首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study is to produce groundwater potential map (GPM) and its performance assessment using a data-driven evidential belief function (EBF) model. This study was carried out in the Koohrang Watershed, Chaharmahal-e-Bakhtiari Province, Iran. It’s conducted in three main stages such as data preparation, groundwater potential mapping using EBF and validation of constructed model using receiver operating characteristic (ROC) curve. At first, 864 groundwater data were collected from spring locations; out of that, 605 (70%) locations were selected for training/model building and the remaining 259 (30%) cases were used for the model validation. In the next step, 12 effective factors such as altitude, slope aspect, slope degree, slopelength (LS), topographic wetness index (TWI), plan curvature, land use, lithology, distance from rivers, drainage density, distance from faults and fault density were extracted from the spatial database. Subsequently, GPM was prepared using EBF model in ArcGIS environment. Finally, the ROC curve and area under the curves (AUC) were drawn for verification purposes. The validation of results showed that the AUC for EBF model is 81.72%. In general, this result can be helpful for planners and engineers in water resource management and land-use planning.  相似文献   

2.
The landslide hazard occurred in Taibai County has the characteristics of the typical landslides in mountain hinterland. The slopes mainly consist of residual sediments and locate along the highway. Most of them are in the less stable state and in high risk during rainfall in flood season especially. The main purpose of this paper is to produce landslide susceptibility maps for Taibai County (China). In the first stage, a landslide inventory map and the input layers of the landslide conditioning factors were prepared in the geographic information system supported by field investigations and remote sensing data. The landslides conditioning factors considered for the study area were slope angle, altitude, slope aspect, plan curvature, profile curvature, distance to faults, distance to rivers, distance to roads, normalized difference vegetation index, lithological unit, rainfall and land use. Subsequently, the thematic data layers of conditioning factors were integrated by frequency ratio (FR), weights of evidence (WOE) and evidential belief function (EBF) models. As a result, landslide susceptibility maps were obtained. In order to compare the predictive ability of these three models, a validation procedure was conducted. The curves of cumulative area percentage of ordered index values vs. the cumulative percentage of landslide numbers were plotted and the values of area under the curve (AUC) were calculated. The predictive ability was characterized by the AUC values and it indicates that all these models considered have relatively similar and high accuracies. The success rate of FR, WOE and EBF models was 0.9161, 0.9132 and 0.9129, while the prediction rate of the three models was 0.9061, 0.9052 and 0.9007, respectively. Considering the accuracy and simplicity comprehensively, the FR model is the optimum method. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

3.
Groundwater is the most valuable natural resource in arid areas. Therefore, any attempt to investigate potential zones of groundwater for further management of water supply is necessary. Hence, many researchers have worked on this subject all around the world. On the other hand, the Generalized Additive Model (GAM) has been applied to environmental and ecological modelling, but its applicability to other kinds of predictive modelling such as groundwater potential mapping has not yet been investigated. Therefore, the main purpose of this study is to evaluate the performance of GAM model and then its comparison with three popular GIS-based bivariate statistical methods, namely Frequency Ratio (FR), Statistical Index (SI) and Weight-of-Evidence (WOE) for producing groundwater spring potential map (GSPM) in Lorestan Province Iran. To achieve this, out of 6439 existed springs, 4291 spring locations were selected for training phase and the remaining 2147 springs for model evaluation. Next, the thematic layers of 12 effective spring parameters including altitude, plan curvature, slope angle, slope aspect, drainage density, distance from rivers, topographic wetness index, fault density, distance from fault, lithology, soil and land use/land cover were mapped and integrated using the ArcGIS 10.2 software to generate a groundwater prospect map using mentioned approaches. The produced GSPMs were then classified into four distinct groundwater potential zones, namely low, moderate, high and very high classes. The results of the analysis were finally validated using the receiver operating characteristic (ROC) curve technique. The results indicated that out of four models, SI is superior (prediction accuracy of 85.4%) following by FR, GAM and WOE, respectively (prediction accuracy of 83.7, 77 and 76.3%). The result of groundwater spring potential map is helpful as a guide for engineers in water resources management and land use planning in order to select suitable areas to implement development schemes and also government entities.  相似文献   

4.
The main aim of this study was to produce landslide susceptibility maps using statistical index (SI), certainty factors (CF), weights of evidence (WoE) and evidential belief function (EBF) models for the Long County, China. Firstly, a landslide inventory map, including a total of 171 landslides, was compiled on the basis of earlier reports, interpretation of aerial photographs and supported by extensive field surveys. Thereafter, all landslides were randomly separated into two data sets: 70% landslides (120 points) were selected for establishing the model and the remaining landslides (51 points) were used for validation purposes. Eleven landslide conditioning factors, such as slope aspect, slope angle, plan curvature, profile curvature, altitude, distance to faults, distance to roads, distance to rivers, lithology, NDVI and land use, were considered for landslide susceptibility mapping in this study. Then, the SI, CF, WoE and EBF models were used to produce the landslide susceptibility maps for the study area. Finally, the four models were validated using area under the curve (AUC) method. According to the validation results, the EBF model (AUC = 78.93%) has a higher prediction accuracy than the SI model (AUC = 77.72%), the WoE model (AUC = 77.62%) and the CF model (AUC = 77.72%). Similarly, the validation results also indicate that the EBF model has the highest training accuracy of 80.25%, followed by SI (79.80%), WoE (79.71%) and CF (79.67%) models.  相似文献   

5.
Abstract

In this study, we introduced novel hybrid of evidence believe function (EBF) with logistic regression (EBF-LR) and logistic model tree (EBF-LMT) for landslide susceptibility modelling. Fourteen conditioning factors were selected, including slope aspect, elevation, slope angle, profile curvature, plan curvature, topographic wetness index (TWI), stream sediment transport index (STI), stream power index (SPI), distance to rivers, distance to faults, distance to roads, lithology, normalized difference vegetation index (NDVI), and land use. The importance of factors was assessed using correlation attribute evaluation method. Finally, the performance of three models was evaluated using the area under the curve (AUC). The validation process indicated that the EBF-LMT model acquired the highest AUC for the training (84.7%) and validation (76.5%) datasets, followed by EBF-LR and EBF models. Our result also confirmed that combination of a decision tree-logistic regression-based algorithm with a bivariate statistical model lead to enhance the prediction power of individual landslide models.  相似文献   

6.
This study evaluates and compares landslide susceptibility maps of the Baxie River basin, Gansu Province, China, using three models: evidential belief function (EBF), certainty factor (CF) and frequency ratio (FR). First, a landslide inventory map is constructed from satellite image interpretation and extensive field data. Second, the study area is partitioned into 17,142 slope units, and modelled using nine landslide influence parameters: elevation, slope angle, slope aspect, relief amplitude, cutting depth, gully density, lithology, normalized difference vegetation index and distance to roads. Finally, landslide susceptibility maps are presented based on EBF, CF and FR models and validated using area under curve (AUC) analysis. The success rates of the EBF, CF and FR models are 0.8038, 0.7924 and 0.8088, respectively, while the prediction rates of the three models are 0.8056, 0.7922 and 0.7989, respectively. The result of this study can be reliably used in land use management and planning.  相似文献   

7.
Abstract

This study addresses landslide susceptibility mapping (LSM) using a novel ensemble approach of using a bivariate statistical method (weights of evidence [WoE] and evidential belief function [EBF])-based logistic model tree (LMT) classifier. The performance and prediction capability of the ensemble models were assessed using the area under the ROC curve (AUROC), standard error, 95% confidence intervals and significance level P. Model performance analyses indicated that the AUROC values of the WoE–LMT ensemble model using the training and validation data-sets were 86.02 and 85.9%, respectively, whereas those of the EBF–LMT ensemble model were 88.2 and 87.8%, respectively. On the other hand, the AUC curves for the four landslide susceptibility maps indicated that the AUC values of the ensemble models of WoE–LMT (85.11 and 83.98%) and EBF–LMT (86.21 and 85.23%) could improve the performance and prediction accuracy of single WoE (84.23 and 82.46%) and EBF (85.39 and 81.33%) models for the training and validation data-sets.  相似文献   

8.
Water shortage and population growth in Iran rapidly diminish groundwater supplies. Thus, finding the techniques such as GIS that can be used as powerful tools in groundwater management, and predicting groundwater potential is required. The main objective of this study is to evaluate the efficiency of the statistical index (SI), frequency ratio (FR) weights of evidence (WoE) and evidential belief function (EBF) models for groundwater potential mapping at Kuhdasht region, Lorestan province, Iran. For this purpose, 12 groundwater influencing factors were considered in this investigation. From 171 available wells in the study area, 114 wells (67%) and 57 wells (33%) were used based on random selection in SI, FR, WoE and EBF models as training and validation data-sets, respectively. The area under the ROC curve (AUC) for SI, FR, WoE and EBF models was calculated as 91.8, 91, 93.6 and 93.3%, respectively. These curve values indicated that all four models have reasonably good accuracy in spatially predicting groundwater potential in this area.  相似文献   

9.
The main aim of present study is to compare three GIS-based models, namely Dempster–Shafer (DS), logistic regression (LR) and artificial neural network (ANN) models for landslide susceptibility mapping in the Shangzhou District of Shangluo City, Shaanxi Province, China. At First, landslide locations were identified by aerial photographs and supported by field surveys, and a total of 145 landslide locations were mapped in the study area. Subsequently, the landslide inventory was randomly divided into two parts (70/30) using Hawths Tools in ArcGIS 10.0 for training and validation purposes, respectively. In the present study, 14 landslide conditioning factors such as altitude, slope angle, slope aspect, topographic wetness index, sediment transport index, stream power index, plan curvature, profile curvature, lithology, rainfall, distance to rivers, distance to roads, distance to faults and normalized different vegetation index were used to detect the most susceptible areas. In the next step, landslide susceptible areas were mapped using the DS, LR and ANN models based on landslide conditioning factors. Finally, the accuracies of the landslide susceptibility maps produced from the three models were verified using the area under the curve (AUC). The validation results showed that the landslide susceptibility map generated by the ANN model has the highest training accuracy (73.19%), followed by the LR model (71.37%), and the DS model (66.42%). Similarly, the AUC plot for prediction accuracy presents that ANN model has the highest accuracy (69.62%), followed by the LR model (68.94%), and the DS model (61.39%). According to the validation results of the AUC curves, the map produced by these models exhibits the satisfactory properties.  相似文献   

10.
Block falls are considered a significant aspect of surficial instability contributing to losses in land and socio-economic aspects through their damaging effects to natural and human environments. This paper predicts and maps the geographic distribution and volumes of block falls in central Lebanon using remote sensing, geographic information systems (GIS) and decision-tree modeling (un-pruned and pruned trees). Eleven terrain parameters (lithology, proximity to fault line, karst type, soil type, distance to drainage line, elevation, slope gradient, slope aspect, slope curvature, land cover/use, and proximity to roads) were generated to statistically explain the occurrence of block falls. The latter were discriminated using SPOT4 satellite imageries, and their dimensions were determined during field surveys. The un-pruned tree model based on all considered parameters explained 86% of the variability in field block fall measurements. Once pruned, it classifies 50% in block falls’ volumes by selecting just four parameters (lithology, slope gradient, soil type, and land cover/use). Both tree models (un-pruned and pruned) were converted to quantitative 1:50,000 block falls’ maps with different classes; starting from Nil (no block falls) to more than 4000 m3. These maps are fairly matching with coincidence value equal to 45%; however, both can be used to prioritize the choice of specific zones for further measurement and modeling, as well as for land-use management. The proposed tree models are relatively simple, and may also be applied to other areas (i.e. the choice of un-pruned or pruned model is related to the availability of terrain parameters in a given area).  相似文献   

11.
ABSTRACT

Groundwater potential mapping (GWPM) in the coastal zone is crucial for the planning and development of society and the environment. The current study is aimed to map the groundwater potential zones of Sindhudurg coastal stretch on the west coast of India, using three machine learning models: random forest (RF), boosted regression tree (BRT), and the ensemble of RF and support vector machine (SVM). In order to achieve the objective, 15 groundwater influencing factors including elevation, slope, aspect, slope length (LS), profile curvature, plan curvature, topographical wetness index (TWI), distance from streams, distance from lineaments, lithology, geomorphology, soil, land use, normalized difference vegetation index (NDVI), and rainfall were considered for inter-thematic correlations and overlaid with spring and well occurrences in a spatial database. A total of 165 spring and well locations were identified, which had been divided into two classes: training and validation, at the ratio of 70:30, respectively. The RF, BRT, and RF-SVM ensemble models have been applied to delineate the groundwater potential zones and categorized into five classes, namely very high, high, moderate, low, and very low. RF, BRT, and ensemble model results showed that 33.3%, 35.6%, and 36.8% of the research area had a very high groundwater potential zone. These models were validated with area under the receiver operating characteristics (AUROC) curve. The accuracy of RF (94%) and hybrid model (93.4%) was more efficient than BRT (89.8%) model. In order to further evaluate and validate, four different sites were subsequently chosen, and we obtained similar results, ensuring the validity of the applied models. Additionally, ground-penetrating radar (GPR) technique was applied to predict the groundwater table and validated by measured wells. The mean difference between measured and GPR predicted groundwater table was 14 cm, which reflected the importance of GPR to guide the location of new wells in the study region. The outcomes of the study will help the decision-makers, government agencies, and private sectors for sustainable planning of groundwater in the area. Overall, the present study provides a comprehensive high-precision machine learning and GPR-based groundwater potential mapping.  相似文献   

12.
Digital elevation models (DEMs) are essential to various applications in topography, geomorphology, hydrology, and ecology. The Shuttle Radar Topographic Mission (SRTM) DEM data set is one of the most complete and most widely used DEM data sets; it provides accurate information on elevations over bare land areas. However, the accuracy of SRTM data over vegetated mountain areas is relatively low as a result of the high relief and the penetration limitation of the C-band used for obtaining global DEM products. The objective of this study is to assess the performance of SRTM DEMs and correct them over vegetated mountain areas with small-footprint airborne Light Detection and Ranging (Lidar) data, which can develop elevation products and vegetation products [e.g., vegetation height, Leaf Area Index (LAI)] of high accuracy. The assessing results show that SRTM elevations are systematically higher than those of the actual land surfaces over vegetated mountain areas. The mean difference between SRTM DEM and Lidar DEM increases with vegetation height, whereas the standard deviation of the difference increases with slope. To improve the accuracy of SRTM DEM over vegetated mountain areas, a regression model between the SRTM elevation bias and vegetation height, LAI, and slope was developed based on one control site. Without changing any coefficients, this model was proved to be applicable in all the nine study sites, which have various topography and vegetation conditions. The mean bias of the corrected SRTM DEM at the nine study sites using this model (absolute value) is 89% smaller than that of the original SRTM DEM, and the standard deviation of the corrected SRTM elevation bias is 11% smaller.  相似文献   

13.
A GIS-based statistical methodology for landslide susceptibility zonation is described and its application to a study area in the Western Ghats of Kerala (India) is presented. The study area was approximately 218.44 km2 and 129 landslides were identified in this area. The environmental attributes used for the landslide susceptibility analysis include geomorphology, slope, aspect, slope length, plan curvature, profile curvature, elevation, drainage density, distance from drainages, lineament density, distance from lineaments and land use. The quantitative relationship between landslides and factors affecting landslides are established by the data driven-Information Value (InfoVal) — method. By applying and integrating the InfoVal weights using ArcGIS software, a continuous scale of numerical indices (susceptibility index) is obtained with which the study area is divided into five classes of landslide susceptibility. In order to validate the results of the susceptibility analysis, a success rate curve was prepared. The map obtained shows that a great majority of the landslides (74.42%) identified in the field were located in susceptible and highly susceptible zones (27.29%). The area ratio calculated by the area under curve (AUC) method shows a prediction accuracy of 80.45%. The area having a high scale of susceptibility lies on side slope plateaus and denudational hills with high slopes where drainage density is relatively low and terrain modification is relatively intense.  相似文献   

14.
The main aim of this study is to generate groundwater spring potential maps for the Ningtiaota area (China) using three statistical models namely statistical index (SI), index of entropy (IOE) and certainty factors (CF) models. Firstly, 66 spring locations were identified by field surveys, out of which, 46 (70%) spring locations were randomly selected for training the models and the rest 20 (30%) spring locations were used for validation. Secondly, 12 spring influencing factors, namely slope angle, slope aspect, altitude, profile curvature, plan curvature, sediment transport index, stream power index, topographic wetness index, distance to roads, distance to streams, lithology and normalized difference vegetation index (NDVI) were derived from the spatial database. Subsequently, using the mentioned factors and the three models, groundwater spring potential values were calculated and the results were plotted in ArcGIS 10.0. Finally, the area under the curve was used to validate groundwater spring potential maps. The results showed that the IOE model, with the highest success rate of 0.9126 and the highest prediction rate of 0.9051, showed the preferable performance in this study. The results of this study may be helpful for planners and engineers in groundwater resource management and other similar watersheds.  相似文献   

15.
The orbital and the rational polynomial coefficients (RPC) models are the two most commonly used models to compute a three-dimensional coordinates from an image stereo-pair. But it is still confusing that with the identical user provided inputs, which one of these two models provides more accurate digital elevation model (DEM), especially for mountainous terrain. This study aimed to find out the answer by evaluating the impact of used models on the vertical accuracy of DEM extracted from Cartosat-1 stereo data. We used high-accuracy photogrammetric DEM as the reference DEM. Apart from general variations in statistics, surprisingly in a few instances, both the DEMs provided contrasting results, thus proving the significance of this study. The computed root mean square errors and linear error at 90% (LE90) were lower in case of RPC DEM for various classes of slope, aspect and land cover, thus suggesting its better relative accuracy.  相似文献   

16.
The use of remote sensing data with other ancillary data in a geographic information system (GIS) environment is useful to delineate groundwater potential zonation map of Ken–Betwa river linking area of Bundelkhand. Various themes of information such as geomorphology, land use/land cover, lineament extracted from digital processing of Landsat (ETM+) satellite data of the year 2005 and drainage map were extracted from survey of India topographic sheets, and elevation, slope data were generated from shuttle radar topography mission (SRTM) digital elevation model (DEM). These themes were overlaid to generate groundwater potential zonation (GWPZ) map of the area. The final map of the area shows different zones of groundwater prospects, viz., good (5.22% of the area), moderate (65.83% of the area) poor (15.31% of the area) and very poor (13.64% of area).  相似文献   

17.
Population has significant application value and scientific significance in resource use, public health, public transportation, disaster assessment, and environmental management. However, traditional census data can not show the population density difference within census units. Furthermore, census data are not uniform across countries, and reconciling these differences when using data from multiple countries require considerable effort. Finally, there are scale differences between census and geospatial data (e.g., land use/cover), making data analysis and needed research difficult. These challenges significantly limit the applications of census data. The advent of gridded population mapping (GPM) technology has overcome these challenges. GPM technology has developed rapidly in recent years. The research data and models are rich and diverse, and many achievements have been made. A systematic review of the current state of GPM research will help relevant researchers and data users. This article begins by summarizing the core elements of GPM research in four aspects: auxiliary data, models, accuracy, and products. It will then go on to four problems prevalent in GPM research that have direct or indirect effects on the accuracy of GPM. Finally, the article prospects GPM research from four different aspects based on the current state of research.  相似文献   

18.
The creation of an accurate simulation of future urban growth is considered one of the most important challenges in urban studies that involve spatial modeling. The purpose of this study is to improve the simulation capability of an integrated CA-Markov Chain (CA-MC) model using CA-MC based on the Analytical Hierarchy Process (AHP) and CA-MC based on Frequency Ratio (FR), both applied in Seremban, Malaysia, as well as to compare the performance and accuracy between the traditional and hybrid models. Various physical, socio-economic, utilities, and environmental criteria were used as predictors, including elevation, slope, soil texture, population density, distance to commercial area, distance to educational area, distance to residential area, distance to industrial area, distance to roads, distance to highway, distance to railway, distance to power line, distance to stream, and land cover. For calibration, three models were applied to simulate urban growth trends in 2010; the actual data of 2010 were used for model validation utilizing the Relative Operating Characteristic (ROC) and Kappa coefficient methods Consequently, future urban growth maps of 2020 and 2030 were created. The validation findings confirm that the integration of the CA-MC model with the FR model and employing the significant driving force of urban growth in the simulation process have resulted in the improved simulation capability of the CA-MC model. This study has provided a novel approach for improving the CA-MC model based on FR, which will provide powerful support to planners and decision-makers in the development of future sustainable urban planning.  相似文献   

19.
GIS支持下滑坡灾害空间预测方法研究   总被引:11,自引:0,他引:11  
滑坡预测在防灾减灾工作中具有重要意义,它包括空间、时间预测两个方面。基于统计模型进行区域评价与空间预测是滑坡灾害研究的重要方向,但是预测结果往往依赖样本数量和空间分布等。本文以马来西亚金马伦高原为研究区,选择高程、坡度、坡向、地表曲率、构造、土地覆盖、地貌类型、道路和排水系统作为评价因子,探讨运用地理信息系统(GIS)和遥感(RS)获取与管理滑坡灾害信息,以及热带雨林地区湿热环境下滑坡空间预测的方法。支持向量机(SVM)和逻辑(Logistic)回归模型分别应用于滑坡空间预测,结果显示平均预测精度分别为95.9%和86.2%,SVM法具有较高的描述精度,值得推荐;同时,基于SVM模型的滑坡空间预测受样本影响较小,预测结果相对比较稳定,这对于滑坡灾害区域评价与预测的快速实现具有实际意义。  相似文献   

20.
Assessment of groundwater potential zones using GIS technique   总被引:1,自引:0,他引:1  
A case study was conducted to find out the groundwater potential zones in Kattakulathur block, Tamil Nadu, India with an aerial extent of 360.60 km2. The thematic maps such as geology, geomorphology, soil hydrological group, land use / land cover and drainage map were prepared for the study area. The Digital Elevation Model (DEM) has been generated from the 10 m interval contour lines (which is derived from SOI, Toposheet 1:25000 scale) and obtained the slope (%) of the study area. The groundwater potential zones were obtained by overlaying all the thematic maps in terms of weighted overlay methods using the spatial analysis tool in ArcGIS 9.2. During weighted overlay analysis, the ranking has been given for each individual parameter of each thematic map and weights were assigned according to the influence such as soil −25%, geomorphology − 25%, land use/land cover −25%, slope − 15%, lineament − 5% and drainage / streams − 5% and find out the potential zones in terms of good, moderate and poor zones with the area of 49.70 km2, 261.61 km2 and 46.04 km2 respectively. The potential zone wise study area was overlaid with village boundary map and the village wise groundwater potential zones with three categories such as good, moderate and poor zones were obtained. This GIS based output result was validated by conducting field survey by randomly selecting wells in different villages using GPS instruments. The coordinates of each well location were obtained by GPS and plotted in the GIS platform and it was clearly shown that the well coordinates were exactly seated with the classified zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号