首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this article is to examine the geochemistry and geochronology of the Cadomian Mishu granites from northwest Iran, in order to elucidate petrogenesis and their role in the evolution of the Cadomian crust of Iran. The Mishu granites mainly consist of two-mica granites associated with scarce outcrops of tonalite, amphibole granodiorite, and diorite. Leucogranitic dikes locally crosscut the Mishu granites. Two-mica granites show S-type characteristics whereas amphibole granodiorite, tonalities, and diorites have I-type signatures. The I-type granites show enrichment in large-ion lithophile elements (e.g. Rb, Ba and K) and depletion in high field strength elements (e.g. Nb, Ti and Ta). These characteristics show that these granites have been formed along an ancient, fossilized subduction zone. The S-type granites have high K, Rb, Cs (and other large ion lithophile elements) contents, resembling collision-related granites. U–Pb zircon dating of the Mishu rocks yielded 238U/206Pb crystallization ages of ca. 550 Ma. Moreover, Rb–Sr errorchron shows an early Ediacaran age (547 ± 84 Ma) for the Mishu igneous rocks. The two-mica granites (S-type granites) show high 87Sr/86Sr(i) ratios, ranging from 0.7068 to 0.7095. Their ?Nd values change between ?4.2 and ?4.6. Amphibole granitoids and diorites (I-type granites) are characterized by relatively low 87Sr/86Sr(i) ratios (0.7048–0.7079) and higher values of ?Nd (?0.8 to ?4.2). Leucogranitic dikes have quite juvenile signature, with ?Nd values ranging from +1.1 to +1.4 and Nd model ages (TDM) from 1.1 to 1.2 Ga. The isotopic data suggests interaction of juvenile, mantle-derived melts with old continental crust to be the main factor for the generation of the Mishu granites. Interaction with older continental crust is also confirmed by the presence of abundant inherited zircon cores. The liquid-line of descend in the Harker diagrams suggests fractional crystallization was also a predominant mechanism during evolution of the Mishu I-type granites. The zircon U–Pb ages, whole rock trace elements, and Sr–Nd isotope data strongly indicate the similarities between the Mishu Cadomian granites with other late Neoproterozoic–early Cambrian (600–520 Ma) granites across Iran and the surrounding areas such as Turkey and Iberia. The generation of the Mishu I-type granites could be related to the subduction of the Proto-Tethyan Ocean during Cadomian orogeny, through interaction between juvenile melts and old (Mesoproterozoic or Archaean) continental crust. The S-type granites are related to the pooling of the basaltic melts within the middle–upper parts of the thick continental crust and then partial melting of that crust.  相似文献   

2.
Tehran lies on the southern flank of the Central Alborz, an active mountain belt characterized by many historical earthquakes, some of which have affected Tehran itself. The border between the Alborz Mountain and the Tehran’s piedmont (northern part of Tehran City) is marked by the North Tehran Fault (NTF), dividing the Eocene rock formation from the alluvial units of different ages (Early Pleistocene to the recent alluvium). A detail mapping of the piedmont, combined with structural study reveal that two active thrust faults (situated south of the NTF) are of importance for hazard assessment of the City. The geomorphological evidences along the NTF are not in agreement with an active fault, indicating that the fault activity may have been shifted southward. Furthermore differentiation of newly recognized alluvial units and their inferred ages, together with the mapped fault pattern permit us to characterize the Quaternary deformation. The Late Pleistocene alluvial deposits consist of three alluvial fans among them the youngest one together with the modern alluvial fan defines the Holocene deposit. The present deformation in the piedmont is accommodated along vertically left-lateral strike-slip faults and low-angle thrust faults trending in range from N070 to N110E.  相似文献   

3.
For the first time, the calcareous nannofossils of marly deposits near Kerman (Bardsir area) have been studied. This study presents the integrated (calcareous nannofossils) biostratigraphy of the Bardsir section in the Kerman basin, Central Iran. In most parts of Central Iran, the Upper Cretaceous sequence is complete and continuous and is divided into two groups: Cenomanian–Touronian flysch and Campanian–Maastrichtian flysch. Flyschs composed of sets of green marl sequences (Coniacian–Santonian) have been separated to reduce the basin depth and refer to the relative calm. Bardsir is located 57.6 km from Kerman (Central Iran). The lithology of this area includes light green marl with layers of calcareous siltstone, limestone, and flysch rocks. In this study, 24 samples were taken and prepared with smear slide. Most species were photographed with a light microscope. As a result of this study, 30 genera and 42 species of nannofossils have been identified. A high-resolution calcareous nannofossil biostratigraphic study has been carried out, allowing the division of the studied section into eight biozones of Late Santonian to Early Maastrichtian age (CC17–CC24).  相似文献   

4.
The Ni, Co, As, and Cu deposit of Gowd-e-Morad is located 20 km northwest of Anarak in Central Iran. In this hydrothermal deposit, mineralization occurs as veins in a fault breccia zone hosted by the Chahgorbeh (schist and metabasite) complex. The main ores are made up of Ni, Co, and Cu arsenides. Petrologic studies and results obtained from geochemical analyses have indicated that the Ni, Co, As, and Cu are derived from ultramafic rocks while Pb and Zn are likely to be derived from schist. Based on the geochemical evidence, particularly the high correlation between Ni, Co, and As, it is proposed that this deposit be categorized as a “five elements” mineral deposit. Fluid inclusion studies have shown homogenization temperatures (TH) in the range 113?206 ?C and salinity 3?13.5 % wt eq. NaCl. Therefore this “five elements” mineral deposit has been determined as a low temperature, epithermal deposit type. It is proposed that the low fluid temperatures are a result of an environment of formation which was distal to a volcanogenic source systems and the major influence of meteoric waters in the hydrothermal system.  相似文献   

5.
MCDM (multi-criteria decision making) techniques are used to choose the best alternative among the relevant ones and rank the others. In this research, MCDM techniques were used to choose and rank the best places for constructing storage dams in Iran. To achieve this goal, the relevant information and data about dam construction situations were collected. Then, the recommended places for constructing storage dams were ranked by using MCDM techniques and according to the most suitable criteria which have been chosen based on experts’ opinions. To rank dam constructing project, three MCDM techniques, i.e., TOPSIS, AHP, and DEMATEL, were used. The results showed that the application of MCDM models by putting emphasis on economic, social, political, and technical criteria enables government and watershed managers to choose the best alternative(s) for constructing a storage dam.  相似文献   

6.
The Cheshmeh Hafez epithermal base metal deposit is located in Troud-Chah Shirin mountain range in the Alborz magmatic belt of northern Iran. In this area, the Eocene volcanism and associated mineralization are controlled by NW-SE trending Anjilo and Troud major faults. Geological units are composed of porphyritic andesite, andesitic basalt, dacite, rhyodacite, trachyandesite and basalt, which are typically high-K igneous rocks transitional to shoshonites. Alteration in Cheshmeh Hafez area comprise of propylilitization, sericitization, argillization and silicification. Mineralization consists of three stages. Stage 1, quartz, carbonate with early pyrite I and chalcopyrite assemblages. Stage 2, the main stage of sulfide deposition, comprises early euhedral galena I followed by galena II and sphalerite, then galena III, chalcopyrite, tetrahedrite, pyrite II, bornite and digenite. Stage 3 involves the deposition of quartz and calcite barren veins with minor pyrite. The average assays from 12 channel samples of Cheshmeh Hafez veins are 0.15 g/t Au, 3.23 g/t Ag, 4.47 wt % Pb, 2.64 wt % Cu, and 1.73 wt % Zn. Fluid inclusion homogenization temperatures (Th) in quartz fall within the range of 140°-280°C with salinities ranging from 4.7 to 18 wt. % NaCl equivalent. Comparison of Th versus ice melting (Tmice) values indicates fluid dilution.  相似文献   

7.
The upper Jurassic carbonate settings in Iran are widely exposed in north and northeastern parts. Five stratigraphic columns were selected in the north eastern Iran. Their thickness ranges from 330 to 500 m. The various diagenetic processes identified include, micritization, cementation, compaction (physical and chemical), dissolution, neomorphism, pyritization, hematitization, silicification and dolomitization, which affected these carbonates. Elemental and stable isotopes analysis indicated that these deposits have undergone both meteoric and burial diagenesis in a relatively open system with moderate water-rock interaction. The positive trend between trace elements and oxygen isotope depletion also support these burial conditions. Lighter δl8O values of the dolomite samples may be related to an increase in temperature during the burial, which correspond to coarser euhedral crystals. Relatively higher δ18O values in finer dolomite crystals indicate their formation at lower burial depths relative to coarser crystals. Petrographic evidences such as coarse euhedral crystals with bright and dull zonation prove this interpretation. Chert nodules also have lighter 18O values relative to carbonate host rock, thus indicating the influence of burial diagenetic processes in their formation. The average environmental palaeotemperature was estimated to be 26°C on the basis of oxygen isotope values of less altered lime-mudstones.  相似文献   

8.
The Mosha and North Tehran faults correspond to the nearest seismic sources for the northern part of the Tehran megacity. The present-day structural relationships and the kinematics of these two faults, especially at their junction in Lavasanat region, is still a matter of debate. In this paper, we present the results of a morphotectonic analysis (aerial photos and field investigations) within the central part of the Mosha and eastern part of the North Tehran faults between the Mosha valley and Tehran City. Our investigations show that, generally, the traces of activity do not follow the older traces corresponding to previous long-term dip–slip thrusting movements. The recent faulting mainly occurs on new traces trending E–W to ENE–WSW affecting Quaternary features (streams, ridges, risers, and young glacial markers) and cutting straight through the topography. Often defining en-echelon patterns (right- and left-stepping), these new traces correspond to steep faults with either north- or south-dipping directions, along which clear evidences for left-lateral strike–slip motion are found. At their junction zone, the two sinistral faults display a left-stepping en-echelon pattern defining a positive flower structure system clearly visible near Ira village. Further west, the left-lateral strike–slip motion is transferred along the ENE–WSW trending Niavaran fault and other faults. The cumulative offsets associated with this left-lateral deformation is small compared with the topography associated with the previous Late Tertiary thrusting motion, showing that it corresponds to a recent change of kinematics.  相似文献   

9.
There are several source rock units in the Zagros Basin, but the Cretaceous Kazhdumi and Paleogene Pabdeh formations probably have produced the majority of the commercial hydrocarbons in this area. Among the hydrocarbon provinces of Iran, the Dezful Embayment, which is located southwest of Zagros Mountains, is one of the most prolific regions in the Middle East. Numerous studies have been made in the northern part of the Dezful Embayment, but relatively few have been done in its southern part. The present study focuses on organic matter characterization of two potential source rocks (Kazhdumi and Pabdeh formations) in southern part of the Dezful Embayment. Cuttings samples (114) were collected from 10 wells and evaluated using Rock–Eval pyrolysis and organic petrography in order to characterize the content and type of organic matter and thermal maturity. The results showed that the average total organic carbon (TOC) content of Kazhdumi and Pabdeh formations are 2.48 and 1.62 wt%, respectively. The highest TOC contents for both formations are found in the northern compartment and decreased gradually toward the south. Pyrolysis data reveal that organic matter has a fair to very good hydrocarbon generation potential and are classified as Type II–III and Type III. Rock–Eval Tmax and vitrinite reflectance show that the majority of samples are in the early mature to mature stage of the oil generation window.  相似文献   

10.
The Gurpi Formation in the southwest of Iran has been studied for microfacies and bulk organic geochemistry in order to elucidate its depositional environment and petroleum source rock characteristics. The obtained results ended up with four types of organic facies and three types of microfacies through the formation. Three microfacies types differentiated including Pelagic mudstone Wackstone, microbioclast Packstone and bioclastic Packstone reflect a distal outer ramp or basinal environment. Combination of palynofacies and organic geochemistry resulted in differentiation of four organic facies corresponding to organic facies B, BC, C and CD of Jones 1987. Detailed organic facies shows that the formation is characterized by low values of TOC, high percentages of amorphous organic matter and black phytoclasts, rare marine algae thereby representing a mixture of terrestrial and marine kerogen that confirm the formation was deposited in a distal anoxic to oxic condition. The formation shallows upward to the Microbioclast Packstone facies below the Lopha Member reaching its minimum depth in boundstones of this member in uppermost Campanian and then is followed by stagnant condition and high contents of organic matter in suboxic to anoxic condition that favoured accumulation of organic matter in early Maastrichtian. Organic geochemical and petrographical data indicate that the formation is not potentially suitable for petroleum production except for the minor interval (organic facies 2) in early Maastrichtian. Tmax values vary between 340 and 440 °C confirming immaturity trends indicated by Rock-Eval data.  相似文献   

11.
The Sarvian Fe skarn deposit is located in the Urumieh–Dokhtar magmatic arc, western Iran. The Sarvian quartz diorite intruded the surrounding Permian to Tertiary limy formation, culminated in thermal metamorphism as well as skarnification in which the Sarvian deposit formed. Microthermometry studies in the Sarvian skarn deposit reveal two distinct inclusion groups; group A with medium–high temperature and hypersaline and group B with low–medium temperature and low salinity. Group A inclusions which are entrapped during formation of prograde are thought to be derived from the magmatic source. Fluid boiling and subsequent developing of hydraulic fracturing led to inflow and/or mixing of early magmatic fluids (group A) with circulating groundwater culminated in formation of low salinity and low temperature fluid inclusions (group B) during the formation of retrograde assemblage. Fluid inclusion thermometry reveals the formation temperature and the salinity of 300–370 °C and 31–33 wt% NaCl for the prograde stage and 180–230 °C and 1–15 wt% NaCl for the retrograde stage of skarnification at Sarvian skarn rocks. Fe-mineralization as well as hydrothermal minerals occurred during retrograde metasomatism. The estimated depth and pressure of occurrence for prograde stage are 1000–1200 m and 100–150 bars, and for retrograde stage, these are about 200 m and 50 bars, respectively. Garnet and pyroxene, as the main constituent minerals of prograde stage, are the most informative minerals offering a suitable tool to constrain the skarnification conditions. Garnets in the Sarvian deposit are mainly grossular and andradite, showing both normal and inverse zoning as the result of variation in their chemical composition. Such types of zoning represent alternation of high acidity oxidation and low acidity oxidation conditions that were prevailed on skarnification in the Sarvian prograde assemblage. Also, chemical composition of the Sarvian pyroxenes shows an alternation of high oxygen fugacity and low oxygen fugacity conditions for their formation. This is also supported by fluctuation of the ratios of andradite to grossular and diopside to hedenbergite, denoting to an obvious shifting that was prevailed between oxidizing and redox conditions during formation of prograde assemblage in the Sarvian. Garnet–pyroxene thermometry determines the formation temperature of prograde assemblage between 370 and 550 °C at Sarvian skarn rocks which is verified also by fluid inclusion thermometry. Decomposition of limestone by reaction of high-temperature hydrothermal fluids with carbonate host rock resulted in injection of CO2 into the Sarvian system that caused oxidation, changing Fe+2 to Fe+3 culminated in the magnetite deposition.  相似文献   

12.
This study aims to assess the extent of metal accumulation by plants found in a mining area in Hamedan Province in the central west part of Iran. It also investigates to find suitable plants for phytoextraction and phytostabilization as two phytoremediation strategies. Plants with a high bioconcentration factor (BCF) and low translocation factor (TF) have the potential for phytostabilization while plants with both BCFs and TFs greater than one have the potential to be used for phytoextraction. In this study, shoots and roots of the 12 plant species and the associated soil samples were collected. The collected samples were then analyzed by measurement of total concentrations of trace elements (Pb, Zn, Mn and Fe) using atomic absorption spectrophotometer. Simultaneously, BCF and TF parameters were calculated for each element. Results showed that although samples suitable for phytoextraction of Pb, Zn, Mn and Fe and phytostabilization of Fe were not detected, Scrophularia scoparia was the most suitable for phytostabilization of Pb, Centaurea virgata, Echinophora platyloba and Scariola orientalis had the potential for phytostabilization of Zn and Centaurea virgata and Cirsium congestum were the most efficient in phytostabilization of Mn. Present study showed that native plant species growing on contaminated sites may have the potential for phytoremediation.  相似文献   

13.
With a thickness of 3900 m, the Tazareh section is one of the thickest developments of the Shemshak Formation in the Alborz range. It overlies with sharp and disconformable contact the limestones and dolomites of the Lower–Middle Triassic Elikah Formation and is topped, again with a disconformable contact, by the marls and limestones of the Middle Jurassic Dalichai Formation. The nearly exclusively siliciclastic succession represents a range of environments, from fluvial channels, flood plains, swamps and lake systems to storm-dominated shelf, and a comparatively deep marine and partly dysoxic basin. The segment of the section between 2300 and 3500 m is exclusively marine and contains a moderately diverse ammonite fauna, ranging from the Middle Toarcian to the Upper Aalenian. The ammonite fauna comprises 21 taxa, among them the new genus Shahrudites with two new species, Shahrudites asseretoi and S. stoecklini from the Middle Aalenian Bradfordensis Zone. The other ammonites from the Shemshak Formation at Tazareh (as elsewhere in North and Central Iran) are exclusively Tethyan in character and closely related to faunas from western and central Europe. An ammonite-based correlation of Toarcian–Aalenian successions of the eastern Alborz with time-equivalent strata of the Lut Block, part of the Central-East Iranian Microcontinent (ca. 500 km to the south), suggests a strong influence of synsedimentary tectonics during the deposition of the upper Shemshak Formation.  相似文献   

14.
Bastami  M.  Soghrat  M. R. 《Natural Hazards》2017,86(1):125-149
Natural Hazards - The dual Ahar–Varzaghan earthquakes occurred on August 11, 2012, at 16:53 (Iran standard time) in East Azerbaijan province of Iran. The two quakes measured 6.3 and 6.4 on...  相似文献   

15.
Upper Barremian-Lower Aptian sediments of the Sarcheshmeh and Sanganeh formations in the Kopet Dagh area, northeast Iran were studied with regard to their calcareous nannofossil content and their δ13Ccarb signal. The sediments are composed mainly of marlstones, argillaceous limestones and limestones. Based on the occurrence of biostratigraphic index taxa, the calcareous nannofossil zones NC5, NC6 and the NC7A Subzone were recognised. The calcareous nannofossils and the δ13Ccarb data enable recognition of the early Aptian Oceanic Anoxic Event 1a (OAE 1a). The deposits of the OAE 1a interval are characterised by the rarity of nannoconids and a sharp negative δ13Ccarb excursion (1.36‰), followed by an abrupt positive δ13Ccarb excursion of 4-5‰; both events have been recognised elsewhere in OAE 1a deposits in the Tethys. In the OAE 1a interval, the relative abundance of Watznaueria barnesiae/Watznaueria fossacincta is higher (more than 40%) than that of Biscutum spp., Discorhabdus spp. and Zeugrhabdotus spp., which indicates dissolution. In the upper part of the section, the higher relative abundance of mesotrophic and oligotrophic taxa (Watznaueria spp. and nannoconids respectively) and the enhanced relative abundance of eutrophic taxa (Biscutum spp., Discorhabdus spp., Zeugrhabdotus spp.) is indicative of an environment with slightly increased nutrient content. The presence of warm water taxa (Rhagodiscus asper and nannoconids) and the absence of cool water taxa (Repagulum and Crucibiscutum) suggest warm surface-water conditions.  相似文献   

16.
The first data on the distribution of calcareous nannofossils in the Behbehan section, the Kuh-e-Rish, are considered. According to the distribution of nannofossils, the Upper Cretaceous deposits of the section are subdivided into nine biostratigraphic zones. CC17 (Calculites obscurus zone) indicate the Late Santonian. Biozones CC18 (Aspidolithus parcus zone), CC19 (Calculites ovalis zone), CC20 (Ceratolithoides aculeus zone), CC21 (Quadrum sissinghii zone), and CC22 (Quadrum trifidum zone) represent the Campanian. Biozone CC23 (Tranolithus phacelosus zone) indicate the Late Campanian–Early Maastrichtian. Biozones CC24 (Reinhardtites levis zone) and CC25 (Arkhangelskiella cymbiformis zone) suggest the Middle and Late Maastrichtian, respectively. In the late Late Maastrichtian, due to decreasing in water depth at the study area, Nephrolithus frequens zone (CC26) defined in Tethysian domain was not recognized. The boundary between Gurpi–Pabdeh Formations represented a non-depositional period from the late Late Maastrichtian to the end of Early Paleocene. Also, it seems that predominant conditions of the sedimentary environment of Neotethys basin with the presence of index species calcareous nannofossils specified, which itself indicates that the warm climate and high depth of the basin in Late Santonian to Late Maastrichtian, in low latitudes has been prevalent.  相似文献   

17.
18.
The study of oxygen and carbon isotopic ratios has gained importance to determine the origin of ore-bearing fluids, carbon origin, and also to determine the formation temperature of non-sulfide Pb and Zn minerals. In order to determine the origin of fluids and carbon existing in Zn carbonate minerals in Chah-Talkh deposit, initially the amounts of δ18OSMOW and δ13CPDB changes in various zinc minerals in important deposits in Iran and the world were studied, and then by comparing these values in Chah-Talkh deposit with those of other deposits, the origin of fluids responsible for ore forming, carbon, and formation temperature of Chah-Talkh deposit was determined. The range of δ18OSMOW changes in smithsonite mineral in non-sulfide lead and zinc deposits varies from 18.3 to 31.6 ‰, and δ18OSMOW in hydrozincite mineral varies from 7.8 to 27 ‰. Due to the impossibility of smithsonite sampling from Chah-Talkh deposit (due to it being fine-grained and dispersed), hydrozincite minerals which have high isotopic similarities with smithsonite are used for the isotopic analysis of carbon and oxygen. The range of δ18OSMOW changes in hydrozincite mineral of Chah-Talkh deposit varies from 7.8 to 15.15 ‰, which places in the domain of metamorphic water. The extensiveness of δ18OSMOW changes in Chah-Talkh indicates the role of at least two fluids in the formation of non-sulfide minerals. The obtained formation temperature of non-sulfide minerals (hydrozincite) in Chah-Talkh deposit is 70 to 100 °C, which indicates the role of metamorphic fluids in the formation of deposit. Complete weathering of sulfide minerals to a depth of 134 m confirms the role of rising metamorphic fluids in the formation of non-sulfide minerals. The δ13CPDB values of Chah-Talkh deposit are set in the range of atmospheric CO2 and carbonate rocks, in which the existence of atmospheric CO2 indicates the role of atmospheric fluids, and the existence of carbonate carbon rock indicates of the role of metamorphic fluids in the precipitation of non-sulfide Zn minerals.  相似文献   

19.
Geochemical anomaly separation and identification using the number–size (N–S) model at Bardaskan area, NE Iran is studied in this paper. Lithogeochemical data were used in this study which was conducted for the exploration for Au and Cu mineralization and enrichments in Bardaskan area. There are two major mineralization phases concluded epithermal gold and a disseminated systems. N–S log–log plots for Cu, Au, Sb, and As illustrated multifractal natures. Several anomalies at local scale were identified for Au (32 ppb), Cu (28 ppm), As (11 ppm), and Sb (0.8 ppm) and the obtained results suggest existence of local Au and Cu anomalies whose magnitudes generally are above 158 and 354 ppm, respectively. The most important mineralization events are responsible for presence of Au and Cu at grades above 1,778 and 8,912 ppm. The study reveals threshold values for Au and Cu are a consequence of the occurrence of anomalous accumulations of phyllic and silicification alteration zones and metamorphic rocks especially in tuffaceous sandstones and sericite schist types. The obtained results were correlated with fault distribution patterns, revealing a positive direct correlation between mineralization in anomalous areas and the faults present in the mineralized system.  相似文献   

20.
Geochemical anomaly separation using the concentration–number (C–N) method at the Haftcheshmeh porphyry system in NW Iran is the aim of this study. We used lithogeochemical data sets to explore Cu, Mo, Au and Re mineralization in gabbroic, dioritic and monzonitic units at the Haftcheshmeh Cu–Mo porphyry system. The obtained results were interpreted using a rather extensive set of information available for each mineralized area, consisting of detailed geological mapping, structural interpretation and alteration data. Threshold values of elemental anomalies for the mineralized zone were computed and compared with the statistical methods based on the data obtained from chemical analyses of samples for the lithological units. Several anomalies at local scale were identified for Cu (40 ppm), Mo (12 ppm), Au (79 ppb), and Re (0.02 ppm), and the results suggest the existence of local Cu anomalies whose magnitude generally is above 500 ppm. The log–log plots show the existence of three stages of Cu and Mo enrichment, and two enrichment stages for Au and Re. The third and most important mineralization event is responsible for presence of Cu at grades above 159 ppm. The identified anomalies in Haftcheshmeh porphyry system, and distribution of the rock types, are mainly gabbrodiorite–monzodiorite, granodiorite and monzodiorite–diorite that have special correlation with Cu–Mo and gabbroic and monzonitic rocks, especially the gabbrodiorite–monzodiorite type, which is of considerable importance. The study shows that these elemental anomalous parts have been concentrated dominantly by potassic and phyllic, argillic and propylitic alterations within the gabbroic, monzonitic and dioritic rocks especially in the gabrodioritic type in certain parts of the area. The results, which were compared with fault distribution patterns, revealed a positive correlation between mineralization in anomalous areas and the faults present in the mineralized system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号