首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 593 毫秒
1.
对青海省4个农气观测站的土壤表面开始冻结和解冻期现象的变化及其对气候变化响应进行回归分析。结果表明:1)因青海地形复杂而各地气象条件不同自然物候始冻结和解冻期存在着明显的地域性。2)最初至最后的自然物候现象出现呈现出作物生长季延长的趋势。3)全省土壤表面平均开始冻结期的响应:3—9月平均气温升高1℃,冻结推迟2.3d;3-9月总降水量增多10mm,冻结推迟0.4d。4)全省土壤表面平均开始解除冻期的响应:上年10月至当年2月平均气温升高1℃,解冻提早2.5d左右,上年10月至当年2月总降水量增多10mm,解冻推迟2.3d。全省土壤表面开始冻结至解冻平均间隔日数:上年10月至当年2月平均气温升高1℃,冻结至解冻平均间隔日数缩短1.8d;上年10月至当年2月总降水量增多10mm,则缩短6.7d。5)各地土壤表面开始冻结和解冻期自然物候在农林牧业生产中的具体应用还有待于进一步研究。  相似文献   

2.
利用大同市所辖8个站1962—2012年地面气象观测记录中的冻土资料,采用线性倾向估计、累积距平等方法,分析大同市土壤开始冻结期、完全解冻期、冻结期及最大冻土深度的变化特征及其影响因素。结果发现:51年中大同市冻土主要表现为最大冻土深度减小, 开始冻结期推迟,解冻期提前, 冻结持续期缩短的总体变化趋势,冻土除了受气温的影响外,局地因素对最大冻土深度的影响较大。  相似文献   

3.
新疆乌兰乌苏物候变化规律及其对气候变化的响应   总被引:1,自引:0,他引:1  
分析新疆乌兰乌苏农业气象试验站1980—2002年物候与相应气候因子资料,得出乌兰乌苏23a来气温增高,降水增多,气候增暖增湿;候鸟停留时间增长,与积温、日照时数和降水量的年变化趋势一致,除降水外,其他均存在显著正相关关系;木本植物生育期延长,与4—10月平均气温、平均相对湿度、总日照时数和总降水量趋势一致;初霜和终霜均推迟,无霜期缩短;初雪和初次积雪提前,终雪推迟,冬季雪日增长;积雪开始融化提前,完全融化推迟,融化时间增长;土壤表面开始解冻日期趋势提前,而土壤表面开始冻结日期趋势推迟。另外,通过物候与气象因子建立的最优回归方程,获得物候对气候响应的定量关系,为生态环境研究提供一定的理论依据。  相似文献   

4.
利用1989—2013年平安区气象局冻土资料,分析了25a平安地区季节性冻土变化情况。平安区冻土开始日期逐渐延后,1989—2000年,平均开始日期为11月1日,2001—2013年,平均开始日期为11月8日,平均开始时间推迟了7d。冻土结束日期提前,2000年以前的平均解冻日期是3月21日,2000年以后的平均解冻日期是3月8日,解冻时间提前了13d。冻土持续时间缩短了21d。平均冻土深度和最大冻土深度均减小,其中平均冻土深度从2000年以前的93.5cm减少至2000年以后的88.5cm。平均深度减小了5cm。  相似文献   

5.
利用1963~1988年中国木本草本植物物候观测资料,运用趋势分析和相关分析方法,研究了26年中国20个物候站点植物始展叶期、始花期、始落叶(黄枯)期物候变化特征及其对降水变化的响应。结果表明:1963~1988年我国植物始展叶期、始花期、始落叶(黄枯)期均以推迟趋势为主;春季始展叶期、始花期,东北、华北以提前趋势为主,其他各区以推迟趋势为主;秋季始落叶(黄枯)期华北以提前趋势为主,其他各区以推迟趋势为主;1980年前后的物候期变化与1963~1988年的变化相同;春季物候期平均值差异多在-3~6天,秋季物候期平均值差异多在-10~10天;我国植物的始展叶期、始花期、始落叶(黄枯)期对于之前月份的累积降水量有不同程度的响应,物候期对该物候期前1月至前3月的累积降水量响应最为明显;我国春季物候期与降水量以正相关为主,秋季物候期与降水量则以负相关为主。   相似文献   

6.
利用喀什地区1961—2013年6—9月气温、日照时数、降水量月资料及1990—2013年玉米生育期资料,选取资料完整的4个代表站,采用一元线性回归分析方法 ,分析喀什地区气候变化及玉米生育期变化特征,重点探讨喀什近期气候变化对玉米生产的影响。结果表明:近53 a喀什市、巴楚县、叶城县6—9月平均、平均最高、平均最低气温及降水量总体呈上升趋势;日照时数,喀什市和巴楚县总体呈增加趋势,叶城县9月日照时数呈减少趋势;麦盖提县7—9月平均气温、8月降水量,6、8、9月日照时数呈下降(减少)趋势。喀什市、巴楚县玉米各发育期均呈不同程度的提前趋势;叶城县玉米各发育期的提前(推迟)趋势不明显,其中播种期、七叶期呈较弱的提前趋势(0.06~0.67 d/10 a),其它发育期呈延迟趋势,趋势为0.01~2.92 d/10 a,其中抽雄始期、开花始期的延迟趋势相对明显,通过了a=0.05显著性检验;麦盖提县玉米8月出现的抽雄期、开花期、吐丝普期呈延迟趋势外,其余的发育期均表现出不同程度的提前趋势。  相似文献   

7.
青海省近45年霜冻变化特征及其对主要作物的影响   总被引:10,自引:1,他引:9  
利用青海省22个地面气象站1961-2005年霜冻气候资料及日最低气温资料,对东部农业区、柴达木盆地等地的霜冻气候变化特征以及对主要作物的影响进行研究。结果表明:45年来,青海省大部分地区早(秋)霜冻初日推迟,晚(春)霜冻终日提前,无霜冻期延长。东部农业区霜冻初日推迟、终日提前的趋势最为明显,柴达木盆地次之,祁连山地区和青南高原霜冻初日推迟趋势较明显,而终日提前趋势不明显;大部分地区重霜冻频数减少,强度减弱,春霜冻期低温强度变化趋势较秋霜冻期明显;气候变暖使早霜冻危害减轻,晚霜冻危害加重。  相似文献   

8.
基于MODIS的MCD12Q2数据,采用趋势分析和相关性分析方法,结合遥感降水和气温数据产品,探求了天山新疆段2001—2014年植被物候的时空变化及其影响因素的相对作用。天山新疆段植被物候始期呈明显的垂直地带性分布特征,集中于3月10日至5月15日,全区14年平均值为3月20日;植被物候末期具有纬度地带性分布特征,集中于10月1日至10月25日。天山新疆段植被物候始期在山区呈不显著推迟趋势,绿洲和平原呈不显著提前趋势;植被物候末期主要呈不显著提前趋势;降水量和气温是影响天山植被物候期的重要因素。物候始期受当年春季气温的影响最为显著,也受到前一年冬季降水量的影响,其与降水量呈正相关,与气温呈负相关。夏季和秋季降水量是天山新疆段植被物候末期的主要影响因素。  相似文献   

9.
利用巴楚国家基本气候站1986-2010年的气象观测数据和地面物候观测资料,采用气候倾向率和气候趋势系数方法,分析气温、降水、日照时数的变化特征;木本植物选用新疆杨(Populus bolleanalanche),垂柳(Salix babylonica),杏树(Prunus armeniaca),苹果树(Malus pumila),沙枣树(Fdeagnys Qxycarpasehlecht),对植物物候期与气候变化的相互关系进行研究。研究表明:近25年来巴楚气候增暖现象较明显,增温率为0.18~0.95℃/10a,春、秋季变暖的趋势大于冬、夏季;降水量变化趋势不明显,整体呈现减少趋势,气候倾向率为-0.61 mm/10a,春、夏降水量呈减少趋势,冬、秋两季降水量均呈增多趋势;年日照时数呈减少趋势,气候倾向率为-30.34h/10a。除春季日照时数表现为增加趋势外,其他季节均表现为不同程度的减少趋势。其中,以冬季减幅最显著,平均减少-27.09h/10a。近25a来喀什木本植物芽开放期、展叶始期、开花始期表现为一致的提前趋势, 叶变色始期和落叶始期表现推迟的趋势;影响植物物候期的主要气候因子为气温和日照时数,随气温升高、日照时数增多,植物生长季延长。木本植物春季物候期与春季气温和春季日照时数呈负相关,且相关性显著,而与冬季气温和冬季日照时数几乎没有显著相关性。木本植物物候与秋季温度呈正相关,秋季气温升高,物候期推迟。在生产生活中,根据植物的物候期变化安排农、林业生产有重要的意义。  相似文献   

10.
利用石家庄地区5个代表站1961-2014年的逐日降水资料,采用多种统计分析方法,分析了石家庄地区降水量的时空变化特征,结果表明石家庄地区年降水量从20世纪70年代开始下降,80年代达到最低,90年代有所增加,但也没有明显的上升趋势,21世纪初又开始下降.20世纪70年代降水量的减少春季和秋季贡献最大,80年代降水量的减少和90年代降水量的增加主要是夏季的贡献.石家庄地区年降水量起伏较大,1963年降水量最多,为1038.4 mm,2014年最少,仅为276.2 mm.近54年石家庄年降水量在波动中呈现下降趋势,线性趋势为-11.0 mm/(10 a),但下降趋势并不明显.石家庄北部年降水量呈上升趋势,市区及东部、南部和西部年降水量均呈下降趋势,变化趋势均不明显.近54年,石家庄春季降水量呈上升趋势,线性趋势为0.9 mm/(10 a),夏季、秋季和冬季降水量均呈下降趋势,线性趋势分别为-11.9,-1.1和-0.3 mm/(10 a),上升或下降趋势均不明显.夏季降水减少是导致石家庄年降水减少的主要原因.石家庄四季降水量变化趋势的空间分布具有明显的季节特征和区域特征.石家庄四季降水量均存在显著周期变化.  相似文献   

11.
The impact of the anomalous thawing of frozen soil in the late spring on the summer precipitation in China and its possible mechanism are analyzed in the context of the frozen soil thawing date data of the 50 meteorological stations in the Tibetan Plateau, and the NCEP/NCAR monthly average reanalysis data.Results show that the thawing dates of the Tibetan Plateau gradually become earlier from 1980 to 1999,which is consistent with the trend of global warming in the 20th century. Because differences in the thermal capacity and conductivity between frozen and unfrozen soils are larger, changes in the freezing/thawing process of soil may change the physical properties of the underlying surface, thus affecting exchanges of sensible and latent heat between the ground surface and air. The thermal state change of the plateau ground surface must lead to the thermal anomalies of the atmosphere over and around the plateau, and then further to the anomalies of the general atmospheric circulation. A possible mechanism for the impact of the thawing of the plateau on summer (July) precipitation may be as follows. When the frozen soil thaws early (late) in the plateau, the thermal capacity of the ground surface is large (small), and the thermal conductivity is small (large), therefore, the thermal exchanges between the ground surface and the air are weak (strong). The small (large) ground surface sensible and latent heat fluxes lead to a weak (strong) South Asian high, a weak (strong) West Pacific subtropical high and a little to south (north) of its normal position. Correspondingly, the ascending motion is strengthened (weakened) and precipitationin creases (decreases) in South China, while in the middle and lower reaches of the Changjiang River, the ascending motion and precipitation show the opposite trend.  相似文献   

12.
晁华  徐红  王当  王小桃  朱玲  顾正强 《气象科技》2017,45(1):116-121
利用辽宁省61个气象站1964—2013年的冻土观测资料,采用线性回归、相关性分析、不同气候期对比等方法,结合ArcGIS分析了辽宁省冻土的空间和时间变化特征。结果表明:辽宁省冻土随纬度呈带状分布;土壤冻结具有明显的季节变化特征,冻结期在10月至翌年5月,冬末春初冻结的面积和深度达到最大值;冻结日自北向南逐渐推迟,消融日则相反;在全球变暖背景下,冻土深度随温度的上升而减小;大部分地区年平均气温和地表温度与最大冻土深度呈显著负相关,是影响冻土深度的重要因素;从各气候期100cm等深度线也可以明显看出最大冻土深度呈逐渐减小趋势。  相似文献   

13.
基于1981—2021年北京地区6个气象站的逐日最大冻土深度、平均气温、平均地表温度及5、10、15、20、40、80 cm地温等资料,分析了近40年北京地区最大冻土深度的时空分布特征及其与气温和地温的关系。结果表明:北京地区最大冻土深度总体呈变浅趋势,气候倾向率为-2.3 cm/10 a,各站点最大冻土深度变浅趋势从西到东呈逐渐减弱趋势。北京地区最大冻土深度与40、80 cm地温相关性最好,与地表温度相关性较差。选取2021至2022年北京地区冻土对比试验数据,评估测温式冻土自动观测仪观测精度,发现仪器安装至少一个冻融周期后与冻土人工观测吻合度更好,测温式冻土自动观测仪的观测精度与仪器安装位置的地下岩层、土质分布密切相关,需要在仪器稳定运行后根据当地实际优化算法和冻融阈值。  相似文献   

14.
高寒地区冻土活动层变化特征分析   总被引:5,自引:0,他引:5  
利用1960-2010年黑龙江省83个气象站的冻土和0 cm地温资料,采用线性回归和多项式回归方法,分析了黑龙江省冻土活动层的时空变化特征,揭示了黑龙江省五个典型气候区域最大冻土深度的变化趋势与特征,讨论了黑龙江省冻土活动层的影响因子。结果表明:黑龙江省冻土活动层冻结开始于9月份,至冬季3月份冻土深度达到最大值,8月份时冻土厚度接近于0 cm。由北向南,最大冻土深度逐渐变小,冻结开始时间逐渐推迟,融化结束时间逐渐提前。黑龙江省最大冻土深度均呈显著减小趋势,存在明显的退化趋势。从年代际变化上看,20世纪90年代前黑龙江省最大冻土深度变化不大,最大冻土深度较深,90年代后最大冻土深度呈显著减小趋势。高纬度地区地温低,在同等条件下冻土深度较低纬度地区大。  相似文献   

15.
利用1959年10月至2018年4月沈阳地区7个气象站逐日冻土观测资料、逐日平均气温、逐日平均地温及5 cm、10 cm、15 cm、20 cm、40 cm地温观测资料,分析了近60 a沈阳地区最大冻土深度的时空变化特征,并探讨了其对气候变暖的响应。结果表明:近60 a来沈阳地区冻土一般在10月开始出现,翌年4月消融。1959-2018年沈阳地区年平均月最大冻土深度在2月和3月最大,10月最小;年最大冻土深度以-4.8 cm/10 a的速度显著变浅,年代平均最大冻土深度也呈变浅趋势。相关分析表明,近60 a沈阳地区日最大冻土深度与日平均气温、地温呈显著负相关关系,相关系数分别为-0.60和-0.72。Mann-Kendall检验表明,7个气象站年平均最大冻土深度均有突变发生,突变点大多出现在20世纪80年代。近60 a沈阳地区最大冻土深度开始日期和结束日期分别呈延后和提前趋势,趋势率分别为1.0 d/10 a和-3.2 d/10 a。1959-2018年沈阳地区平均冻土持续时间为164 d,年变化呈缩短趋势,趋势率为-4.4 d/10 a。  相似文献   

16.
Climatic changes at the Earth's surface propagate slowly downward into theground and modify the ambient ground thermal regime. However, causes of soiltemperature changes in the upper few meters are not well documented. One majorobstacle to understanding the linkage between the soil thermal regime andclimatic change is the lack of long-term observations of soil temperatures andrelated climatic variables. Such measurements were made throughout the formerSoviet Union with some records beginning at the end of the 19th century. Inthis paper, we use records from Irkutsk, Russia, to demonstrate how the soiltemperature responded to climatic changes over the last century. Both airtemperature and precipitation at Irkutsk increased from the late 1890s to the1990s. Changes in air temperature mainly occurred in winter, while changes inprecipitation happened mainly during summer. There was an anti-correlationbetween mean annual air temperature and annual total precipitation, i.e., more(less) precipitation during cold (warm) years. There were no significanttrends of changes in the first day of snow on the ground in autumn, but snowsteadily disappeared earlier in spring, resulting in a reduction of the snowcover duration. A grass-covered soil experiences seasonal freezing for morethan nine months each year and the long-term average maximum depth ofseasonally frozen soils was about 177 cm with a range from 91 cm to 260 cm.The relatively lower soil temperature at shallow depths appears to representthe so-called `thermal offset' in seasonally frozen soils. Changes in meanannual air temperature and soil temperature at 40 cm depth were about the samemagnitude (2.0 °C to 2.5 °C) over the common period of record, but thepatterns of change were substantially different. Mean annual air temperatureincreased slightly until the 1960s, while mean annual soil temperatureincreased steadily throughout the entire period. This leads to the conclusionthat changes in air temperature alone cannot explain the changes in soiltemperatures at this station. Soil temperature actually decreased duringsummer months by up to 4 °C, while air temperature increased slightly.This cooling in the soil may be explained by changes in rainfall and hencesoil moisture during summer due to the effect of a soil moisture feedbackmechanism. While air temperature increased about 4 °C to 6 °C duringwinter, soil temperature increased by up to 9 °C. An increase in snowfallduring early winter (October and November) and early snowmelt in spring mayplay a major role in the increase of soil temperatures through the effects ofinsulation and albedo changes. Due to its relatively higher thermalconductivity compared to unfrozen soils, seasonally frozen ground may enhancethe soil cooling, especially in autumn and winter when thermal gradient isnegative.  相似文献   

17.
土壤冻融过程是青藏高原陆面过程中最突出的特征之一,量化表征土壤冻融过程的关键参量变化特征对认识青藏高原气候变化、生态和水文过程有重要的科学意义.本文利用青藏高原地区ECMWF/ERA5(European Centre for Medium-Range Weather Forecasts/ERA5)的浅层土壤温度、体积含...  相似文献   

18.
1951—2005年鞍山气候变化特征分析   总被引:4,自引:0,他引:4  
利用逐日气温距平、线性倾向率、滑动平均和小波分析等方法,对1951—2005年鞍山气温、降水量和平均最高气温、最低气温及初霜、终霜、无霜期、积温、透雨等资料进行统计分析。结果表明:近55 a鞍山气候变化特点为气温呈上升趋势,降水和日照呈略减少趋势;平均最低气温升温幅度高于平均最高气温,气温日较差变小;霜、冻土初日延后,终日提前及无霜期延长,积温明显增多,透雨偏晚和极端气候事件频率增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号