首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Andrej Gosar   《Engineering Geology》2007,91(2-4):178-193
The Bovec basin, which is filled with glacial and fluvial sediments, has recently been struck by two strong earthquakes (1998 and 2004) which caused extensive damage (VII–VIII EMS-98). Strong site effects resulted in large variations in damage to buildings in the area, which could not be explained by the surface variations in Quaternary sediments. The microtremor horizontal-to-vertical-spectral ratio (HVRS) method was therefore applied to a 200 m dense grid of free-field measurements to assess the fundamental frequency of the sediments. Large variations in the sediment frequency (3–22 Hz) were obtained, with most of the observed values in the range 6–12 Hz. The observed frequencies cannot be related to the total thickness of Quaternary sediments (sand, gravel), but can be explained by the presence of conglomerate or lithified moraine at shallow depths. The results were compared also with the velocity structure derived from seismic refraction data. Microtremor measurements performed in several two and some three- and four-storey houses (masonry with RC floors), which prevail in the Bovec basin, have shown that the main building frequencies in the area are in the range 7–11 Hz. This indicates that damage to houses in both earthquakes in some parts of the basin was enhanced by site amplification and soil-structure resonance. Areas of possible soil-structure resonance were identified in the settlements Bovec–Brdo, Bovec–Mala vas, Čezsoča and Kal-Koritnica. Considerable changes in fundamental frequencies within short distances were established in the town of Bovec. Their values are as high as 22 Hz in the central part of the town, but diminish to 6–11 Hz in the adjacent Brdo and Mala vas districts. This is in agreement with the distribution of damage in both earthquakes, which was considerably higher in Brdo and Mala vas, although the houses in the central part of the town are older.

Microtremor investigations have proved an effective tool for assessment of site effects in cases of complex geological structure commonly encountered in young Alpine basins filled with glaciofluvial sediments which are partly cemented. Lithified layers can considerably change the fundamental frequency and, consequently, the site effects. By taking additional measurements in buildings possible soil-structure resonance can be identified.  相似文献   


2.
The degree of damage during earthquakes strongly depends on dynamic characteristics of buildings as well as amplification of seismic waves in soils. Among the other approaches, microtremor is, perhaps, the easiest and cheapest way to understand the dynamic characteristics of soil. Non-reference microtremor measurements have been carried out in 45 locations in and around the capital Dhaka city of Bangladesh. Subsoil investigations (Standard Penetration Test and Shear Wave Velocity) have also been executed in those locations. Soil model has been developed for those locations for site response analysis by means of the program SHAKE. Among those 45 locations, predominant frequency of microtremor observation varies from 0.48 to 3.65 Hz. Out of those 45, for 35 locations Transfer function obtained from the program SHAKE have higher frequency compared to microtremor H/V ratio and for one location it has lower predominant frequency. For six locations, frequencies obtained from two methods are identical. For three other locations, there are no similarities between predominant frequency obtained from microtremor and transfer function. The seismic Vulnerability Index (Kg) for 45 sites varies between 0.45 and 31.85. Ten sites have been identified as having moderate vulnerability of soil layers to deform.  相似文献   

3.
The site amplification functions at 48 sites of NCR have been estimated in this study using the waveforms of locally recorded 23 earthquakes. Due to the absence of a suitable reference site in the region, the widely used horizontal-to-vertical spectral ratio (HVSR) technique has been used for this purpose. The maps showing the spatial distribution of predominant frequencies and the site amplifications at different frequencies corresponding to the natural frequencies of the different-storey buildings have been presented. The predominant frequencies in general are found to be in the range 2.5–7.5 Hz with an average of 4.4 Hz for the region having older alluvium sediments and in the range 1.1–6.4 Hz with an average of 3.3 Hz for the region with the younger alluvium deposits. The average value of the site amplifications for the frequency band 3.0–10.0 Hz is in the range 2.0–5.3 for the sites with significant soil cover, while the spectral amplification corresponding to the predominant frequency varies from 2.5 to 7.5 at most of the sites. The spectral amplification level lies in the range 2.0–3.0 for the sites with less or no sediment cover. The spectral amplification levels presented for the different-storey buildings may be used for the mitigation of seismic hazard in the region. The estimated site amplification functions may be used in the simulation of the site-specific strong ground motions and therefore useful for the evaluation of seismic hazard of a region.  相似文献   

4.
Yalova City (Turkey) is in a tectonically active location that is particularly affected by the northern branch of the North Anatolian Fault Zone. Magnitudes 7.4 and 7.2 earthquakes in 1999 caused great destruction in Yalova. The heavy damage to buildings and other civil engineering structures was mainly due to liquefaction-induced settlement and site effects such as resonance and amplification. In the first phase of this study, the soil liquefaction potential index (PL) and the induced soil settlement were estimated. In the second phase, the effects on sites in Yalova soil were investigated using microtremor and earthquake data. The fundamental periods and amplification in soft soil were compared with microtremor data and strong ground motion records obtained by a local array of eight accelerograph stations deployed in Yalova. Thirty-seven ‘single site’ ambient noise measurements were taken in a dense grid of points covering the centre of the city. A comparison between fundamental periods obtained from strong ground motion records and from microtremor measurements showed similarities, in the 0.1–5 Hz range. Finally, soil liquefaction and amplification (or resonance) were divided into regions according to the extent of damage and the geotechnical/geophysical results.  相似文献   

5.
Gulf of Aqaba is recognized as an active seismic zone where many destructive earthquakes have occurred. The estimation of source parameters and coda Q attenuation are the main target of this work. Fifty digital seismic events in eight short-period seismic stations with magnitude 2.5–5.2 are used. Most of these events occurred at hypocentral depths in the range of 7–20 km, indicating that the activity was restricted in the upper crust. Seismic moment, M o, source radius, r, and stress drop, Δσ, are estimated from P- and S-wave spectra using the Brune’s seismic source model. The average seismic moment generated by the whole sequence of events was estimated to be 4.6E?+?22 dyne/cm. The earthquakes with higher stress drop occur at 10-km depth. The scaling relation between the seismic moment and the stress drop indicates a tendency of increasing seismic moment with stress drop. The seismic moment increases with increasing the source radius. Coda waves are sensitive to changes in the subsurface due to the wide scattering effects generating these waves. Single scattering model of local earthquakes is used to the coda Q calculation. The coda with lapse times 10, 20, and 30 s at six central frequencies 1.5, 3, 6, 12, 18, 24 Hz are calculated. The Q c values are frequency dependent in the range 1–25 Hz, and are approximated by a least squares fit to the power law [ $ {Q_c}(f) = {Q_o}{(f/{f_o})^\eta } $ ]. The average of Q c values increases from 53?±?10 at 1.5 Hz to 700?±?120 at 24 Hz. The average of Q o values ranges from 13?±?1 at 1.5 Hz to 39?±?4 at 24 Hz. The frequency exponent parameter η ranges between 1.3?±?0.008 and 0.9?±?0.001.  相似文献   

6.
Fundamental frequency map of site amplification at different sites in Doon valley, Uttarakhand, India is prepared from microtremor (ground ambient noise) using Horizontal to Vertical Spectral Ratio (HVSR) technique. The fan deposited alluvium filled synclinal valley of Doon lies between Main Boundary Thrust (MFT) and Himalayan Frontal Thrust (HFT) in the Himalayan active seismic belt and experienced many earthquakes in the past. The HVSR at different sites in the Doon valley ranges between the predominant frequencies 0.13 and 12.77 Hz. The HVSR in lower frequencies indicates that the site has either thick sediment covers or less compact rocks with fractures. Based on information on fundamental frequency and soft soil thickness, site classification map is generated. Results indicate that degree of compactness of rock types and presences of sediments vary significantly, which may play a major role in seismic hazard. The use of microtremor, therefore, constitutes an effective and inexpensive approach to site response and soft soil thickness estimation for preliminary microzonation.  相似文献   

7.
Site response in the Gujarat region is studied using local earthquake data recorded at 32 sites spread all over Gujarat region, India. Out of these 32 sites, 15 sites are located in Kachchh region, 8 in Saurashtra and 9 in mainland Gujarat region. These sites are underlain by different types of rocks/sediments of different ages. Out of 32 stations, 7 stations are on Quaternary deposits, 6 on Tertiary, 11 on Deccan, 3 on Jurassic, 3 on Cretaceous and 2 on Proterozoic rocks. The predominant frequencies at these sites depend strongly on the local geology. The average predominant frequencies of the sites on Quaternary sediments are 2.4?Hz, 5.3?Hz on Tertiary, 7.5?Hz on Jurassic, 7.2?Hz on Deccan, 4.6?Hz on Cretaceous and 7.5?Hz on Proterozoic formations. The average site amplification values at predominant frequencies are 3.7 for the sites of Quaternary deposits, 3.3 for Tertiary, 3.3 for Cretaceous rock, 4.2 for Deccan trap, 4.1 for Jurassic sites and 4.6 for Proterozoic. The damage to the houses during 2001 Bhuj earthquake is compared with the amplification at predominant frequencies at those sites. The spatial variation of predominant frequencies and the site amplifications at different frequencies corresponding to the natural frequencies of different storey buildings are studied, which will be useful in the evaluation of seismic hazard in the region.  相似文献   

8.
The horizontal-to-vertical spectral ratio technique has applied to detect the fundamental frequency at the sites of ambient noise recordings for New Domiat city. Noise measurements are acquired at 90 of sites for 1?h of continuous recording with a sampling rate of 100?Hz. Then, these data are processed following to SESAME project scheme. The presence of deep sedimentary basin in the Nile Delta suggests that the site response should be important. Consequently, the obtained fundamental frequency has lower values (0.2?C0.6?Hz). However, low-frequency ground motions attenuate more gradually with distance and can excite vibrations in large engineered structures, such as tall buildings and long bridges. There is hazardous threat even from the distant earthquakes originated from Mediterranean convergence zone for the structures in the city. It is recommended that the results of this study must be taken into consideration from civil engineering point of view before construction of civil engineering structures at this part.  相似文献   

9.
The attenuation properties have been estimated in the Nubra-Siachen region situated in the highly mountainous region of Himalayan belt. Coda wave quality factor (Qc) has been determined for this virgin region by using the single backscattering method. A total of thirty earthquakes recorded in this region, which fall in the epicentral distance range of 3 to 115km have been used for the present work. A 30 sec window length of coda waves at different central frequencies 1.5, 3.0, 6.0, 9.0, 12.0, 18.0 and 24.0 Hz have been studied to determine Qc at different recording stations. The frequency dependent coda wave quality factor relationships of the form Qc(f) = Qofn, have been computed at each recording stations separately: BASE: Qc(f) = (137 ± 4.2) f(0.99 ± 0.12), CHALUNKA: Qc(f) = (116±3.8)f(1.0±0.05), PARTA: Qc(f) = (122±3.0)f(1.0±0.02), and SASOMA: Qc(f) = (111±4.1)f(1.0±0.03). A regional Qc relation has been developed for the Nubra-Siachen region by using the average value of Qc at different frequencies obtained at each recording station of the form Qc(f) = (121±7.2)f(1.0±0.04). The average Qc values vary from 183 at 1.5 Hz to 3684 at 24 Hz central frequencies. The present regional relation developed for Nubra-Siachen region indicates heterogeneous and tectonically active region.  相似文献   

10.
Nine seismic refraction profiles were conducted and processed to study the near-surface sediments in the new urban area of Diriyah. The 2D geoseismic models illustrate two layers: a surface layer of soft sediments and weathered to hard limestone bedrock. Moreover, microtremor measurements were performed at 38 sites for 40 min using three-component seismographs and processed to assess the peak spectral amplitude and the corresponding fundamental resonance frequency. The seismic vulnerability index at each measurement site was estimated. These results correlate well with the geotechnical borehole data. The north-western zone is highly vulnerable due to the great thickness of the soft sediments.  相似文献   

11.
Avcılar is the suburb of Istanbul that was most heavily damaged during the August 17, 1999 Mw 7.4 Izmit earthquake. Strong ground motion caused fatalities and damage in Avcılar despite being 90 km from the epicenter. We deployed five portable seismograph stations equipped with Reftek 24-bit recorders and L4C-3D seismometers for 2 months, in order to understand why the local site response was different from elsewhere in Istanbul. A reference station was placed on a hard rock site, and the remaining four stations were placed on other geological units, in areas that had experienced varying levels of damage. We calculated frequency-dependent ground amplification curves by taking the ratios of the spectra at soft and hard rock sites. We obtained similar site response curves for most earthquakes at each site in the frequency range of 0.3–1.6 Hz, and observed no significant site amplification beyond 2.0 Hz at any site. The overall characteristics of the recorded S-waveforms and our modeling of the calculated site amplification curves are consistent with amplification as a result of trapping of seismic energy within a 100–150 m thick, low-velocity subsurface layer. We also review the applicability of microtremor measurements to estimate local site effects at Avcılar. For these data, we used ratios of spectra of horizontal to vertical components to obtain each site response. These results are compared with standard spectral ratios. These microtremor measurements provide consistent estimates of the amplification at most sites at the higher end of the frequency band, namely above 1 Hz. The results from both methods indeed agree well in this part of the frequency band. However, the microtremor method fails to detect amplification at lower frequencies, namely <1.0 Hz.  相似文献   

12.
The technique of ground ambient noise (micro tremor) measurement and analysis has been successful for site characterization in many places around the world. This technique has the advantage of being a fast and easy way to estimate the effect of ground motion characteristics due to an earthquake. Single station ground ambient noise (micro tremor) measurements were carried out at 136 sites in the municipal limit of Jammu city, NW Himalaya. This extensive survey allows the estimation of fundamental resonance frequencies (0.432 to 7 Hz) of the region and identifies the areas prone to site amplification. The thickness of the soft sediments has been derived using empirical relationship that comes out to be 14 to 295 mts above the bedrock. The results are in good agreement with the 1-D profile derived using MASW measurements from representative sites. The resonance frequency and sediment thickness is in good agreement with the geological distribution of sedimentary units, indicating a progressive decrease of the fundamental resonance frequencies from the northeastern part (where the bedrock outcrops is exposed) to the southwestern and southern side where a thick sedimentary cover is estimated.  相似文献   

13.
A major portion of the southern part of the Indian subcontinent is classified as a stable continental region. However, a few segments in this region are punctuated by rifts and shear zones that are seismically active. The Godavari rift that sutures the eastern Dharwar and the Bastar cratons is one such region, prone to seismic hazard. Estimation of the sedimentary thickness in these seismically active regions assumes importance since locales of thick and soft sediments are vulnerable to destruction due to surface waves generated by earthquakes. In the present study, data from five broadband seismological stations are utilized to estimate the average sedimentary thickness of the Godavari region using the difference in travel times of the direct S and converted Sp phases from local earthquakes. The thickness of sediments varies between 0.32 and 4.32 km. Also, the site-specific response in terms of the fundamental resonance frequency and the corresponding amplifications are estimated using the well-established Nakamura technique. The predominant frequencies are in the range of 1.3–4.61 Hz, and the amplifications are higher (>1.5) for the stations inside the Godavari basin. Both the thickness and amplification values clearly indicate that the sediments tend to get thicker toward the center of the basin, in good agreement with the geological distribution of the sedimentary units.  相似文献   

14.
Gulf of Suez consists mainly of three tectonic provinces that are separated by two accommodation zones. The southern edge of the gulf is bordered by N–S faults which mark the transition between the shallow water, Suez Basin and the deep northern Red Sea Basin. The sensitivity of coda Q measurements with respect to geological differences in the crust is demonstrated in three regions with a large variety of tectonic and geologic properties. The estimation of coda Q (Qc) is performed for 370 local earthquakes recorded at 12 digital seismic stations during the period from 2000 to 2007. The magnitudes of the earthquakes between 1.5 and ~4.5 have been used at central frequencies 1.5, 3, 6, 9, 12, 15, 18, and 24 Hz through three lapse time windows 10, 20, 30 s starting at once and twice the time of the primary S wave from the origin time. The time domain coda decay method of the single isotropic scattering model is employed to calculate frequency-dependent values of coda Q. The Qc values are frequency dependent in the range 1–25 Hz, and are approximated by a least squares fit to the power law [Qc(f) = Qo(f/fo]. The observed coda Q indicates that the area is seismically and tectonically active with high heterogeneities. The variation of the quality factor Qc has been estimated at different regions to observe the effect of different tectonic province. The average frequency-dependent estimated relations of Qc vary from 65f1.1 to 96f0.9 at 10 to 30 s window length, respectively. The decreasing value of the frequency parameter with increasing lapse time shows that the crust acquires homogeneity with depth. The variation of Qc with the variations in the geologic and tectonic properties of the crust was investigated. The frequency exponent η might be larger in active tectonic areas and smaller in more stable regions. In the northern region of the Gulf of Suez, the obtained value of η?=?0.8?±?0.011, which might indicate a low level of tectonic activity compared with η?=?1.1?±?0.005 and 1.3?±?0.009 for the central and southern regions of the gulf.  相似文献   

15.
目前,场地影响评价方法可以分为理论法和经验法。地脉动水平分量与竖向分量谱比法属经验法。这种方法将地脉动水平分量与竖向分量谱比的最大值对应的频率和幅值分别看作是观测场地的卓越频率和放大因子。虽然该法在国内外很多工程实例中得到了理想的结果。但由于这种方法建立过程中应用了许多假设,所以很多地震工程学家对这种方法持怀疑态度。本文讨论了基岩地脉动水平分量与竖向分量谱比为1这一假定的合理性。并采用泊松弹性半空间模型,应用概率分析方法考虑地脉动的随机性,推导了地下体波斜入射弹性半空间自由表面形成地脉动的水平分量与竖向分量谱比表达式。通过计算论证体波斜入射泊松弹性半空间形成的地脉动水平分量与竖向分量谱比特性。结果表明:当地脉动主要成分为体波时,基岩表面地脉动水平分量与竖向分量谱比接近于1;当地脉动主要成分为面波时,基岩表面地脉动水平分量与竖向分量谱比介于0.54~0.79之间。对泊松基岩,该比值是0.68。  相似文献   

16.
The microtremor horizontal-to-vertical spectral ratio (HVSR, or H/V spectral ratio) method is an effective tool for detecting sediment thickness. Firstly, single-station microtremor measurements were taken beside 52 boreholes located in Pearl River Delta, China. Sediment thicknesses revealed by those boreholes range from 7.9 to 39.6 m. Then, those microtremor data were analyzed using HVSR method, and peak frequency of each site was extracted. According to those peak frequencies of HVSR and corresponding sediment thicknesses, the frequency-to-thickness fitting (fZ) equation which is suitable for Pearl River Delta area was established. And this equation was compared with several fitting equations derived from different regions by other researchers. Finally, this fitting equation was applied in a collapse area in Guangzhou city to estimate site sediment thickness. Compared with data from five boreholes in this collapse area, the consistency between estimated sediment thickness and real value was relatively good. Karst sinkholes are generally located in regions where thickness of sediments is shallow. Therefore, the method described in this paper can provide support for delineating potential collapse areas.  相似文献   

17.
Recent destructive earthquakes have clearly shown that near-surface geological conditions play a major role in the level of ground shaking in urban areas. In Canada, Montreal is ranked second for seismic risk after Vancouver considering its population and regional seismic hazard. The city is largely built on recent unconsolidated marine and river deposits and most of its infrastructure is old and deteriorated. A seismic risk project that includes a combined methodology for site effects zoning in large cities, using microtremor measurements (H/V method) coupled with 1D numerical modelling (SHAKE91), has been initiated. The experimental approach gives good estimates of the fundamental frequency of soft deposits, while the numerical approach provides good estimates of the soil response in terms of amplification factor related to frequency. Main mechanical properties of soft soils were compiled from various data available, and a sample of input rock motions from real and synthetic earthquakes was used to compute soil response. The influence of marine clays on soil response is significant and is well correlated with thickness of these deposits. PGA amplification factors range from 2 to 4 at frequencies from 2 to 7 Hz, with some occasional larger values. The results demonstrate that the methodology used for our study is both fast and efficient to determine the influence of soft soils in urban environments. Such studies are essential for the effective deployment of seismic instrumentation, land-use planning and seismic mitigation.  相似文献   

18.
In this study, we accurately relocate 360 earthquakes in the Sikkim Himalaya through the application of the double-difference algorithm to 4?years of data accrued from a eleven-station broadband seismic network. The analysis brings out two major clusters of seismicity??one located in between the main central thrust (MCT) and the main boundary thrust (MBT) and the other in the northwest region of Sikkim that is site to the devastating Mw6.9 earthquake of September 18, 2011. Keeping in view the limitations imposed by the Nyquist frequency of our data (10?Hz), we select 9 moderate size earthquakes (5.3????Ml????4) for the estimation of source parameters. Analysis of shear wave spectra of these earthquakes yields seismic moments in the range of 7.95?×?1021 dyne-cm to 6.31?×?1023 dyne-cm and corner frequencies in the range of 1.8?C6.25?Hz. Smaller seismic moments obtained in Sikkim when compared with the rest of the Himalaya vindicates the lower seismicity levels in the region. Interestingly, it is observed that most of the events having larger seismic moment occur between MBT and MCT lending credence to our observation that this is the most active portion of Sikkim Himalaya. The estimates of stress drop and source radius range from 48 to 389?bar and 0.225 to 0.781?km, respectively. Stress drops do not seem to correlate with the scalar seismic moments affirming the view that stress drop is independent over a wide moment range. While the continental collision scenario can be invoked as a reason to explain a predominance of low stress drops in the Himalayan region, those with relatively higher stress drops in Sikkim Himalaya could be attributed to their affinity with strike-slip source mechanisms. Least square regression of the scalar seismic moment (M 0) and local magnitude (Ml) results in a relation LogM 0?=?(1.56?±?0.05)Ml?+?(8.55?±?0.12) while that between moment magnitude (M w ) and local magnitude as M w ?=?(0.92?±?0.04)Ml?+?(0.14?±?0.06). These relations could serve as useful inputs for the assessment of earthquake hazard in this seismically active region of Himalaya.  相似文献   

19.
The Kachchh region is the second most seismically active region in India after the Himalaya. One of the disastrous Indian earthquakes of the millennium was the Bhuj earthquake of January 26, 2001, which caused about 14,000 casualties and huge property damage. The main reason for such devastation is due to lack of earthquake awareness and poor construction practices. Hence, an increase in the knowledge and awareness, based on improved seismic hazard assessment, is required to mitigate damage due to an earthquake. Natural predominant ground frequencies have been investigated in the Kachchh region of western India using ambient vibrations. The horizontal-to-vertical spectral ratio technique has been applied to estimate the predominant frequency at 126 sites. The ambient vibration measurements were conducted for about 1 h at each site in the continuous mode recording at 100 samples/s. We have validated the estimated predominant frequency with earthquake data recorded at six broadband stations in the region. It has been observed that geological time period has a significant effect on predominant frequency of the ground. The estimated predominant frequencies vary from 0.24 to 2.25 Hz for the Quaternary, 0.41–2.34 Hz for the Tertiary, 0.32–4.91 Hz for the Cretaceous, and 0.39–8.0 Hz for the Jurassic/Mesozoic. In the Deccan trap, it varies from 1.30 to 3.80 Hz. We found distinct variation of predominant frequencies of sites associated with hard rock and soft soil. The predominant frequencies were related to the thickness of the sediments, which are deduced by other geophysical and geological methods in the region. Our results suggest that frequencies of the region reveals the site characteristics that can be considered for studying the seismic risks to evolve a plan for disaster risk mitigation for the region.  相似文献   

20.
Passive seismic approaches, using a single-station, enable rapid, cost-effective and non-invasive estimates of the thickness of sedimentary rocks overlying crystalline basement. This approach was applied to estimate the Cenozoic and Cretaceous succession beneath the Nullarbor Plain in southeastern Western Australia. Passive seismic data acquired at the majority of the 94 sites show a single, strong resonance frequency peak between 0.4 and 0.6 Hz suggesting an impedance contrast of a single subsurface layer. Modelling these resonance frequencies against known stratigraphy at 12 drill holes shows that this impedance contrast corresponds to the contact of the base of the Cenozoic–Cretaceous sedimentary succession of the Eucla and Bight basins with the crystalline basement. Data from the remaining sites produced sediment thickness estimates ranging from only tens of metres near the western edge of the Nullarbor Plain to over 860 m near its southern margin. Near this margin, rapid thickening of the sedimentary cover is coincident with an interpreted paleosea-cliff or indicative of localised faulting. Beneath the Western Australian portion of the Nullarbor Plain the sedimentary cover is on average 320 m thick with the succession thinning gradually towards the margins of the basin. A passive seismic approach is thus seen as a useful screening tool for the mineral exploration industry in areas that are under cover allowing for better targeting and cost-reduction in greenfields exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号