首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Role of strike-slip faults in the Betic-Rifian orogeny   总被引:1,自引:0,他引:1  
A new model for the Betic-Rifian orogeny of the Western Mediterranean (Spain and North Africa) is proposed in which four strike-slip faults play an important role; the faults are not of the same age. Two faults, the left-lateral Jebha fault to the south (in Morocco and principally in the Mediterranean Sea) and the right-lateral North Betic fault (southern Spain) to the north, define the boundaries of the Alboran block (Betic and Rifian internal zones). Final movement along these faults was during the Burdigalian time. Two other faults, the left-lateral Nekor fault (North Africa) to the south of the Jebha fault and the right-lateral Crevillente fault, somewhat to the north of the North Betic fault, define a larger Alboran block (including part of the Betic and Rifian external zones) that was present during the Tortonian.The following sequence of events is proposed:
1. (a) During the Eocene and Oligocene, the African and European plates converged in a N-S sense causing the breakup and overthrusting of the Betic, Rifian and Kabyle internal zones and then the movement towards the WSW of the Alboran block by slip along the Jebha and North Betic faults.
2. (b) By the end of Burdigalian time, movement along the Jebha and North Betic faults ceased.
3. (c) With continued N-S convergence, the Nekor and Crevillente faults, which bound a larger Alboran block, were formed during the mid- and late Miocene. The Arc of Gibraltar (the zone lying between the four major faults) seems to be a result of WSW motion of a crustal block being thrust over external zones.
The model proposed adds to the earlier idea that tectogenesis proceeds from the interior to the exterior of an erogenic belt. In the Betic-Rifian orogeny major strike-slip fracture zones shifted to the exterior of the orogenic belt as the orogeny progressed in order to relieve the stress caused by locking of the more internal faults.  相似文献   

2.
We summarize seismogenic structures in four regions of active convergence, each at a different stage of the collision process, with particular emphases on unusual, deep-seated seismogenic zones that were recently discovered. Along the eastern Hellenic arc near Crete, an additional seismogenic zone seems to occur below the seismogenic portion of the interplate thrust zone—a configuration found in several other oblique subduction zones that terminate laterally against collision belts. The unusual earthquakes show lateral compression, probably reflecting convergence between the subducting lithosphere's flank and the collision zone nearby. Along oblique zones of recent collision, the equivalence between space and time reveals the transition from subduction to full collision. In particular, intense seismicity beneath western Taiwan indicates that along the incipient zone of arc–continent collision, major earthquakes occur along high-angle reverse faults that reach deep into the crust or even the uppermost mantle. The seismogenic structures are likely to be reactivated normal faults on the passive continental margin of southeastern China. Since high-angle faults are ineffective in accommodating horizontal motion, it is not surprising that in the developed portion of the central Taiwan orogen (<5 Ma), seismogenic faulting occurs mainly along moderate-dipping (20–30°) thrusts. This is probably the only well-documented case of concurrent earthquake faulting on two major thrust faults, with the second seismogenic zone reaching down to depths of 30 km. Furthermore, the dual thrusts are out-of-sequence, being active in the hinterland of the deformation front. Along the mature Himalayan collision zone, where collision initiated about 50 Ma ago, current data are insufficient to distinguish whether most earthquakes occurred along multiple, out-of-sequence thrusts or along a major ramp thrust. Intriguingly, a very active seismic zone, including a large (Mw=6.7) earthquake in 1988, occurs at depths near 50 km beneath the foreland. Such a configuration may indicate the onset of a crustal nappe, involving the entire cratonic crust. In all cases of collision discussed here, the basal decollement, a key feature in the critical taper model of mountain building, appears to be aseismic. It seems that right at the onset of collision, earthquakes reflect reactivation of high-angle faults. For mature collision belts, earthquake faulting on moderate-dipping thrust accommodates a significant portion of convergence—a process involving the bulk of crust and possibly the uppermost mantle.  相似文献   

3.
The Alboran Sea constitutes a Neogene–Quaternary basin of the Betic–Rif Cordillera, which has been deformed since the Late Miocene during the collision between the Eurasian and African plates in the westernmost Mediterranean. NNE–SSW sinistral and WNW–ESE dextral conjugate fault sets forming a 75° angle surround a rigid basement spur of the African plate, and are the origin of most of the shallow seismicity of the central Alboran Sea. Northward, the faults decrease their transcurrent slip, becoming normal close to the tip point, while NNW–SSE normal and sparse ENE–WSW reverse to transcurrent faults are developed. The uplifting of the Alboran Ridge ENE–WSW antiform above a detachment level was favoured by the crustal layering. Despite the recent anticlockwise rotation of the Eurasian–African convergence trend in the westernmost Mediterranean, these recent deformations—consistent with indenter tectonics characterised by a N164°E trend of maximum compression—entail the highest seismic hazard of the Alboran Sea.  相似文献   

4.
Makkah and central Red Sea regions have been re-evaluated from recent earthquake data analysis. Epicenters of recent seismic activity are concentrated in three local seismic zones. These are Ad Damm fault (NE), Nu’man–Makkah–Fatima (NW), and Jeddah-Red Sea (NW) seismic zones. Moreover, an extended seismic zone along the central part of Red Sea is observed. Most of these epicenters are distributed along tectonic faults, as indicated from the subsurface structure analysis of the aeromagnetic anomaly map. Some epicenters of small magnitudes are inaccurately located. The study indicates the existence of large active structural basin south of Makkah region, which traverse Ad Damm fault zone with the Red Sea transform faults. Slip vector analyses were carried out for 50 available earthquake focal mechanisms around Makkah region. In Nu’man, Makkah, and Fatima structural zones, the slip vectors generally trend NW and NNW. However, in the southern part at the Ad Dam structure zone, the slip vector trends NE–SW. These may result from the current complicated drifting motion of Arabian plate away from African plate combined with the opening of the Red Sea rift.  相似文献   

5.
Ancient subduction zones are characterized by metamorphic and orogenic belts. The Zagros Orogenic Belt comprises almost all sections of an ancient subduction zone along which Neo-Tethyan oceanic crust was subducted beneath central Iran. The Eslami Peninsula, as a part of the Zagros Orogenic Belt in Azerbaijan province, northwestern Iran, is situated between the Lake Urmia fore-arc basin and the Sahand Magmatic Arc. This region contains Eocene leucite dikes, trachyte, tephrite, phenolite, basanite and syenite. Volcanic features related to the Sahand are located in the eastern part of the Eslami Peninsula. In view of its relative age and composition, the Eslami Peninsula proposed as an outer arc of the Sahand Magmatic Arc that formed within the post-collisional setting of the central Iranian and Arabian plates. After subduction and contact of the two plates, a symmetric pop-up structure has been created by thrusting in the Zagros belt as a result of the collision processes. The injesction of dikes in the Eslami Peninsula is also a result of the continent_continent collision.  相似文献   

6.
The combination of inclined collision and plate boundary shape can control the nature of deformation and the sense of shear along a transpression zone. The present study investigated the effects of a boundary zone with curvilinear shape along a transpression zone on the kinematics of deformation. The kinematics of the Zagros transpression zone varies with the orientation of the zone boundary. Detailed structural and microstructural studies showed sinistral sense of shear on the southeastern part of the Zagros inclined transpression zone (Fars Arc), but dextral sense of shear on the northwestern part of the zone. It is inferred that the both senses of shear were developed coevally under a bulk general shear, regional-scale deformation along a curved inclined transpression miming the shape of the Fras Arc of the Zagros and the reentrant of the Bandar Abbas Syntaxis. The Zagros transpression zone formed by inclined continental collision between the Afro-Arabian continent and Iranian microcontinent.  相似文献   

7.
The Gibraltar Arc (Western Mediterranean Sea) is traversed by a NE-trending fault system that extends from northern Morocco to southeastern Spain. In this area, three main faults (the Carboneras, Palomares and Alhama de Murcia faults) have been active in Quaternary time. The faults are characterized by left-lateral strike-slip motion. The Quaternary faulting and current seismicity in this part of the Meditterranean area are related to a collision-type tectonics produced by the northwestward relative motion of the African Plate toward the European Plate.  相似文献   

8.
Ordovician rocks of the Lachlan Orogen consist of two major associations, mafic to intermediate volcanic and volcaniclastic rocks (Macquarie Arc), which aerially comprise several north–south-trending belts, and the quartz-rich turbidite succession. Relationships between these associations are integral to resolving their tectonic settings and opinions range between contacts being major thrusts, combinations of various types of faults, and stratigraphic contacts with structural complications. Stratigraphic contacts between these associations are found with volcaniclastic-dominant units overlying quartz-turbidite units along the eastern boundary of the eastern volcanic belt and along the southern boundary of the central volcanic belt. Mixing between these major associations is limited and reflects waning quartzose turbidite deposition along a gently sloping sea floor not penetrating steeper volcaniclastic aprons that were developing around the growing volcanic centres formed during late Middle Ordovician to early Silurian Macquarie Arc igneous activity. An island arc setting has been most widely supported for the Macquarie Arc, but the identification and polarity of the associated subduction zone remain a contentious issue particularly for the Early Ordovician phase of igneous activity. The Macquarie Arc initiated within a Cambrian backarc formed by sea-floor spreading behind a boninitic island arc and presumably reflects a renewed response to regional convergence as subduction ceased along the Ross–Delamerian convergent boundary at the East Gondwana continental margin. An extensional episode accompanied initiation of the late Middle Ordovician expansion in island arc development. A SSE-dipping subduction zone is considered to have formed the Macquarie Arc and underwent anticlockwise rotation about an Euler pole at the western termination of the island arc. This resulted in widespread deformation west of the Macquarie Arc in the Benambran Orogeny and development of subduction along the eastern margin of the orogenic belt.  相似文献   

9.
Fault zones control the locations of many ore deposits, but the ore-forming processes in such fault zones are poorly understood. We have studied the deformation and ore textures associated with fault zones that controlled the lead–zinc mineralization of the Dongmozhazhua deposit, central Tibet, ∼100 km southwest of Yushu City. Geological mapping shows that the structural framework of the Dongmozhazhua area is defined by NW–SE-trending reverse faults and superposed folds that indicate at least two stages of deformation. The first stage is characterized by tight nearly E–W-striking folds that formed during the closure of the Jinshajiang Paleo-Tethyan Ocean in the Triassic. The second stage of deformation produced NW–SE-trending reverse faults and related structures of the Fenghuoshan–Nangqian fold-and-thrust belt associated with India–Asia collision in the late Eocene to Oligocene. Scanline surveys along the ore-controlling fault zones show an internal structure that comprises a damage zone, a breccia zone with clasts that have become rounded, and a breccia zone with lenticular clasts, and this complex architecture was formed during at least two compressional substages of deformation. The Pb–Zn mineralization in the Dongmozhazhua area occurs exclusively close to NW–SE-trending reverse fault zones. Microtextural observations reveal that mineralization occurred as veinlets and disseminated blebs in limestone clasts, and as continuous bands and cements in fractured rocks. Cataclastic sulfide grains also can be seen in the matrix of some fault zones. The types of mineralization differ with structural position. The fillings of the ore-bearing veinlets typify the products of hydraulic fracture and both types of mineralization took place concurrently with regional contraction. We consider, therefore, that the ore-bearing fluids in the Dongmozhazhua deposit were concentrated in fault zones during regional compression and that the ore minerals were precipitated during hydraulic fracturing of host rocks. Subsequent fault activity pulverized some pre-existing sulfide material into cataclastic grains in the matrix of a tectonic breccia that developed in the same faults.  相似文献   

10.
番禺隆起是珠江口盆地中南部的一个重要含油气区。区内新近系沉积期主要发育NW向和近EW向的同沉积断裂, 它们的发育和分布控制着沉积充填和总体的古构造地貌特征。古隆起的东南和东北缘发育的主要同沉积断裂形成明显的古地貌突变带或断裂坡折带。东南缘的主控断裂是由裂陷期发育的缓坡反向断裂所形成的, 构成了番禺隆起与白云深凹带的分界。地震相、地震属性等分析和追踪其分布范围揭示出, 珠海组、珠江组中下部层序的低位域三角洲砂体沿断裂坡折带下斜坡呈裙带状分布。研究指出断裂坡折带下斜坡低位域具有形成构造—岩性油气藏的良好条件, 并为该区近期的勘探突破提供了重要依据  相似文献   

11.
The area from the Greater Caucasus to the southeast Turkey is characteri:;.ed and shaped by several major continental blocks. These are Scythian Platform, Pontian-Transcaucasu.,; Continent-Arc System (PTCAS), the Anatolian-lranian and the Arabian Platforms. The aim of this paper is to define these continental blocks and describe and also compare their boundary relationships along the suture zones. The Scythian Platform displays the evidence of the Hercynian and Alpine orogens. This platform is separated from the PTCAS by the Greater Caucasus Suture Zone. The incipient collision began along this suture zone before middle-late Carboniferous whereas the final collision occurred before Oligocene. The PTCAS can be divided into four structural units: (1) the Georgian Block - northern part of the Pontian-Transcaucasian island-arc, (2) the southern and eastern Black Sea Coast-Adjara-Trialeti Unit, (3) the Artvin-Bolnisi Unit, comprising the northern part of the southern Transcaucasus, and (4) the Imbricated Bayburt-Garabagh Unit. The PTCAS could be separated from the Anatolian Iranian Platform by the North Anatolian-Lesser Caucasus Suture (NALCS) zone. The initial collision was developed in this suture zone during Senonian-early Eocene and final collision before middle Eocene or Oligocene-Miocene. The Anatolian-lranian Platform (AIP) is made up of the Tauride Platform and its metamorphic equivalents together with Iranian Platform. It could be separated from the Arabian Platform by the Southeastern Anatolian Suture (SEAS) zone. The collision ended before late Miocene along this suture zone. The southernmost continental block of the geotraverse is the Arabian Platform, which constitutes the northern part of the Arabian-African Plate. This platform includes a sequence from the Precambrian felsic volcanic and clastic rocks to the Campanian-early Maastrichtian fiyschoidal clastics. All the suture zones include MORB and SSZ-types ophiolites in different ages. However, the ages of the suture  相似文献   

12.
In southeastern Turkey, the NE-trending Antakya Graben forms an asymmetric depression filled by Pliocene marine siliciclastic sediment, Pleistocene to Recent fluvial terrace sediment, and alluvium. Along the Mediterranean coast of the graben, marine terrace deposits sit at different elevations ranging from 2 to 180 m above present sea level, with ages ranging from MIS 2 to 11. A multisegmented, dominantly sinistral fault lying along the graben may connect the Cyprus Arc in the west to the Amik Triple Junction on the Dead Sea Fault (DSF) in the east. Normal faults, which are younger than the sinistral ones, bound the graben’s southeastern margin. The westward escape of the continental ?skenderun Block, delimited by sinistral fault segments belonging to the DSF in the east and the Eastern Anatolian Fault in the north caused the development of a sinistral transtensional tectonic regime, which has opened the Antakya Graben since the Pliocene. In the later stages of this opening, normal faults developed along the southeastern margin that caused the graben to tilt to the southwest, leading to differential uplift of Mediterranean coastal terraces. Most of these normal faults remain active. In addition to these tectonic movements, Pleistocene sea level changes in the Mediterranean affected the geomorphological evolution of the area.  相似文献   

13.
The metabasites and mylonitic granites of the East and South East of Chadegan in the Isfahan province are a part of the Sanandaj-Sirjan Zone. This region is a large-scale ductile shear zone which has experienced different phases of deformation and dynamothermal metamorphism. There are at least three phases of deformation in this area. During the first phase which was related to the subduction of the Neotethys oceanic lithosphere under the Iranian microcontinent, the study rocks have experienced regional metamorphism. The second deformational phase was concurrent with the collision between the Arabian plate and the Iranian plate in the Late Cretaceous and caused mylonitization of the metamorphic rocks. The NW–SE trending fold and thrust faults have formed in this stage. The mylonitization have been formed along the dextral transpressional faults. During the third stage of deformation and exhumation of the metamorphic complex, the mylonitic zones have been uplifted to the surface. In this the deformation phase, developed the current morphology of the rocks. The granites have been injected along the extensional shear zones related to the dextral transpressional displacements. These granites are related to the continental collision granites type and have been formed synchronous to the collision between the Arabian and the Iranian plate. Enrichment in LREEs comparison to HREEs and the negative Eu anomaly in the primitive mantle-normalized spidergram and Chondrite-normalized REE patterns support an intra-crustal origin for these granites. Upper continental crust-normalized REE patterns show that in terms of LREEs, are similar to Upper continental crust.  相似文献   

14.
The active fault database and Map of active faults in Africa, in scale of 1:5,000,000, were compiled according to the ILP Project II-2 “World Map of Major Active Faults”. The data were collected in the Royal Museum of Central Africa, Tervuren, Belgium, and in the Geological Institute, Moscow, where the final edition was carried out. Active faults of Africa form three groups. The first group is represented by thrusts and reverse faults associated with compressed folds in the northwest Africa. They belong to the western part of the Alpine–Central Asian collision belt. The faults disturb only the Earth's crust and some of them do not penetrate deeper than the sedimentary cover. The second group comprises the faults of the Great African rift system. The faults form the known Western and Eastern branches, which are rifts with abnormal mantle below. The deep-seated mantle “hot” anomaly probably relates to the eastern volcanic branch. In the north, it joins with the Aden–Red Sea rift zone. Active faults in Egypt, Libya and Tunis may represent a link between the East African rift system and Pantellerian rift zone in the Mediterranean. The third group included rare faults in the west of Equatorial Africa. The data were scarce, so that most of the faults of this group were identified solely by interpretation of space imageries and seismicity. Some longer faults of the group may continue the transverse faults of the Atlantic and thus can penetrate into the mantle. This seems evident for the Cameron fault line.  相似文献   

15.
Abstract

Neogene deformations have deeply disturbed the initial architecture of the pile of nappes within the Eastern Betic zone. The Arc of Aguilas, displaying a southeast-facing concavity, is a spectacular example of such a post-nappe structuration. Miocene deposits involved in the torsion of the Arc provide a chronology of the deformation. The Arc of Aguilas is one element within a system of rigid-plastic indentation including the following units, from the inner (SE) to the outer (NW) zones : — A rigid block, little deformed, located in the present day abyssal plain, play the part of the indenter.

— A structural pad corresponding to the Aguilas Arc itself. It was severely folded during Miocene times.

— A large peripheral zone mainly subjected to faulting during the Neogene (essentially strike-slip faults). These faults control the evolution of different types of sedimentary basins during the Late Neogene (Tortonian to Pliocene).

Two large shear zones: N020 sinistral (Palomares and Terreros faults), N100 dextral (Las Moreras faults) guided the deformation of the Aguilas Arc within a compressive stressfield of which major tensor axis oscillated between NW-SE and N-S.  相似文献   

16.
The eastern bend of the Cyprus Arc, at the transition between the submerged Mediterranean subduction and the onshore fault zones that underline the Eurasian, African and Arabic plates boundaries is a submarine feature undergoing a complex tectonic deformation. The BLAC marine geophysical survey helps to better assess the type of the deformation that affects the Messinian to Quaternary sediments along this plate boundary. The deformation, focussed between two tectonic corridors, displays compressive and transpressive features in the central part, becoming thrusting when moving westward in connection with the Cyprus accretionnary wedge. The northeastern end of this submarine range connects with the Latakia Ridge, which is, together with its continental extension, under a tensional tectonic regime. To cite this article: J. Benkhelil et al., C. R. Geoscience 337 (2005).  相似文献   

17.
《Gondwana Research》2014,25(2):729-735
Modern examples of active subduction nucleation are scarce. Hence, knowledge is derived from reconstructions of old subduction zones and numerical modeling. Here we present a rare analog of induced subduction nucleation occurring today along the northeastern Mediterranean continental margin. Geological evidence gathered here suggests that plate convergence between Africa–Sinai–Arabia and Eurasia–Anatolia since the Pliocene led to fragmentation of the northern Sinai plate into the Phoenician and Northern Levant micro-plates. Currently convergence is in the process of shifting from subduction cessation beneath the eastern Cyprus Arc to reactivation of the northern Levant margin. This shift induces the nucleation of an embryonic subduction zone, through polarity reversal. It re-defines the front of plate convergence.  相似文献   

18.
Field investigations reveal spatial variations in fault zone width along strike-slip active faults of the Arima–Takatsuki Tectonic Line (ATTL) and the Rokko–Awaji Fault Zone (RAFZ) of southwest Japan, which together form a left-stepping geometric pattern. The fault zones are composed of damage zones dominated by fractured host rocks, non-foliated and foliated cataclasites, and a fault core zone that consists of cataclastic rocks including fault gouge and fault breccia. The fault damage zones of the ATTL are characterized by subsidiary faults and fractures that are asymmetrically developed on each side of the main fault. The width of the damage zone varies along faults developed within granitic rocks of the ATTL and RAFZ, from ∼50 to ∼1000 m. In contrast, the width of the damage zone within rhyolitic tuff on the northwestern side of the ATTL varies from ∼30 to ∼100 m. The fault core zone is generally concentrated in a narrow zone of ∼0.5–∼5 m in width, consisting mainly of pulverized cataclastic rocks that lack the primary cohesion of the host rocks, including a narrow zone of fault gouge (<0.5 m) and fault-breccia zones either side of the fault. The present results indicate that spatial variations in the width of damage zone and the asymmetric distribution of damage zones across the studied strike-slip faults are mainly caused by local concentrations in compressive stress within an overstep area between left-stepping strike-slip faults of the ATTL and RAFZ. The findings demonstrate that fault zone structures and the spatial distribution in the width of damage zone are strongly affected by the geometric patterns of strike-slip faults.  相似文献   

19.
The Lower-Middle Triassic Aghdarband Basin, NE Iran, consists of a strongly deformed arc-related marine succession deposited along the southern margin of Eurasia in a highly mobile tectonic context. This basin is a key-area for the study of the Cimmerian events, as the Triassic units show severe deformations, which occurred short time after the collision of Iran with Eurasia, and were sealed by the Middle Jurassic succession. In this work, we document the structural setting and evolution of this area, based on detailed mesoscopic structural analyses of faults and folds, paleostress reconstruction and revision of the Triassic stratigraphy. The Triassic sequences are deeply involved in a N-verging thrust stack interacting with an important left-lateral transpressional fault zone characterized by strike-slip faults, vertical folds and high angle reverse faults generating intricate positive flowers. Systematic folds asymmetry indicates that they developed in a left-lateral transpressional zone coeval to thrust imbrication to the south, due to a marked strain partitioning.The extent of the transpressional zone shows that important left-lateral movements developed parallel to the belt during the Cimmerian collision, in response to oblique convergence between Iran and Eurasia. Inversion of Triassic syn-sedimentary faults, possibly inherited from Palaeozoic structures of the Kopeh Dagh basement and favouring strain partitioning, is suggested by unconformities, significant differences in the sedimentary successions, repeated olistoliths, scarp-related coarse breccias and rapid tectonic drowning, occurring especially along the northern tectonic boundary of the basin. Paleostress analyses point to a complex stress pattern showing a 45° rotation of the stress field along the left-lateral fault system, related to a complete deformation partitioning in two domains respectively characterized by pure reverse dip-slip and strike-slip motions. The main direction of compression, possibly oriented NE–SW in present days coordinates, favoured the development of large shear zones disrupting the eastern portion of the Cimmerian orogen.  相似文献   

20.
The detailed characteristics of the Paleozoic strike-slip fault zones developed in the northern slope of Tazhong uplift are closely related to hydrocarbon explorations. In this study, five major strike-slip fault zones that cut through the Cambrian-Middle Devonian units are identified, by using 3D seismic data. Each of the strike-slip fault zones is characterized by two styles of deformation, namely deeper strike-slip faults and shallower en-echelon faults. By counting the reverse separation of the horizon along the deeper faults, activity intensity on the deeper strike-slip faults in the south is stronger than that on the northern ones. The angle between the strike of the shallower en-echelon normal faults and the principal displacement zone(PDZ) below them is likely to have a tendency to decrease slightly from the south to the north, which may indicate that activity intensity on the shallower southern en-echelon faults is stronger than that on the northern ones. Comparing the reverse separation along the deeper faults and the fault throw of the shallower faults, activity intensity of the Fault zone S1 is similar across different layers, while the activity intensity of the southern faults is larger than that of the northern ones. It is obvious that both the activity intensity of the same layer in different fault zones and different layers in the same fault zone have a macro characteristic in that the southern faults show stronger activity intensity than the northern ones. The Late Ordovician décollement layer developed in the Tazhong area and the peripheral tectonic events of the Tarim Basin have been considered two main factors in the differential deformation characteristics of the strike-slip fault zones in the northern slope of Tazhong uplift. They controlled the differences in the multi-level and multi-stage deformations of the strike-slip faults, respectively. In particular, peripheral tectonic events of the Tarim Basin were the dynamic source of the formatting and evolution of the strike-slip fault zones, and good candidates to accommodate the differential activity intensity of these faults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号