in agricultural runoff and wastewater. Despite their frequency, a multi‐dimensional, physically based, spatially distributed modelling approach has rarely been applied for flow and solute transport in treatment wetlands. This article presents a two‐dimensional hydrodynamic and solute transport modelling of a large‐scaled, subtropical, free water surface constructed wetland of about 8 km2 in the Everglades of Florida, USA. In this study, MIKE 21 was adopted as the basic model framework. Field monitoring of the time series hydrological and chloride data, as well as spatially distributed data such as bathymetry and vegetation distribution, provided the necessary model input and testing data. Simulated water level profiles were in good agreement with the spatio‐temporal variations of measured ones. On average, the root‐mean‐square error of model calibration on annual water level fluctuations was 0·09 m. Manning's roughness coefficients for the dense emergent and submerged aquatic vegetation areas, which were estimated as a function of vegetation type, ranged from 0·67 to 1·0 and 0·12 to 0·15 s/m1/3, respectively. The solute transport model calibration for four monitoring sites agreed well with the measured annual variations in chloride concentration with an average percent model error of about 15%. The longitudinal dispersivity was estimated to be about 2 m and was more than an order of magnitude higher than the transverse one. This study is expected to play the role of a stepping stone for future modelling efforts on the development and application of more advanced flow and transport models applicable to a variety of constructed wetland systems, as well as to the Everglades stormwater treatment areas in operation or in preparation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The feasibility of polynomial chaos expansion (PCE) and response surface method (RSM) models is investigated for modelling reference evapotranspiration (ET0). The modelling results of the proposed models are validated against the M5 model tree and multi-layer perceptron neural network (MLPNN) methods. Two meteorological stations, Isparta and Antalya, in the Mediterranean region of Turkey, are inspected. Various input combinations of daily air temperature, solar radiation, wind speed and relative humidity are constructed as input attributes for the ET0. Generally, the modelling accuracy is increased by increasing the number of inputs. Including wind speed in the model inputs considerably increases their accuracy in modelling ET0. Mean absolute error (MAE), root mean square error (RMSE), agreement index (d) and Nash-Sutcliffe efficiency (NSE) are used as comparison criteria. The PCE is the most accurate model in estimating daily ET0, giving the lowest MAE (0.036 and 0.037 mm) and RMSE (0.047 and 0.050 mm) and the highest d (0.9998 and 0.9999) and NSE (0.9992 and 0.9996) with the four-input PCE models for Isparta and Antalya, respectively.  相似文献   

17.
Selecting the correct resolution in distributed hydrological modelling at the watershed scale is essential in reducing scale-related errors. The work presented herein uses information content (entropy) to identify the resolution which captures the essential variability, at the watershed scale, of the infiltration parameters in the Green and Ampt infiltration equation. A soil map of the Little Washita watershed in south-west Oklahoma, USA was used to investigate the effects of grid cell resolution on the distributed modelling of infiltration. Soil-derived parameters and infiltration exhibit decreased entropy as resolutions become coarser. This is reflected in a decrease in the maximum entropy value for the reclassified/derived parameters vis a vis the original data. Moreover, the entropy curve, when plotted against resolution, shows two distinct segments: a constant section where no entropy was lost with decreasing resolution and another part which is characterized by a sharp decrease in entropy after a critical resolution of 1209 m is reached. This methodology offers a technique for assessing the largest cell size that captures the spatial variability of infiltration parameters for a particular basin. A geographical information system (GIS) based rainfall-runoff model is used to simulate storm hydrographs using infiltration parameter maps at different resolutions as inputs. Model results up to the critical resolution are reproducible and errors are small. However, at resolutions beyond the critical resolution the results are erratic with large errors. A major finding of this study is that a large resolution (1209 m for this basin) yields reproducible model results. When modelling a river basin using a distributed model, the resolution (grid cell size) can drastically affect the model results and calibration. The error structure attributable to grid cell resolution using entropy as a spatial variability measure is shown.  相似文献   

18.
This study focuses on the potential improvement of environmental variables modelling by using linear state-space models, as an improvement of the linear regression model, and by incorporating a constructed hydro-meteorological covariate. The Kalman filter predictors allow to obtain accurate predictions of calibration factors for both seasonal and hydro-meteorological components. This methodology can be used to analyze the water quality behaviour by minimizing the effect of the hydrological conditions. This idea is illustrated based on a rather extended data set relative to the River Ave basin (Portugal) that consists mainly of monthly measurements of dissolved oxygen concentration in a network of water quality monitoring sites. The hydro-meteorological factor is constructed for each monitoring site based on monthly precipitation estimates obtained by means of a rain gauge network associated with stochastic interpolation (kriging). A linear state-space model is fitted for each homogeneous group (obtained by clustering techniques) of water monitoring sites. The adjustment of linear state-space models is performed by using distribution-free estimators developed in a separate section.  相似文献   

19.
鄱阳湖湖泊流域系统水文水动力联合模拟   总被引:5,自引:5,他引:0  
李云良  张奇  姚静  李相虎 《湖泊科学》2013,25(2):227-235
本文以鄱阳湖湖泊流域系统为研究对象,鉴于该湖泊流域系统尺度较大,下垫面自然属性呈现高度空间异质性且具有流域-平原区-湖泊不同机制的水文水动力过程,为了真实描述湖泊流域间的水文水动力联系及反映不同过程间的作用机制,构建了鄱阳湖湖泊流域联合模拟模型.该模型基于自主研发的流域分布式水文模型WATLAC和湖滨平原区产流模型以及水动力模型MIKE 21 3个不同功能子模型的连接来实现该复杂系统的模拟.模型的联合采用输入-输出驱动及子模型的顺序执行进程,即将五大子流域与平原区入湖径流量作为输入条件来驱动湖泊水动力模型,模拟湖泊水位对流域入湖径流量的响应.以2000-2005年鄱阳湖流域6个水文站点的河道径流量、流域基流指数以及湖泊4个站点的水位资料来率定模型,其中各站点日径流量拟合的纳希效率系数Ens为0.71~0.84,确定性系数R2介于0.70~0.88之间,而湖泊各站点水位拟合的纳希效率系数Ens变化为0.88~0.98,确定性系数R2为0.96~0.98,均取得令人满意的率定结果.本文提出的鄱阳湖湖泊流域系统水文水动力联合模拟模型能较为理想再现湖泊水位对流域降雨-径流过程的响应.水位模拟结果进一步表明,该联合模型能用来获取重要的水动力空间变化特征.该模型可作为有效工具定量揭示湖泊流域系统水文水动力过程对气候变化和流域人类活动的响应.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号