首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The Mt. Emilius klippe (Western Alps, Italy) corresponds to a segment of the stretched Adriatic continental margin metamorphosed at granulite facies during Permian. This slice was subducted during the early Cenozoic Alpine subduction with the underlying eclogite facies remnants of the Tethyan seafloor (Zermatt‐Saas zone). Near the base of the Mt. Emilius massif, there is a shear zone with eclogite facies hydrofracture systems associated with deformation‐induced re‐equilibration of granulites during high‐P metamorphism. In the basal part of the massif, a pluri‐hectometre domain of sheared mafic boudins is hosted in the granulitic paragneiss. In these mafic boudins, there are garnetites, garnet veins and clinopyroxenites, as well as clinozoisite and calcite veins. These features record multiple events of fracture opening, brecciation, boudinage and parallelization of structures coevally with fluid–rock interaction, metasomatism and volume change. This integrated petrological, micro‐textural and geochemical investigation illustrates the multiplicity and the chemical variability of fluid sources during prograde to peak metamorphic evolution in the lawsonite–eclogite‐facies field (at ~2.15–2.4 GPa, 500–550 °C) during subduction of the Mt. Emilius slice. The calcite veins crosscutting the garnetites have relatively low δ18OVSMOW values (+6.5‰) near those for marble layers (and nearby calcsilicates) embedded within the metasomatized granulites (+8 to +10‰). It is proposed that infiltration of externally‐derived H2O‐rich fluids derived from the plate interface flushed the marbles, promoting decarbonation followed by short‐distance transport and re‐precipitation along garnetite fractures. This study highlights the importance of inherited structural heterogeneities (such as mafic bodies or sills) in localizing deformation, draining fluids from the downgoing plate and creating long‐lasting mechanical instabilities during subduction zone deformation.  相似文献   

2.
张猛  贾东  王毛毛  李志刚  李一泉 《地质论评》2013,59(6):1207-1217
斜向逆冲作用在自然界普遍存在,研究斜向逆冲断层相关褶皱的构造几何学特征,识别断层相关褶皱是否存在斜向逆冲有重要意义。文章采用Trishear 4.5、Gocad以及Trishear3D软件构建一系列不同滑移量的断层转折褶皱和断层传播褶皱的二维正演剖面,通过连接一系列不同排列方式的二维剖面建立了三种不同逆冲滑移方向的断层转折褶皱和断层传播褶皱的假三维模型,通过不同假三维模型的比较分析来探讨斜向逆冲断层相关褶皱的构造几何学特征。研究发现,斜向逆冲断层相关褶皱区别于正向逆冲断层相关褶皱的特征主要有两点:① 正向逆冲断层相关褶皱层面等高线图上的最高点与后翼等高线中点的连线以及水平切面上的核心点与后翼中点的连线方向均与断层走向垂直,而斜向逆冲断层相关褶皱的最高点以及核心点与后翼中点的连线方向均与断层走向斜交,并且最高点与后翼等高线中点的连线方向或者核心点与后翼中点的连线方向均与逆冲滑移方向一致;② 在褶皱平行断层走向纵剖面上,正向逆冲断层相关褶皱各个层面最高点的连线是直立的,而斜向逆冲断层相关褶皱各个层面最高点的连线发生倾斜。通过这两个特征可以判别褶皱是否存在斜向逆冲以及逆冲的方向。将模型分析结果运用到四川盆地西南部三维地震勘探资料所覆盖的邛西背斜和大兴西背斜的实例中。研究结果表明,两个背斜均存在右旋斜向逆冲,逆冲方向与各自断层走向的夹角均为70°左右,邛西背斜和大兴西背斜的逆冲方向分别是NE79°和NE77°左右,这与龙门山南段晚上新世以来的主应力方向以及反演的汶川地震最大主应力方向一致。  相似文献   

3.
Coal is a nearly impermeable rock type for which the production of fluids requires the presence of open fractures. Basin-wide controls on the fractured coal reservoirs of the Black Warrior foreland basin are demonstrated by the variability of maximum production rates from coalbed methane wells. Reservoir behavior depends on distance from the thrust front. Far from the thrust front, normal faults are barriers to fluid migration and compartmentalize the reservoirs. Close to the thrust front, rates are enhanced along some normal faults, and a new trend is developed. The two trends have the geometry of conjugate strike-slip faults with the same σ1 direction as the Appalachian fold-thrust belt and are inferred to be the result of late pure-shear deformation of the foreland. Face cleat causes significant permeability anisotropy in some shallow coal seams but does not produce a map-scale production trend.  相似文献   

4.
系统岩心观察和高密度薄片鉴定等分析测试资料研究结果显示,济阳坳陷沙三下-沙四上泥页岩成分组成及构造类型主要受沉积作用控制,岩石结构特征主要受成岩作用控制。根据泥页岩中方解石成因及重结晶程度,结合岩石成分及构造特征,将济阳坳陷沙三下-沙四上泥页岩划分为沉积主控型、沉积-成岩双控型及成岩主控型三大成因相。沉积主控型分布最为广泛,岩相类型多样,构造特征反映成因环境;沉积-成岩双控型主要见于纹层状岩相,由泥质纹层与显晶粒状方解石纹层互层构成;成岩主控型以柱状、柱纤状方解石垂直层面呈脉状、透镜状产出为特征。成岩主控型和沉积-成岩双控型泥页岩与页岩油气关系密切,是重要的有利成因相类型。  相似文献   

5.
In moderately to highly strained sandstones, both the long axis of the bedding-parallel finite-strain ellipse, as calculated by the normalized Fry method, and the projection of the long axis of the AMS ellipsoid on the plane of bedding, align well with local “structural grain” (trends of cleavage, folds, and faults). This relationship implies that results of both 2D Fry and AMS analyses represent the local layer-parallel tectonic strain component. Do both methods provide comparable results for very low-strain sandstone (e.g., <5%)? To address this question, Fry and AMS analyses were conducted in very low-strain sandstone from two localities in the Appalachian foreland fold–thrust belt: near Rosendale in New York and the Lackawanna synclinorium of Pennsylvania. We compared the map projections of both bedding-parallel Fry ellipses and AMS ellipsoids to the local structural grain. In both study areas, projections of the long axis of Fry strain ellipses do not cluster in a direction parallel to structural grain, whereas the projection of the long axes of AMS ellipsoids do cluster closely to structural grain. This observation implies that in very low-strain sandstone, AMS analysis provides a more sensitive “quick” indicator of tectonic fabric than does normalized Fry analysis.  相似文献   

6.
Fibrous calcite veins are ubiquitous throughout the thinly bedded, organic-rich Upper Triassic marine mdrocks of the Queen Charlotte Islands and their lateral equivalents on Vancouver Island. These veins show variable and complex morphologies and can be grouped into several types: (a) simple; (b) anastomosing or composite; (c) boxwork; and (4) polygonal network oriented normal to bedding. Field, petrographic, and geochemical evidence suggest that vein opening, resulting from hydraulic fracturing due to elevated pore-fluid pressures, was an early phenomenon and occurred prior to significant compaction of the host sediments.Calcite fibers in the veins are up to 30 mm long and commonly oriented perpendicular to the wall but locally display conical structures. Fibrous calcites, with the exception of those in boxwork veins, are generally non-ferroan and dull to very weakly orange luminescent. The boxwork calcites are ferroan, zoned and show dull luminescence with some bright rims.δ18O values range from −8.2 to −21.6‰ (PDB) and δ13C values range from 2.0 to −4.4‰ (PDB). Although some variations are present among the different morphological types of calcite veins, oxygen and carbon isotopic values display important variations when compared geographically. The most depleted oxygen and carbon isotopic values are those of boxwork calcite and they are associated with areas where the effects of early Mesozoic plutonism were most severe. Precipitation of boxwork fibrous calcites is interpreted to have been related to hydrothermal discharge into unconsolidated host sediment, rather than to later burial. Although the hydrothermal influence on the formation of vein calcite is related to geological events specific to the Wrangellia Terrain, this study provides an alternative mechanism for the generation of fibrous calcite veins and demonstrates the local importance of hydrothermal input in the evolution of pore-water chemistry.  相似文献   

7.
ABSTRACT This paper examines the diagenetic history of dual (i.e. matrix and fracture) porosity reservoir lithologies in Cretaceous to Eocene carbonate turbidites of the Ionian fold and thrust belt, close to the oil‐producing centre of Fier–Ballsh (central Albania). The first major diagenetic event controlling reservoir quality was early cementation by isopachous and syntaxial low‐Mg calcite. These cements formed primarily around crinoid and rudist fragments, which acted as nucleation sites. In sediments in which these bioclasts are the major rock constituent, this cement can make up 30% of the rock volume, resulting in low effective porosity. In strata in which these bioclasts are mixed with reworkedmicrite, isopachous/syntaxial cements stabilized the framework, and matrixporosity is around 15%. The volumetric importance of these cements, their optical and luminescence character (distribution and dull orange luminescence) and stable isotopic signal (δ18O and δ13C averaging respectively; ?0·5‰ VPDB and +2‰ VPDB) all support a marine phreatic origin. Within these turbidites and debris flows, several generations of fractures alternated with episodes of cementation. A detailed reconstruction of this history was based on cross‐cutting relationships of fractures and compactional and layer‐parallel shortening (LPS) stylolites. The prefolding calcite veins possess orange cathodoluminescence similar to that of the host rock. Their stable isotope signatures (δ18O of ?3·86 to ?0·85‰ VPDB and δ13C of – 0·14 to + 2·98‰ VPDB) support a closed diagenetic rock‐buffered system. A similar closed system accounts for the selectively reopened and subsequently calcite‐cemented LPS stylolites (δ18O of ?1·81 to ?1·14‰ VPDB and δ13C of +1·52 to +2·56‰ VPDB). Within the prefolding veins, brecciated host rock fragments and complex textures such as crack and seal features resulted from hydraulic fracturing. They reflect expulsion of overpressured fluids within the footwall of the frontal thrusts. After folding and thrust sheet emplacement, some calcite veins are still rock buffered (δ18O of ?0·96 to +0·2‰ VPDB and δ13C of +0·79 to +1·37‰ VPDB), whereas others reflect external (i.e. extraformational) and thus large‐scale fluid fluxes. Some of these veins are linked to basement‐derived fluid circulation or originated from fluid flow along evaporitic décollement horizons (δ18O around +3·0‰ VPDB and δ13C around +1·5‰ VPDB). Others are related to the maturation of hydrocarbons in the system (δ18O around ?7·1‰ VPDB and δ13C around +9·3‰ VPDB). An open joint system reflecting an extensional stress regime developed during or after the final folding stage. This joint system enhanced vertical connectivity. This open joint network can be explained by the high palaeotopographical position and the folding of the reservoir analogue within the deformational front. The joint system is pre‐Burdigalian in age based upon a dated karstified discordance contact. Sediment‐filled karst cavity development is linked to meteoric water infiltration during emergence of some of the structures. Despite its sediment fill, the karst network is locally an important contributor to reservoir matrix porosity in otherwise tight lithologies. Development of secondary porosity along bed‐parallel and bed‐perpendicular (i.e. layer‐parallel shortening) stylolites is interpreted as a late‐stage diagenetic event associated with migration of acidic fluids during hydrocarbon maturation. Development of porosity along the LPS system enhanced the vertical reservoir connectivity.  相似文献   

8.
The rare preservation of columns perpendicular to bedding may provide convincing evidence that ancient crinoids adopted an upright attitude during life. However, taphonomic and sedimentological analyses are important in determining whether such occurrences are truly in situ or represent unusual allochthonous accumulations. The Crinoid Biosome of the Thornton Reef Complex, Silurian of Illinois, USA, includes pluricolumnals preserved perpendicular to bedding, in association with more common specimens parallel or angled to bedding. Upright pluricolumnals are relatively shorter (<150 mm) than the longest non-upright specimens; they sometimes occur as imbricate accumulations and lack attachment structures (although these are preserved separately). Brachiopod valves and colonial corals may also be preserved perpendicular to bedding. These features suggest that the Thornton beds were formed as viscous mass flow deposits and that the upright crinoid columns are allochthonous or, at best, parautochthonous. © 1996 John Wiley & Sons, Ltd.  相似文献   

9.
The structural geometry of the Anasagar gneiss dome in the axial zone of the South Delhi Fold Belt is controlled by polyphase folding. It is classified as a thrust-related gneiss dome and not as a metamorphic core complex. Four phases of deformation have affected both the gneiss and the enveloping supracrustal rocks. D2 and D3 deformations probably represent early and late stages of a progressive deformation episode in a simple shear regime combined with compression. The contact between the gneiss and the supracrustal rocks is a dislocation plane (thrust) with top-to-east sense of movement which is consistent with the vergence of the D2 folds. The thrust had a ramp-and-flat geometry at depth. At the present level of exposure it is a footwall flat (that is, parallel to the gneissosity in the footwall), but it truncates the bedding of the hanging wall at some places and is parallel at others. The thrusting was probably broadly coeval with the D2 folds and the thrust plane is locally folded by D2. D2 and D3 folds have similar style and orientation as the first and second phases respectively of major folds in the Delhi Supergroup of the South Delhi Fold Belt and these are mutually correlatable. It is suggested that D1 may be Pre-Delhi in age. Available geochronological data indicate that the emplacement of the Anasagar gneiss predated the formation of volcanic rocks in the Delhi Supergroup and also predated the main crust forming event in the fold belt. The Anasagar gneiss and its enveloping supracrustal rocks are probably older than the Delhi Supergroup.  相似文献   

10.
Thin continuous laminated bedding-parallel quartz veins (BPVs) with slip-striated and fibred vein walls occur within slates, or at their contact with sandstones, on the limbs of chevron folds in the Bendigo-Castlemaine goldfields, southeastern Australia. Two microstructural Types of BPV (I and II) have been previously recognized, and are confirmed in this study. Both types are concluded to have formed during and/or after crenulation cleavage (the first tectonic axial planar structure) in the wallrock slates, and during flexural-slip folding. Type I BPVs consist of syntaxial phyllosilicate inclusion trails, parallel to bedding, enclosing inclined inclusion bands, the latter formed by detachment of wallrock phyllosilicate particles from the walls of pressure solution-segmented discordant tension veins. Type I BPVs are formed by bedding-parallel shear, and grow in width by propagation of the discordant veins into the BPV walls. Type II veins are composed of quartz bands separated by wallrock slate seams which have split away from the vein wall during dilatant shear opening. They incorporate numerous torn-apart fragments of crenulated wallrock slate. Type I BPV inclusion band average spacing of 0.5 mm probably represents the magnitude of slip increments during stick-slip flexural-slip folding activity.  相似文献   

11.
Résumé Le gisement d'Enguialès est situé dans des schistes métamorphiques à proximité du granite de la Margeride et se présente sous la forme de deux systèmes de filons se recoupant l'un l'autre. Le champ filonien et la région avoisinante ont été l'objet d'une étude structurale qui a montré que les filons minéralisés correspondent à des éléments structuraux bien définis. Les filons du premier système sont parallèles à la schistosité S 1 (filons subconcordants) tandis que les filons du deuxième système sont logés dans les diaclases ac.
The Enguialès wolframite deposit (French Massif Central) is located in a metamorphic environment near the Margeride granitic pluton. The deposit is built up of two sets of parallel wolframite-bearing quartz veins crosscutting each other. A structural analysis of the vein system and its environment revealed that the two principal directions of the veins correspond to well-defined structures. The first set of veins is parallel to the schistosity S 1. The second set of veins is an ac-joint filling.
  相似文献   

12.
河北省滦平县下白垩统断陷盆地东杨树沟剖面,发育砂岩—泥岩互层序列,在砂岩急剧变厚的部位见到一种“发散状”层理。在这种层理中,纹层从砂体较薄的部位向砂体变厚的方向发散和倾斜,且纹层面与岩层面的夹角从上往下逐渐增大,最上部纹层面与岩层面的夹角接近0°,最下部纹层面与岩层面的夹角接近90°,由于岩层层面是近于水平的,也就是最下部的纹层的倾角接近90°,如此高角度的层理不可能是正常水流作用下沉积的。关于这种层理类型,文献中没有找到记录。前人对该剖面的研究成果中曾经把它当作交错层理,认为这个急剧变厚砂岩是河道沉积。根据这个成因分析,可以预测砂体的展布方向是垂直于岸线的。经仔细观察,发现这种“发散状”层理是小型同生正断层控制下的同生层理。该套砂岩不是河道砂,砂层局部变厚是由于同生正断层引起的,其沉积环境被认为是扇三角洲前缘的舌状体沉积,根据这种成因分析,可以预测砂体的展布方向垂直于断层走向,根据区域资料,断层是平行于湖岸线分布的。  相似文献   

13.
A revised interpretation of a number of faults across the hinge and western limb of a large-scale anticlinal flexure in the Mount Isa district has been made in terms of the faults following earlier-formed be joints. Such joints often develop in weakly or moderately folded competent sediments, as a result of either tensile stresses that were active at a late stage during folding or the influence of residual stresses generated during tectonic uplift. The joints are oriented such that on a stereographic projection their poles plot parallel to the a axis of a fabric cross and at 90° to the fold axis (b). bc joints are thus approximately normal to bedding and contain the fold axis, and hence they fan around the axial plane of the fold containing them. Across the hinge and western limb of a steeply N-plunging large-scale F2 flexure in the Mount Isa district, a number of faults at high angles to bedding fan about the axial plane. Making use of the fold geometry and local bedding orientation it is possible to predict the orientation of ideal bc fractures at locations within the fold. These predictions fit well with the observed fault pattern. The movement on the faults, although apparently complex, appears consistent with continued shortening perpendicular to an axial-plane cleavage during the D2 deformation or as part of a later D2 deformation.  相似文献   

14.
Incipient metamorphism accompanying thrusting, folding and cleavage development has been investigated in a varied sequence of Palaeozoic sediments near the Variscan front in SW Dyfed, Wales. The aim was to evaluate a critical stage in the progression from heterogeneous sediment, whose detrital phases are neither in equilibrium with one another, nor with pore fluids, through indurated sedimentary rock to metamorphic rock comprising newly formed crystals that equilibrated with one another as they grew. Quartz veins are widely developed in the area, especially in the more psammitic lithologies, while finer grained rocks became cleaved during tectonic deformation. Mineralogical constraints and fluid inclusion measurements suggest maximum temperatures around 200-310d? C (slightly higher in the Marloes-Musselwick Thrust Sheet than in other parts of the structural succession) at depths of the order of 6-13 km. Quartz veins yield distinctly heavier oxygen isotopic compositions than detrital quartz grains in the adjacent wall rocks, although care must be taken in interpreting the data because slivers of detrital grains may become incorporated into veins, while matrix detrital grains may incorporate veinlets or rims of newly formed quartz. It is concluded that vein quartz grew in isotopic equilibrium with a fluid phase whose isotopic composition was primarily controlled by exchange with phyllosilicates, not detrital quartz grains. Vein and matrix quartzes from the Marloes-Musselwick Thrust Sheet are distinctly lighter (δ18Oveins=+14 to +18% and δ18Omatrix=+11 to +14%) than those from other thrust sheets (δ18O =+17 to +20% and +14 to +17%, respectively). We conclude that vein quartz and phyllosilicate grains in cleavage domains probably attained equilibrium with a locally buffered pore fluid at the peak of metamorphism, but many relict grains of different chemical and isotopic composition remained elsewhere in the rock. Local fluid migration along veins and through cleavage lamellae facilitated the attainment of equilibrium, but there is little evidence for large-scale infiltration of externally derived fluids. With further metamorphism the quartz in these rocks would attain an isotopic composition intermediate between that of the heavy vein material and light detritus which coexist here.  相似文献   

15.
In a sector placed in the SE part of the Alps–Apennine junction, a kilometre-scale shear zone has been identified as the Grognardo thrust zone (GTZ), which caused the NE-directed thrusting of metaophiolites (Voltri Group) and polymetamorphic continental crust slices (Valosio Unit) of Ligurian Alps onto Oligocene sediments of an episutural basin known as “Tertiary Piemonte Basin”. The structural setting of the GTZ is due to syn- to late-metamorphic deformation, followed by a brittle thrusting that occurred in the Late Aquitanian times and can thus be related to one of the main contractional tectonic events suffered by northern Apennines. The GTZ was then sealed by Lower Burdigalian carbonate platform sediments (Visone Formation). Transtensive faulting followed in post-Burdigalian times along NW–SE regional faults and displaced the previously coupled sedimentary and metamorphic units. The GTZ thus underwent a plastic-to-brittle evolution, during which carbonate-rich fluids largely sustained the deformation. In these stages, a complex vein network originated within both the metamorphic and sedimentary rocks. Field data and stable isotopic analyses (13C and 18O) of bulk rocks and veins show that fluid–rock interaction caused the carbonatisation of the rocks in the late-metamorphic stages and the cataclasis and recementation, by the action of isochemical cold carbonate groundwater during the thrusting events. Carbonate veins largely developed also during the transtensive faulting stages, with composition clearly different from that of the veins associated to thrust faults, as indicated by the strong depletion in 13C of carbonate fillings, suggesting the presence of exotic fluids, characterised by a high content of organic matter.  相似文献   

16.
The Cervarola Sandstones Formation, Aquitanian–Burdigalian in age, was deposited in an elongate, north‐west stretched foredeep basin formed in front of the growing northern Apennines orogenic wedge. As other Apennine foredeep deposits, such as the Marnoso‐arenacea Formation, the stratigraphic succession of the Cervarola Sandstones Formation records the progressive closure of the basin due to the propagation of thrust fronts towards the north‐east, i.e. towards the outer and shallower foreland ramp. This process produces a complex foredeep that is characterized by syn‐sedimentary structural highs and depocentres that strongly influence lateral and vertical turbidite facies distribution. This work describes and discusses this influence, providing a high‐resolution physical stratigraphy with ‘bed by bed’ correlations of an interval ca 1000 m thick, parallel and perpendicular to the palaeocurrents and to the main structural alignments, on an area of ca 30 km that covers the proximal portion of the Cervarola basin in the northern Apennines. The main aim is to show, for the first time ever, a detailed facies analysis of the Cervarola Sandstones Formation, based on a series of bed types that have proven fundamental to understand the morphology of the basin. The knowledge of the vertical and lateral distribution of these bed types, such as contained‐reflected and slurry (i.e. hybrid) beds, together with other important sedimentary structures, i.e. cross‐bedded bypass facies and delamination structures, is the basis for better understanding of facies processes, as well as for proposing an evolutionary model of the foredeep in relation to the syn‐sedimentary growth of the main tectonic structures. This makes the Cervarola Sandstones, like the Marnoso‐arenacea Formation, a typical example of foredeep evolution.  相似文献   

17.
Detailed micro-meso to macroscopic structural analyses reveal two deformation phases in the western limb of the Hazara-Kashmir Syntaxis(HKS). Bulk top to NW shearing transformed initially symmetrical NNE-SSW trending meso to macroscopic folds from asymmetric to overturned ones without changing their trend. Sigmoidal en-echelon tension gashes developed during this deformation,that were oblique to bedding parallel worm burrows and bedding planes themselves. Strain analyses of deformed elliptical ooids using the R_f/φ method constrain the internal strain patterns of the NNE-SSW structures. The principal stretching axis(S_3) defined by deformed elliptical ooids is oriented N27°E at right angles to WNW-ESE shortening. The deformed elliptical ooids in sub-vertical bedding vertical planes contain ooids that plunge ~70° SE due to NW-directed tectonic transport. Finite strain ratios are1.45(R_(xy)) parallel to bedding plane and 1.46(R_(yz)) for the vertical plane. From these 2D strain values, we derive an oblate strain ellipsoidal in 3D using the Flinn and Hsu/Nadai techniques. Strains calculated from deformed elliptical ooids average-18.10% parallel to bedding and-18.47% in the vertical plane.However, a balanced cross-section through the study area indicates a minimum of~-28% shortening.Consequently, regional shortening was only partially accommodated by internal deformation.  相似文献   

18.
We explore the controls of the litho‐tectonic architecture on the erosional flux in the 370‐km2 Glogn basin (European Alps). In this basin, the bedding and schistosity of the bedrock dip parallel to the topographic slope on the NW valley flank, leading to a non‐dip slope situation on the opposite SE valley side. While the dip slope condition has promoted the occurrence of landslides (e.g. the c. 30‐km2 deep‐seated Lumnezia landslide), the opposite non‐dip slope side of the valley hosts >100‐m‐deeply incised tributary streams. 10Be concentrations of stream sediments yield catchment‐averaged denudation rates that vary between 0.27 ± 0.03 and 2.19 ± 0.37 mm a?1, while the spatially averaged denudation rate of the entire basin is 1.99 ± 0.34 mm a?1. Our 10Be‐based approach reveals that the Lumnezia landslide front contributes c. 30–65% of the entire sediment budget, although it covers <5% of the Glogn basin. This suggests a primary control of the bedrock bedding on erosion rates and processes.  相似文献   

19.
Magnetic measurements were performed on apparently undeformed limestones and carbonate shales from 44 sites in nearly horizontal stratigraphic layers mainly from the basal units of the Neoproterozoic Bambui Group in the southern part of the São Francisco Basin. Rock magnetism, cathodoluminescence, transmitted and reflected light microscopy analyses reveal that there is a mix of ferromagnetic minerals, mainly magnetite and pyrrhotite, in most sites. In some sites, however, the ferromagnetic minerals are magnetite and hematite. Fine-grained pyrrhotite and pyrite accompany rare fine-grained graphite and probably amorphous carbon in some of stylolites, while pyrrhotite is also present as larger interstitial masses in coarse-grained domains outside, but close to the stylolites. Magnetic fabrics were determined applying both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanence magnetization (AAR). The AAR tensor was less well defined than the AMS fabric due to the low ferromagnetic mineral content. The analysis at the individual-site scale defines three AMS fabric types. The first type (two sites) shows Kmin perpendicular to the bedding plane, while Kmax and Kint are scattered within bedding plane itself. This fabric is usually interpreted as primary (sedimentary-compactional), typical of totally undeformed sediments. The second type shows the three well-clustered AMS axes with Kmin still perpendicular to the bedding plane. This fabric is the most important since it was found in the majority of the sites. The third type (two sites) is characterized by well-clustered Kmax in the bedding plane, while Kmin and Kint are distributed along a girdle. The second and third fabric types are interpreted as combinations of sedimentary-compactional and tectonic contributions at the earliest, and at a slightly later stage of deformation, respectively. AMS represents the contribution of all the rock-forming minerals, while AAR isolates the contribution of remanence-bearing minerals from the matrix minerals. However, rock magnetism shown that anhysteretic remanence only reaches grains with coercivity < 100 mT because the maximum AF in the majority of the available instruments is 100 mT. Therefore, hematite and pyrrhotite probably do not contribute to AAR, which is due to the shape-preferred orientation of magnetite grains. For some sites, the AMS and AAR fabric orientations are different, mainly with respect to the lineation orientations (Kmax and Amax, respectively). In general, Kmax is well developed and follows the trend of the main regional thrusts, fold axes and faults generated in the first deformational phase, while Amax follows both this trend and that of structural lineaments formed during the second deformational phase. These deformation phases arose from the compression, which occurred during the evolution of the Brasília fold belt during the last stages of the Brasiliano event. The magnetic fabrics of the apparently undeformed Bambui limestones are typical of very weakly deformed sediments, in which the depositional-compaction fabric has been partly overprinted by a tectonic one, with minimum susceptibility direction remaining perpendicular to bedding. This result is in agreement with the textures given by the petrographic observations.  相似文献   

20.
Discordant zebra dolomite bodies occur locally in the Middle Cambrian Cathedral and Eldon Formations of the Main Ranges of the Canadian Rocky Mountains Fold and Thrust Belt. They are characterized by alternating dark grey (a) and white (b) bands, forming an ‘abba’ diagenetic cyclicity. These bands developed parallel to both bedding and cleavage. Dark grey (a) bands consist of fine (< 300 μm) non-planar crystalline impure dolomite. The white (b) bands are composed of coarse (up to several millimetres) milky-white pure saddle dolomites (b1) which are often covered by pore-lining zoned dolomite (b2). The b phases often possess a saddle-shaped morphology. In contrast to the replacement origin of the a dolomite, the zoned b2 dolomite rims are interpreted as a cement formed in open cavities. The b1 dolomite is interpreted as the result of recrystallization with diagenetic leaching of non-carbonate components. All the zebra dolomites studied are (nearly) stoichiometric and are characterized by enriched Na and depleted Sr concentrations. Fe and Mn concentrations in these dolomites differ depending on the sample locality. Fluid inclusion data indicate that the dolomites formed from relatively hot (TH = 130–200 °C), saline (20–23 wt% CaCl2 eq.) fluids. A diagenetic high temperature origin is also supported by depleted δ18O values (−20 to −14‰ VPDB). A contribution of 87Sr-enriched fluids is reflected in the 87Sr/86Sr values (0·7091–0·7123). Zebra dolomite development is explained by focused fluid flow, which exploited areas of structural weaknesses (e.g. basin-platform, rim areas, faults, etc.). Expulsion of hot basinal brines in a tectonically active regime generated overpressures, which explains the development of secondary porosity during zebra dolomitization as well as the intra-zebra fracturing at decimetre to micrometre scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号