首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
  国内免费   1篇
测绘学   8篇
大气科学   1篇
地球物理   3篇
地质学   18篇
海洋学   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   7篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
1.
Information about the surface ice velocity is one of the important parameters for Mass balance and Glacier dynamics. This study estimates the surface ice velocity of Chhota Shigri glacier using Landsat (TM/ETM+) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) temporal data-sets from a period of 2009 to 2016 and 2006 to 2007, respectively. A correlation based Particle Image Velocimetry (PIV) technique has been used for the estimation of surface ice velocity. This technique uses multiple window sizes in the same data-set. Four window sizes (low, medium, high, very high) are used for each image pair. Estimated results have been compared with the published data. The outcomes attained from the medium window size closely matches with the published results. The estimated mean surface ice velocities of medium window size are 24 and 28.5 myr?1 for 2009/2010 and 2006/2007 images pair. Highest velocity is observed in middle part of the glacier while lowest in the accumulation zone of the glacier.  相似文献   
2.
Nowadays, different image pansharpening methods are available, which combine the strengths of different satellite images that have different spectral and spatial resolutions. These different image fusion methods, however, add spectral and spatial distortions to the resultant images depending on the required context. Therefore, a careful selection of the fusion method is required. Simultaneously, it is also essential that the fusion technique should be efficient to cope with the large data. In this paper, we investigated how different pansharpening algorithms perform, when applied to very high-resolution WorldView-3 and QuickBird satellite images effectively and efficiently. We compared these 27 pansharpening techniques in terms of quantitative analysis, visual inspection and computational complexity, which has not previously been formally tested. In addition, 12 different image quality metrics available in literature are used for quantitative analysis purpose.  相似文献   
3.
The orbital and the rational polynomial coefficients (RPC) models are the two most commonly used models to compute a three-dimensional coordinates from an image stereo-pair. But it is still confusing that with the identical user provided inputs, which one of these two models provides more accurate digital elevation model (DEM), especially for mountainous terrain. This study aimed to find out the answer by evaluating the impact of used models on the vertical accuracy of DEM extracted from Cartosat-1 stereo data. We used high-accuracy photogrammetric DEM as the reference DEM. Apart from general variations in statistics, surprisingly in a few instances, both the DEMs provided contrasting results, thus proving the significance of this study. The computed root mean square errors and linear error at 90% (LE90) were lower in case of RPC DEM for various classes of slope, aspect and land cover, thus suggesting its better relative accuracy.  相似文献   
4.
An avalanche occurrence is a result of the structural collapse of the snow cover in the upper reaches of mountain slopes in the snowbound belt. They take a heavy toll, year after year and property worth millions is destroyed. Besides loss of lives, the avalanches also destroy forest and disrupt road communication, thereby hindering the hill area development and affecting the Defense of the nation.The paper brings out the cause of avalanche formation, magnitude of their destruction power and the techniques being followed in India by Snow and Avalanche Study Establishment (SASE), a DRDO Laboratory, for mitigating the avalanche disasters in Western Himalayan Region for the Defense forces. The authors suggest that for mitigating the avalanche disasters, an integrated plan at national level involving Defense forces and state governments should be drawn.  相似文献   
5.
Mountain Glaciers are natural resources of fresh water and these affect the stream flow of the rivers, regional climate and further global climate. Observed trends and projected future evolutions of climate and Cryospheric variables clearly suggest a need to monitor these changes. Accordingly, the article presents the glacier features mapping using Hyperspectral remote sensing imagery. A freely available Hyperion satellite imagery acquired over Gepang Gath glacier in Himachal Pradesh, India is used for the study. Each class is identified based on their surface characteristics of spectral reflectance properties. Identification is simplified by demarcating the study glacier into accumulation and ablation areas through snowline. Accumulation area is characterized with high reflectance clean snow/ice and reduced moderate reflectance Snow/firn. The identification of classes in Hyperion imagery is validated using the spectral library from USGS and ASTER, and field spectra obtained from literature.  相似文献   
6.
Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2 marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1–2 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.  相似文献   
7.
Assessments of coupled barrier island-estuary storm response are rare. Hurricane Sandy made landfall during an investigation in Barnegat Bay-Little Egg Harbor estuary that included water quality monitoring, geomorphologic characterization, and numerical modeling; this provided an opportunity to characterize the storm response of the barrier island-estuary system. Barrier island morphologic response was characterized by significant changes in shoreline position, dune elevation, and beach volume; morphologic changes within the estuary were less dramatic with a net gain of only 200,000 m3 of sediment. When observed, estuarine deposition was adjacent to the back-barrier shoreline or collocated with maximum estuary depths. Estuarine sedimentologic changes correlated well with bed shear stresses derived from numerically simulated storm conditions, suggesting that change is linked to winnowing from elevated storm-related wave-current interactions rather than deposition. Rapid storm-related changes in estuarine water level, turbidity, and salinity were coincident with minima in island and estuarine widths, which may have influenced the location of two barrier island breaches. Barrier-estuary connectivity, or the transport of sediment from barrier island to estuary, was influenced by barrier island land use and width. Coupled assessments like this one provide critical information about storm-related coastal and estuarine sediment transport that may not be evident from investigations that consider only one component of the coastal system.  相似文献   
8.
Seismic hazard assessment is the key tool for rational planning, safety and design of infrastructures in seismically vulnerable regions. Gujarat is the only state in peninsular India with the maximum seismic hazard of large shallow earthquakes originating from intra-plate seismicity. Probabilistic seismic hazard assessment (PSHA) of Gujarat is carried out in this paper. Three seismogenic sources, namely Kutch, Saurashtra and Mainland Gujarat, are considered, and seismicity parameters are estimated separately for each region taking into account the completeness of the available earthquake data. Peak ground acceleration (PGA) of the horizontal component and spectral acceleration at specific periods are considered as the intensity measures. Ground motion predictive equation chosen was reported to be based on simulated ground motions and verified against the strong motion records in the study region. Results are reported for the 17 major cities at the bedrock and also for the soil sites. Apart from hazard curves, 2475 and 475 years of return periods are considered for the PGA and uniform hazard spectra (UHS). The results are compared with the present recommendations of Indian Standards. Key observations include (1) Indian Standards underpredict PGA in the entire Gujarat when the soil sites are considered and in a few cities even at the bedrock; (2) amplification of PGA (or short period hazard) on account of soil sites should be included in the Indian Standard, which is currently absent; (3) shape of the UHS indicates that a separate amplification is required at the hyperbolic portion; and (4) ratio of 2475–475 years of PGA, which is considered 2.0 in Indian Standard, should be reduced to 1.5. Time-dependent recurrence model is also included in this paper and compared with conventional PSHA. General observations include that (1) hazard may increase significantly on account of time dependency; (2) this also influences the disaggregation and in turn the selection of ground motions; and (3) time since last earthquake significantly influences the extent of the effect of time dependency.  相似文献   
9.
Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day conditions; (2) sea-level rise and freshwater flow changes of 2030; (3) sea-level rise and decreased watershed sediment supply of 2030; and (4) sea-level rise, freshwater flow changes, and decreased watershed sediment supply of 2030. Sea-level rise increased water levels thereby reducing wave-induced bottom shear stress and sediment redistribution during the wind-wave season. Decreased watershed sediment supply reduced net deposition within the estuary, while minor changes in freshwater flow timing and magnitude induced the smallest overall effect. In all future scenarios, net deposition in the entire estuary and in the shallowest areas did not keep pace with sea-level rise, suggesting that intertidal and wetland areas may struggle to maintain elevation. Tidal-timescale simulations using future conditions were also used to infer changes in optical depth: though sea-level rise acts to decrease mean light irradiance, decreased suspended-sediment concentrations increase irradiance, yielding small changes in optical depth. The modeling results also assisted with the development of a dimensionless estuarine geomorphic number representing the ratio of potential sediment import forces to sediment export forces; we found the number to be linearly related to relative geomorphic change in Suisun Bay. The methods implemented here are widely applicable to evaluating future scenarios of estuarine change over decadal timescales.  相似文献   
10.
Increased nutrient loading to estuaries has led to eutrophication, degraded water quality, and ecological transformations. Quantifying nutrient loads in systems with significant groundwater input can be difficult due to the challenge of measuring groundwater fluxes. We quantified tidal and freshwater fluxes over an 8-week period at the entrance of West Falmouth Harbor, Massachusetts, a eutrophic, groundwater-fed estuary. Fluxes were estimated from velocity and salinity measurements and a total exchange flow (TEF) methodology. Intermittent cross-sectional measurements of velocity and salinity were used to convert point measurements to cross-sectionally averaged values over the entire deployment (index relationships). The estimated mean freshwater flux (0.19?m3/s) for the 8-week period was mainly due to groundwater input (0.21?m3/s) with contributions from precipitation to the estuary surface (0.026?m3/s) and removal by evaporation (0.048?m3/s). Spring?Cneap variations in freshwater export that appeared in shorter-term averages were mostly artifacts of the index relationships. Hydrodynamic modeling with steady groundwater input demonstrated that while the TEF methodology resolves the freshwater flux signal, calibration of the index?Csalinity relationships during spring tide conditions only was responsible for most of the spring?Cneap signal. The mean freshwater flux over the entire period estimated from the combination of the index-velocity, index?Csalinity, and TEF calculations were consistent with the model, suggesting that this methodology is a reliable way of estimating freshwater fluxes in the estuary over timescales greater than the spring?Cneap cycle. Combining this type of field campaign with hydrodynamic modeling provides guidance for estimating both magnitude of groundwater input and estuarine storage of freshwater and sets the stage for robust estimation of the nutrient load in groundwater.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号