首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climatological, current and particulate flux data were gathered in the Grand-Rhône canyon on the Gulf of Lions continental margin for one year (Jan. 1988–Jan 1989). Time series were analyzed to determine the influence of physical exchange processes on particulate matter at the shelf-edge, with a special emphasis on the Northern Current variability.The synoptic variability of the Northern Current was linked to meanders of 2–5 day period. Its meso-scale activity presented a seasonal signal with maximum values in early spring. Peaks of particulate fluxes in the upper traps were little affected by large river and atmospheric inputs, but rather by enhanced shelf-slope exchanges at the shelf edge due to intense cross-slope fluctuations of the Northern Current. These fluctuations caused cross-isobath flows near the bottom, which appeared to be a potential mechanism in transporting particles off the shelf. At 900 m depth, high-flux events measured by sediment traps were primarily linked to periods of higher cross-slope current oscillations. This correlation suggests that vertical motions caused by these oscillations contribute to the suspended particulate matter transport through the process of bringing higher suspended material concentrations from above to greater depths. Vertical velocity estimates were derived through temperature fluctuations combined with vertical temperature gradient and from the kinematic boundary condition. A simple diffusion model indicates that the vertical turbulent mixing of suspended particulate matter, induced by the cross-slope current oscillations, yields downward fluxes of particles comparable to those collected by sediment traps.  相似文献   

2.
With the aim of improving the knowledge of the open ocean carbon cycle, we present a budget of particulate organic carbon (POC) fluxes carried out in the deep central part of the Algero-Balearic Basin (ABB) at 2850 m water depth based on a single mooring equipped with five automated sediment traps deployed from April 2001 to May 2002 at depths of 250, 845, 1440, 2145 and 2820 m. Suspended particulate matter (SPM) and superficial sediments were also used as indicators of hydrodynamics and carbon burial, respectively. The data reveal that the fraction of primary production buried in the sediment, which finally leads to the sequestration of carbon dioxide from the atmosphere, is 0.16%, lower than the values found in the nearby continental margin regions such as the Alboran Sea (0.48–0.89%) but of the same order as recorded at other Mediterranean sites at similar depths, such as the Ionian Sea (0.11%). As they sink through the water column, the particles exhibit decreases in flux that are similar to those observed elsewhere, but also show variations that appear to correlate with hydrological features of the water masses present in the basin, as revealed by SPM concentrations and compositions. The input of the tyrrhenian deep water (TDW) into the ABB at 800–1500 m of water depth exhibits low suspended POC concentrations and low sinking POC fluxes were also observed in this depth range. Gulf of Lions water mass formation appears to also contribute to elevated suspended POC concentrations and perhaps POC accumulation in the traps and sediments by spreading of dense cold water along the whole ABB that supplied POC at depths higher than 2000 m.  相似文献   

3.
Deep slope currents and particulate matter concentrations were studied on the Barcelona continental margin in and around the Foix submarine canyon from May 1993 to April 1994. This year-long moored experiment revealed that near-bottom slope currents are strongly influenced by the bottom topography, being oriented along isobaths and along the canyon axis. The deep slope current fluctuations are controlled by the local inertial motion (18.3 h) and also by low-frequency oscillations at periods of 6–10 days, related to the passage of atmospheric pressure cells. Particulate matter concentrations recorded during the experiment do not show a clear seasonal variability, except outside the canyon, where significant peaks of particulate matter concentrations were recorded only during the winter-fall deployment. In addition, the temporal evolution of suspended particulate matter concentration is not linked to changes in the cross-slope or along-slope current components and did not show a clear relationship with river avenues or wave storm events. This suggests that suspended particulate matter exported from the shelf is dispersed on the slope by advective processes, which attenuate the signal of the shelf-slope sediment transfer. Mean particulate matter concentrations differed among sampling sites, but the magnitude of the mean horizontal suspended particle flux reflects a quite similar value in the whole study area, ranging from 2.53 to 4.05 mg m−2 s−1. These horizontal suspended particle fluxes are 27 (canyon head) to 360 (open slope) times higher than the settling particle fluxes measured at the same sampling sites, indicating that the suspended particulate transport on the Barcelona continental slope dominates over the settling particle fluxes, even inside the Foix submarine canyon.  相似文献   

4.
Three mooring arrays were deployed in the Palamós Canyon axis with sediment traps, current meters and turbidimeters installed near the bottom and in intermediate waters. Frequent sharp and fast turbidity peaks along with current speed increases were recorded, particularly at 1200 m depth in spring and summer. During these events, near-bottom water turbidity increased by up to more than one order of magnitude, current velocity by two to four times and horizontal sediment fluxes by one to three orders of magnitude. When these events occurred, 9–11 days integrated downward particle fluxes collected by the near-bottom sediment trap increased by two to three times. These events were identified as sediment gravity flows triggered by trawling activities along the northern canyon wall. Sediment eroded by the trawling nets at 400–750 m depth on this wall seems to be channeled through a gully and transported downslope towards the canyon axis, where the 1200 m mooring was located. The sediment gravity flows recorded at the 1200 m site were not detected at deeper instrumented sites along the canyon axis, suggesting that they affect local areas of the canyon without traveling long distances downcanyon. These observations indicate that trawling can generate frequent sediment gravity flows and increase sediment fluxes locally in submarine canyons. Furthermore, in addition to the various natural processes currently causing sediment gravity flows and other sediment transport events, human activities such as trawling must be taken into account in modern submarine canyon sediment dynamics studies.  相似文献   

5.
Three time-series sediment traps were deployed in the Japan Trench at 40°26′N, 144°28′E, from October 1994 to May 1995. The depths were approximately 1, 4.2 and 6.8 km and the water depth was 7150 m. There were large mass fluxes in spring at 1 and 4.2 km depths, whereas increased fluxes appeared from 27 December 1994 to 29 January 1995, at 4.2 and 6.8 km depths. The 1994 Sanriku-Oki earthquake (Mw=7.7) occurred on 28 December 1994, at 40°27′N, 143°43′E, adjacent to the study site. Distinct increases in non-biogenic material were observed at both 4.2 and 6.8 km just after the earthquake; the material seems to have originated from the surface sediments, though differing Mn/Al of particulate materials at the two depths imply a difference in their source areas. Analysis indicates that the main part of the increased particulate fluxes at 6.8 km depth derived from the sediment on the eastern slope of the Japan Trench.  相似文献   

6.
Investigations of lithogenic and biogenic particle fluxes using long-term sediment traps are still very rare in the northern high latitudes and are restricted to the arctic marginal seas and sub-arctic regions. Here data on the variability of fluxes of lithogenic matter, CaCO3, opal, and organic carbon and biomarker composition from the central Arctic Ocean are presented for a 1-year period. The study was carried out on material obtained from a long-term mooring system equipped with two multi-sampling traps, at 150 and 1550 m depth, and deployed on the southern Lomonosov Ridge close to the Laptev Sea continental margin from September 1995 to August 1996. In addition, data from surface sediments were included in the study. Annual fluxes of lithogenic matter, CaCO3, opal, and particulate organic carbon were 3.9, 0.8, 2.6, and 1.5 g m−2 y−1, respectively, in the shallow trap and 11.3, 0.5, 2.9, and 1.05 g m−2 y−1, respectively, in the deep trap.Both the shallow and the deep trap showed significant variations in vertical flux over the year. Higher values were found from mid-July to the end of October (total mass flux of 75–130 mg m−2 d−1 in the shallow trap and 40–225 mg m−2 d−1 in the deep trap). During all other months, fluxes were fairly low in both traps (most total mass flux values <10 mg m−2 d−1). The interval of increased fluxes can be separated into (1) a mid-July/August maximum caused by increased primary production as documented in high abundances of marine biomarkers and diatoms and (2) a September/October maximum caused by increased influence of Lena River discharge indicated by maximum lithogenic flux and large amounts of terrigenous/fluvial biomarkers in both traps. During September/October, total mass fluxes in the deep trap were significantly higher than in the shallow trap, suggesting a lateral sediment flux at greater depth. The lithogenic flux data also support the importance of sediment input from the Laptev Sea for the sediment accumulation on the Lomonosov Ridge on geological time scales, as indicated in sedimentary records from this region.  相似文献   

7.
We present barium data for sediment traps deployed in a northeast Atlantic margin environment (Bay of Biscay). Fluxes of excess barium were measured with the objective of calculating carbon export production rates from the surface mixed layer and thus contribute to the understanding of organic carbon transport in a margin environment. Therefore, it was necessary to properly understand the different processes that affected the barium fluxes in this margin environment. Seasonal variability of POC/Ba flux ratios and decrease of barium solubilisation in the trap cups with increasing depth in the water column probably indicate that the efficiency of barite formation in the organic micro-environment varies with season and that the process is relatively slow and not yet completed in the upper 600 m of water column. Thus barite presence in biogenic aggregates will significantly depend on water column transit time of these aggregates. Furthermore, it was observed that significant lateral input of excess-Ba can occur, probably associated with residual currents leaving the margin. This advected excess-Ba affected especially the recorded fluxes in the deeper traps (>1000 m) of the outer slope region. We have attempted to correct for this advected excess-Ba component, using Th (reported by others for the same samples) as an indicator of enhanced lateral flux and assigning a characteristic Ba/Th ratio to advected material. Using transfer functions relating excess-Ba flux with export production characteristic of margin areas, observed Ba fluxes indicate an export production between 7 and 18 g C m−2 yr−1. Such values are 3–7 times lower than estimates based on N-nutrient uptake and nutrient mass balances, but larger and more realistic than is obtained when a transfer function characteristic of open ocean systems is applied. The discrepancy between export production estimates based on excess-Ba fluxes and nutrient uptake could be resolved if part of the carbon is exported as dissolved organic matter. Results suggest that margin systems function differently from open ocean systems, and therefore Ba-proxy rationales developed for open ocean sites might not be applicable in margin areas.  相似文献   

8.
Sinking matter collected by sediment traps, which were deployed in the equatorial Pacific Ocean at 175°E for about 11 months during 1992–1993, were analyzed for their flux and labile components in terms of amino acids and hexosamines. The samples provided a temporal resolution of 15 days and were collected from 1357 (shallow trap) and 4363 m (deep trap) depths where sea floor depth was 4880 m. Particle flux along with major components (carbonate, organic matter, biogenic opal and lithogenic material) and amino acid parameters showed distinct temporal variations, which were more pronounced in the shallow trap relative to deep trap. A coupling between the fluxes in the shallow and deep traps was more evident during the period of maximum particle flux, which seems to be connected with the short reappearance of non-El Niño conditions in equatorial Pacific during the 1991–1993 El Niño event. The biogeochemical indicators C/N, Asp/Bala, Glu/Gaba, Bala+Gaba mol%, THAA-C% and THAA-N% implied that the increase in sinking flux was associated with upwelling and enhanced surface production. Degradation of sinking particulate organic matter between the shallow and deep traps was also evident. Occasionally higher mass and major component fluxes in the deep trap relative to the shallow trap are attributed to contribution of resuspended particulates from sea floor (nepheloid layer) or to laterally advected particulates from nearby areas. Carbonate and opal composition of the sinking flux showed a predominance of calcareous plankton; however, Asp/Gly mol ratio and Ser+Thr mol% indicated enhanced occurrence of diatoms during the periods of higher flux.  相似文献   

9.
《Marine Geology》2005,216(3):155-167
A total of 83 cores were collected in the Gulf of Lions continental margins and analysed for 210Pbxs (excess 210Pb) in order to understand sedimentation patterns. Apparent sedimentation rates (ASR) range from 0.65 cm year−1 in the vicinity of the Rhône River mouth to 0.01 cm year−1 in the deep basin. Except for the prodelta area, rates decrease with depth linearly with the water depth. On the slope, ASR do not differ between canyons and open slope, except for the western area where the rates are slightly higher in the Lacaze–Duthiers canyon compared to its adjacent, open slope. In the canyon and open slope areas, mass accumulation rates determined from 210Pbxs profiles (0.10 and 0.08 g cm−2 year−1, respectively) are in good agreement with particulate fluxes calculated from 5 years of near-bottom sediment trap data, even when the trap particle fluxes and the apparent accumulation rates are overestimated in response to resuspension and bioturbation effects.However, differences in sediment trap data, between west and east portion of the slope, are not observed in the sedimentation rates calculated with 210Pbxs. The outer shelf area may have an important role in trapping sediment but it is not sufficiently documented. Sediment surface mixed layer depths decrease with water depth, with a mean value for the whole margin of 8±6 cm.210Pbxs inventories in the sediment are systematically higher than the net 210Pb export flux estimated from the above water column. Over the margin, the ratio between accumulated 210Pb and available 210Pb is about 3, suggesting boundary scavenging effects and advective transport.  相似文献   

10.
Within the framework of the multidisciplinary RECS project and with the aim of describing the particle flux transfer from the continental shelf to the deep basin, an array of five mooring lines equipped with a total of five pairs of PPS3/3 sequential-sampling sediment traps and RCM-7/8 current meters were deployed 30 m above the bottom from March 2003 to March 2004 inside and outside the Blanes Canyon. One mooring line was located in the upper canyon at 600 m depth, one in the canyon axis at 1700 m depth and other two close to the canyon walls at 900 m depth. A fifth mooring line was deployed in the continental open slope at 1500 m water depth.The highest near-bottom downward particle flux (14.50 g m−2 d−1) was recorded at the trap located in the upper canyon (M1), where continental inputs associated with the presence of the Tordera River are most relevant. On the other hand, the downward fluxes (4.35 g m−2 d−1) in the canyon axis (M2) were of the same order as those found in the western flank (M3) of the canyon. Both values were clearly higher than the value (1.95 g m−2 d−1) recorded at the eastern canyon wall (M4). The open slope (M5) mass flux (5.42 mg m−2 d−1) recorded by the sediment trap located outside the canyon system was three orders of magnitude lower than the other values registered by the inner canyon stations. The relevance of our data is that it explains how the transport pathway in the canyon occurs through its western flank, where a more active and persistent current toward the open ocean was recorded over the entire year of the experiment.Off-shelf sediment transport along the canyon axis showed clear differences during the period of the study, with some important events leading to strong intensifications of the current coupled with large transport of particle fluxes to the deepest parts of the canyon. Such events are primarily related to increases in river discharge and the occurrence of strong storms and cascading events during the winter.In summary, in this study it is shown that the dynamics of the water masses and the currents in the study area convert the sharp western flank of the Blanes Canyon in a more active region that favors erosion processes than the eastern flank, which has a smoother topography and where the absence of erosional conditions yields to steadier sedimentary processes.  相似文献   

11.
Between 1988 and 1994, twenty time-series sediment traps were deployed at different water depths in the Canary Island region, off Cape Blanc (Mauritania), and off Cape Verde (Senegal). Lithogenic particle fluxes and grain size distributions of the carbonate-free fraction of the trapped material show a high impact of dust transported either in the northeast trade winds or the Saharan Air Layer (SAL). Highest annual mean lithogenic fluxes (31.2–56.1 mg m-2 d-1) were observed at the Cape Blanc site, and largest annual mean diameters (>6 μm) were found off Cape Verde (14.5–16.9 μm) and off Cape Blanc (15.2–16.7 μm). Lowest annual lithogenic fluxes (11.4–21.2 mg m-2 d-1 ) and smallest mean diameters (13.5–13.7 μm) occurred in the Canary Island region. A significant correlation of organic carbon and lithogenic fluxes was observed at all sites. Off Cape Blanc, fluxes and mean diameters correlated well between upper (around 1000 m depth) and lower traps (around 3500 m depth), indicating a fast and mostly undisturbed downward transport of particulate matter. In contrast, a major correlation of fluxes without correlating mean diameters occurred in the Canary Island region, which translates into a fast vertical transport plus scavenging of laterally advected material with depth at this site. The seasonality of lithogenic fluxes was highest in the Canary Island region and off Cape Verde, reflecting strong seasonal patterns of atmospheric circulation, with highest occurrence of continental winds in the trade wind layer during winter. In addition, grain size statistics reflect a dominant change of dust transport in the trade winds during winter/spring and transport in the SAL during summer 1993 at the Cape Verde site. Highest lithogenic fluxes during winter were correlated with mean diameters around 10–13 μm, whereas lower fluxes during summer consisted of coarse grains around 20 μm. Annual mean dust input wascalculated from lithogenic fluxes in the range 0.7×106–1.4×106 t yr-1, roughly confirming both sediment accumulation rates and atmospheric model calculations reported previously from this area.  相似文献   

12.
Spatial and temporal characteristics of the water masses and the dispersion of the suspended particulate matter were investigated using current meter, hydrographic and nephelometric observations, gathered during the ECOFER experiment (1989–1991) in the Cap-Ferret Canyon on the Aquitanian margin of the Bay of Biscay. While characteristics of the deep water masses were stable from one year to another, large hydrographic change in the upper 500 m related to winter renewal induced by poleward advection of warm and saline water along the continental slope. The slope circulation and seasonal eddy activity appear as important dynamical mechanisms that control the entrainment and the dispersion of the suspended particulate matter from the neritic domain to the deep ocean. A predominantly northward along-slope current with occasional reversal characterizes this circulation. The nephelometric structures also showed seasonal changes in the overall suspended particulate matter content, but recurrent features, such as the presence of intermediate nepheloid layers at the shelf-break depth and various depths along the slope (∼500, 1000 and 2000 m), were observed. These nepheloid layers extended off the slope to about 10–30 km, but especially laterally along the slope. Their presence indicated that suspended particulate matter exchanges between the shelf and the slope occurred mainly in the head of the canyon and along the southern open slope. The intermediate nepheloid layers around 500 m depth detached from the slope particularly in regions where the bottom slope is close to critical for the M2 internal tide.  相似文献   

13.
Mass, carbon, and nitrogen fluxes and carbon and nitrogen compositions were determined for particulate samples from plankton net tows, shallow floating sediment traps, intermediate and deep moored sediment traps, and sediment cores collected along 140°W in the central equatorial Pacific Ocean during the US JGOFS EqPac program. Mass, particulate organic carbon (POC), and particulate inorganic carbon (PIC) fluxes measured by the floating sediment traps during the Survey I (El Niño) and Survey II (non-El Niño) cruises follow essentially the same pattern as primary production: high near the equator and decreasing poleward. POC fluxes caught in free-floating traps were compared with alternative estimates of export fluxes, including 234Th models, new production, and other sediment trap studies, resulting in widely differing estimates. Applying 234Th corrections to the trap-based fluxes yielded more consistent results relative to primary production and new production. Despite factors of five differences in measured fluxes between different trap types, POC : 234Th ratios of trap material were generally within a factor of two and provided a robust means of converting modeled 234Th export fluxes to POC export fluxes. All measured fluxes decrease with depth. Trap compositional data suggest that mineral “ballasting” may be a prerequisite for POC settling. POC remineralization is most pronounced in the epipelagic zone and at the sediment–water interface, with two orders of magnitude loss at each level. Despite seawater supersaturation with respect to calcium carbonate in the upper ocean, 80% of PIC is dissolved in the epipelagic zone. Given the time-scale differences of processes throughout the water column, the contrasting environments, and the fact that only 0.01% of primary production is buried, sedimentary organic carbon accumulation rates along the transect are remarkably well correlated to primary production in the overlying surface waters. POC to particulate total nitrogen (PTN) ratios for all samples are close to Redfield values, indicating that POC and PTN are non-selectively remineralized. This constancy is somewhat surprising given conventional wisdom and previous equatorial Pacific results suggesting that particulate nitrogen is lost preferentially to organic carbon.  相似文献   

14.
Results are presented from particle flux studies using sediment trap and current meter moorings along a transect at the European continental margin at 49°N within the EU-funded Ocean Margin Exchange (OMEX) project. Two moorings were placed, at the mid- and outer slope in water depths of 1500 and 3660 m, with traps at 600 and 1050 m and at 580, 1440 and 3220 m, respectively. Residual currents at the mid-slope follow the slope contour, whereas seasonal off-slope flow was registered at the outer slope. At 600 m on the slope fluxes are similar to those in the abyssal North Atlantic. The flux of all components (bulk dry weight, particulate organic and inorganic carbon, lithogenic matter and opal) increased with water depth. Highest fluxes were recorded at 1440 m at the outer slope, where off-slope residual currents mediate particle export. The injection of biogenic and lithogenic particles below the depth of winter mixing results in the export of particles from shallower waters. Calculated lateral fluxes of particulate organic carbon exceed the primary flux by over a factor of 2 at 1440 m on the outer slope. Estimated lateral fluxes of suspended particulate matter in the water column and intermediate nepheloid layers at the outer slope are potentially large compared to sinking fluxes measured by sediment traps. A comparison is made of particle flux at three continental margin sites and two sites in the adjacent open North Atlantic, from which it is seen that bulk and organic matter flux increases exponentially with proximity to the shelf break. The percentage contribution of particulate organic carbon to biogenic fluxes increases from a mean of 5.7% in the abyssal N. Atlantic to 13.9% at the continental margins.  相似文献   

15.
Currents, particle fluxes and ecology were studied in the Palamós submarine canyon (also known as the Fonera canyon), located in the northwestern Mediterranean. Seven mooring arrays equipped with current meters and sediment traps were deployed along the main canyon axis, on the canyon walls and on the adjacent slope. Additionally, local and regional hydrographic cruises were carried out. Current data showed that mean near surface and mid-depth currents were oriented along the mean flow direction (NE–SW), although at 400 and 1200 m depth within the canyon current reversals were significant, indicating a more closed circulation inside the canyon. Mean near-bottom currents were constrained by the local bathymetry, especially at the canyon head. The most significant frequency at all levels was the inertial frequency. A second frequency of about three days, attributed to a topographic wave, was observed at all depths, suggesting that this wave was probably not trapped near the bottom. The current field observed during the most complete survey revealed a meandering pattern with cyclonic vorticity just upstream from and within the canyon. The associated vertical velocity ranged between 10 and 20 m/day and was constrained to the upper 300 m. This latter feature, together with other computations, suggests that during this survey the meander was not induced by the canyon but by some kind of instability of the mean flow.In the canyon, suspended sediment concentration, downward particle fluxes, chlorophyll and particulate C and N were significantly higher up-canyon from about 1200 m depth than offshore, defining, along with the different hydrodynamics, two canyon domains: one from the canyon head to about 1200 m depth more affected by the canyon confinement and the other deeper than 1200 m depth more controlled by the mean flow and the shelf-slope front. The higher near-bottom downward total mass fluxes were recorded in the canyon axis at 1200 m depth along with sharp turbidity increases and are related to sediment gravity flows. During the deployment period, the increase in downward particle fluxes occurred by mid-November, when a severe storm took place. On the canyon walls at 1200 m depth, suspended sediment concentrations, downward particle fluxes, chlorophyll and particulate C and N were higher on the southern wall than on the northern wall inversely to the current’s energy. This could be caused by an upward water supply on the southern canyon wall and/or the mean flow interacting with the canyon bathymetry. In the swimmers collected by the sediment traps, the dominant species was an elasipod holothurian, which has not been recorded in other canyons or elsewhere in the Mediterranean, indicating particular speciation.  相似文献   

16.
《Marine Geology》2001,172(1-2):147-165
This study aims at apprehending the major forcing factors which govern the spatial and vertical Mn and Fe distributions in ten cores from the Gulf of Lions. Speciation by chemical leaching experiments helps understanding their chemical behaviour during the early diagenetic processes in a marine environment under strong continental influence.The distribution and chemical behaviour of Mn and Fe differ drastically. The strong dependence of Mn distribution on chemical conditions is expressed by a marked solid phase Mn enrichment in the oxic layers of sediment deposits. This enrichment increases with decreasing sedimentation rate (increasing water depth). It is illustrated by an enhanced portion of total Mn in the reducible phase and the precipitation of todorokite on calcareous supports in the upper part of the deepest cores. As a result, 65% of the margin total particulate Mn is thought to be stored in slope deposits in a relatively strongly held association. Conversely, the low chemical mobility of iron in the sedimentary column is indicated by uniform depth profiles and an exclusive location in the residual chemical phase in all the studied sites. The Fe distribution is largely controlled by the dispersion of particulate material on the margin from the Rhône River main source.A budget of Mn and Fe accumulation based on the average amount of total Mn and Fe content of sediments deposited during the last 100 yr, has been made taking into account diagenetic readjustments. The total Mn and Fe amount stored on the margin during the last century is estimated to be 1.5×106 and 54×106 t, respectively. These values are seven times higher than the total secular external inputs calculated on the basis of present day riverine and atmospheric fluxes. This large discrepancy is mainly explained by the sharp decrease of the Rhone River discharge after dam buildings between 1950 and 1958. A residual discrepancy dating before 1950, is likely to be due to seafloor erosion and gravity induced mechanisms.  相似文献   

17.
Surface concentrations and vertical fluxes of particulate organic carbon (POC) were assessed in the Amundsen Gulf (southeastern Beaufort Sea, Arctic Ocean) over the years 2004 to 2006 by using ocean color remote-sensing imagery and sequential sediment traps moored over the ca. 400 m isobath. Environmental conditions (sea ice, wind) and oceanographic variables (temperature, salinity, fluorescence and currents) were investigated to explain the variability of POC data. Annual downward POC fluxes in 2004, 2005 and 2006 cumulated, respectively, to 3.3, 4.2 and 6.0 g C m?2 yr?1 at ~100 m depth, and to 1.3, 2.2 and 3.3 g C m?2 yr?1 at ~210 m depth. The fraction of settling POC attributable to autochthonous processes occurring at or next to ice break-up was estimated to be 75–84% of the 100 m annual fluxes and to be 61–75% of the 210 m fluxes. Over the three ice-reduced seasons, distinct scenarios between ice conditions, surface POC pools and vertical POC export at 100 m were identified: (1) in 2004, despite a normal ice break-up, a weak primary production was measured and low vertical fluxes were collected as old ice moved across the region; (2) in 2005, a lengthened ice-free period allowed an extended season of surface POC production near-shore, while an intermediate increase of vertical fluxes was recorded offshore; and (3) in 2006, a late ice melt gave rise to a pulsed ice edge bloom and to large vertical fluxes also associated with extra ice-flushed material. Linear regressions of vertical POC fluxes against satellite-derived surface POC concentrations suggested that the pelagic POC retention in the upper 100 m of the Amundsen Gulf ranged from ca. 70% to 90% depending on the timing of ice cover melt. Regardless of the inter-annual variability, the estimated fraction of the surface POC reservoir reaching the 210 m water depth was reduced to ~5%. Therefore, as the Arctic Ocean warms up, our results support the expectation that the increasing extent of the seasonal ice zone will promote the POC pathways that benefit pelagic webs rather than benthic communities.  相似文献   

18.
A study was carried out to assess primary production and associated export flux in the coastal waters of the western Antarctic Peninsula at an oceanographic time-series site. New, i.e., exportable, primary production in the upper water-column was estimated in two ways; by nutrient deficit measurements, and by primary production rate measurements using separate 14C-labelled radioisotope and 15N-labelled stable isotope uptake incubations. The resulting average annual exportable primary production estimates at the time-series site from nutrient deficit and primary production rates were 13 and 16 mol C m−2, respectively. Regenerated primary production was measured using 15N-labelled ammonium and urea uptake, and was low throughout the sampling period.The exportable primary production measurements were compared with sediment trap flux measurements from 2 locations; the time-series site and at a site 40 km away in deeper water. Results showed ∼1% of the upper mixed layer exportable primary production was exported to traps at 200 m depth at the time-series site (total water column depth 520 m). The maximum particle flux rate to sediment traps at the deeper offshore site (total water column depth 820 m) was lower than the flux at the coastal time-series site. Flux of particulate organic carbon was similar throughout the spring–summer high flux period for both sites. Remineralisation of particulate organic matter predominantly occurred in the upper water-column (<200 m depth), with minimal remineralisation below 200 m, at both sites. This highly productive region on the Western Antarctic Peninsula is therefore best characterised as ‘high recycling, low export’.  相似文献   

19.
Under present-day conditions, rivers are the main source of fine sediments dispersed to the Bay of Biscay. They deliver about 2.5×106 t yr−1 of continental fine sediments, 60% of which is derived from the Gironde estuary. Of this flux, 65% is believed stored on the shelf. Two kinds of mud fields can be found in the Bay of Biscay: coastal mud and shelf mud belts. The total mass of fine sediments stored during the past 2000 years is 3.2×109 t. Consequently, about 0.9×106 t yr−1 could reach the shelf edge and eventually the open sea. From this amount of displaced material and the deposition surface areas, an evaluation of sediment fluxes across the margin during the late Holocene period is discussed. This evaluation is compared with results obtained from ECOsystéme du canyon du cap-FERret (ECOFER) data from sediment traps and surficial box cores.  相似文献   

20.
A study of radiolarian fluxes collected during 1991–93 from time-series sediment traps deployed at 1071 and 3010 m water depth in the southern Bay of Bengal (SBBT) yielded 40 species/groups of radiolarians. Among the order Polycystina, the species of sub-order Spumellaria were by far the most abundant (∼95%) followed by sub-order Nassellaria (5%). This is contrary to reports from the Atlantic and Pacific Oceans and is attributed to the prevailing hyposaline condition resulting from the monsoonal rainfall. Higher radiolarian fluxes occurred during March–May, when moderate salinity and a high sea surface temperature (SST) regime prevailed at the trap site. R-mode cluster analysis of the radiolarian flux data revealed three assemblages represented by the cooler (A) and warmer (C) surface dwelling fauna (0–50 m) dominated by spumellarians, and a deeper dwelling (B) sub-surface fauna (50–100 m) associated with deep dwelling (>100 m) nassellarian species. Spongaster tetras tetras, a surface water radiolarian species, exhibited its preference for high SST and moderate salinity conditions during the pre-monsoon season (March–May). Radiolarian fluxes responded to seasonal changes in SST and salinity variations due to the monsoonal precipitation, and the freshwater runoff from the Indian rivers causing a hyposaline condition in the Bay of Bengal. Results imply that the radiolarian assemblages in the down core data may reveal the monsoonal history in the geological past.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号