首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a new model of the structure of turbulence in the unstable atmospheric surface layer, and of the structural transition between this and the outer layer. The archetypal element of wall-bounded shear turbulence is the Theodorsen ejection amplifier (TEA) structure, in which an initial ejection of air from near the ground into an ideal laminar and logarithmic flow induces vortical motion about a hairpin-shaped core, which then creates a second ejection that is similar to, but larger than, the first. A series of TEA structures form a TEA cascade. In real turbulent flows TEA structures occur in distorted forms as TEA-like (TEAL) structures. Distortion terminates many TEAL cascades and only the best-formed TEAL structures initiate new cycles. In an extended log layer the resulting shear turbulence is a complex, self-organizing, dissipative system exhibiting self-similar behaviour under inner scaling. Spectral results show that this structure is insensitive to instability. This is contrary to the fundamental hypothesis of Monin--Obukhov similarity theory. All TEAL cascades terminate at the top of the surface layer where they encounter, and are severely distorted by, powerful eddies of similar size from the outer layer. These eddies are products of the breakdown of the large eddies produced by buoyancy in the outer layer. When the outer layer is much deeper than the surface layer the interacting eddies are from the inertial subrange of the outer Richardson cascade. The scale height of the surface layer, z s, is then found by matching the powers delivered to the creation of emerging TEAL structures to the power passing down the Richardson cascade in the outer layer. It is z s = u * 3 /ks, where u * is friction velocity, k is the von Kármán constant and s is the rate of dissipation of turbulence kinetic energy in the outer layer immediately above the surface layer. This height is comparable to the Obukhov length in the fully convective boundary layer. Aircraft and tower observations confirm a strong qualitative change in the structure of the turbulence at about that height. The tallest eddies within the surface layer have height z s, so z s is a new basis parameter for similarity models of the surface layer.  相似文献   

2.
The structures of mean flow and turbulence in the atmospheric surface boundary layer have been extensively studied on Earth, and to a far less extent on Mars, where only the Viking missions and the Pathfinder mission have delivered in-situ data. Largely the behaviour of surface-layer turbulence and mean flow on Mars is found to obey the same scaling laws as on Earth. The largest micrometeorological differences between the two atmospheres are associated with the low air density of the Martian atmosphere. Together with the virtual absence of water vapour, it reduces the importance of the atmospheric heat flux in the surface energy budget. This increases the temperature variation of the surface forcing the near-surface temperature gradient and thereby the diabatic heat flux to higher values than are typical on the Earth, resulting in turn in a deeper daytime boundary layer. As wind speed is much like that of the Earth, this larger diabatic heat flux is carried mostly by larger maximal values of T*, the surface scale temperature. The higher kinematic viscosity yields a Kolmogorov scale of the order of ten times larger than on Earth, influencing the transition between rough and smooth flow for the same surface features.The scaling laws have been validated analysing the Martian surface-layer data for the relations between the power spectra of wind and temperature turbulence and the corresponding mean values of wind speed and temperature. Usual spectral formulations were used based on the scaling laws ruling the Earth atmospheric surface layer, whereby the Earth's atmosphere is used as a standard for the Martian atmosphere.  相似文献   

3.
Observations from the Cloud-Aerosol Interaction and Precipitation Enhancement Experiment-Integrated Ground Observation Campaign (CAIPEEX-IGOC) provide a rare opportunity to investigate nocturnal atmospheric surface-layer processes and surface-layer turbulent characteristics associated with the low-level jet (LLJ). Here, an observational case study of the nocturnal boundary layer is presented during the peak monsoon season over Peninsular India using data collected over a single night representative of the synoptic conditions of the Indian summer monsoon. Datasets based on Doppler lidar and eddy-covariance are used for this purpose. The LLJ is found to generate nocturnal turbulence by introducing mechanical shear at higher levels within the boundary layer. Sporadic and intermittent turbulent events observed during this period are closely associated with large eddies at the scale of the height of the jet nose. Flux densities in the stable boundary layer are observed to become non-local under the influence of the LLJ. Different turbulence regimes are identified, along with transitions between turbulent periods and intermittency. Wavelet analysis is used to elucidate the presence of large-scale eddies and associated intermittency during nocturnal periods in the surface layer. Although the LLJ is a regional-scale phenomenon it has far reaching consequences with regard to surface-atmosphere exchange processes.  相似文献   

4.
Aeolian erosion of flat, arid landscapes is induced (and sustained) by the aerodynamic surface stress imposed by flow in the atmospheric surface layer. Conceptual models typically indicate that sediment mass flux, Q (via saltation or drift), scales with imposed aerodynamic stress raised to some exponent, n, where \(n > 1\). This scaling demonstrates the importance of turbulent fluctuations in driving aeolian processes. In order to illustrate the importance of surface-stress intermittency in aeolian processes, and to elucidate the role of turbulence, conditional averaging predicated on aerodynamic surface stress has been used within large-eddy simulation of atmospheric boundary-layer flow over an arid, flat landscape. The conditional-sampling thresholds are defined based on probability distribution functions of surface stress. The simulations have been performed for a computational domain with \(\approx 25 H\) streamwise extent, where H is the prescribed depth of the neutrally-stratified boundary layer. Thus, the full hierarchy of spatial scales are captured, from surface-layer turbulence to large- and very-large-scale outer-layer coherent motions. Spectrograms are used to support this argument, and also to illustrate how turbulent energy is distributed across wavelengths with elevation. Conditional averaging provides an ensemble-mean visualization of flow structures responsible for erosion ‘events’. Results indicate that surface-stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. Fluid in the interfacial shear layers between these adjacent quasi-uniform momentum regions exhibits high streamwise and vertical vorticity.  相似文献   

5.
A model of the planetary boundary layer over a snow surface has been developed. It contains the vertical heat exchange processes due to radiation, conduction, and atmospheric turbulence. Parametrization of the boundary layer is based on similarity functions developed by Hoffert and Sud (1976), which involve a dimensionless variable, ζ, dependent on boundary-layer height and a localized Monin-Obukhov length. The model also contains the atmospheric surface layer and the snowpack itself, where snowmelt and snow evaporation are calculated. The results indicate a strong dependence of surface temperatures, especially at night, on the bursts of turbulence which result from the frictional damping of surface-layer winds during periods of high stability, as described by Businger (1973). The model also shows the cooling and drying effect of the snow on the atmosphere, which may be the mechanism for air mass transformation in sub-Arctic regions.  相似文献   

6.
A model of the planetary boundary layer over a snow surface has been developed. It contains the vertical heat exchange processes due to radiation, conduction, and atmospheric turbulence. Parametrization of the boundary layer is based on similarity functions developed by Hoffert and Sud (1976), which involve a dimensionless variable, ζ, dependent on boundary-layer height and a localized Monin-Obukhov length. The model also contains the atmospheric surface layer and the snowpack itself, where snowmelt and snow evaporation are calculated. The results indicate a strong dependence of surface temperatures, especially at night, on the bursts of turbulence which result from the frictional damping of surface-layer winds during periods of high stability, as described by Businger (1973). The model also shows the cooling and drying effect of the snow on the atmosphere, which may be the mechanism for air mass transformation in sub-Arctic regions.  相似文献   

7.
Observations obtained over a glacier surface in a predominantlykatabatic flow and with a distinctwind maximum below 13-m height are presented. The data werecollected using a 13-m high profilemast and two sonic anemometers (at about 2.5-m and 10-m heights).The spectra at frequencies belowthat of the turbulence range appear to deviate considerably fromthe curves obtained by Kaimal andco-workers during the 1968 Kansas experiment. The characteristicsof these deviations are compared tothe observations of others in surface-layers disturbed by anykind of large-scale outer-layer (orinactive) turbulence. In our case the disturbances arelikely to be induced by the highmountain ridges that surround the glacier. Moreover, the deviationsobserved in the cospectra seemto result from an, as yet, unspecified interaction between theinactive outer-layer turbulenceand the local surface-layer turbulence. Near the distinctwind maximum turbulence production ceasedwhile turbulence itself did not, probably the result ofturbulence transport from other levels. Consequently, we studied thelocal similarity relations using w instead of u* as an alternative velocity scale. Wellbelow the wind maximum, and for relatively low stability(0< Rig <0.2), the flow behaves accordingto well established local-scaling similarity relationshipsin the stable boundary layer. For higherstability (Rig > 0.2), and near or above the wind maximum, the boundary-layer structure conforms tothat of z-less stratification suggesting that the eddy sizeis restricted by the local stability ofthe flow. In line with this we observed that the sensibleheat fluxes relate remarkably well to thelocal flow parameters.  相似文献   

8.
The existence of universal power laws at low wavenumbers (K) in the energy spectrum (Eu) of the turbulent longitudinal velocity (u) is examined theoretically and experimentally for the near-neutral atmospheric surface layer. Newly derived power-law solutions to Tchen's approximate integral spectral budget equation are tested for strong- and weak-interaction cases between the mean flow and turbulent vorticity fields. To verify whether these solutions reproduce the measured Eu at low wavenumbers, velocity measurements were collected in the dynamic sublayer of the atmosphere at three sites and in the inner region of a laboratory open channel. The atmospheric surface layer measurements were carried out using triaxial sonic anemometers over tall corn, short grass, and smooth desert-like sandy soil. The open channel measurements were performed using a two-dimensional boundary-layer probe above a smooth stainless steel bed. Comparisons between the proposed analytical solution for Eu, the dimensional analysis by Kader and Yaglom, and the measured Haar wavelet Eu spectra are presented. It is shown that when strong interaction between the mean flow and turbulent vorticity field occurs, wavelet spectra measurements, predictions by the analytical solution, and predictions by the dimensional analysis of Kader-Yaglom (KY) are all in good agreement and confirm the existence of a -1 power law in Eu(= Cuuu2 * K-1, where Cuu is a constant and u* is the friction velocity). The normalized upper wavenumber limit of the -1 power law (Kz = 1, where z is the height above the zero-plane displacement) is estimated using two separate approaches and compared to the open channel and atmospheric surface-layer measurements. It is demonstrated that the measured upper wavenumber limit is consistent with Tchen's budget but not with the KY assumptions. The constraints as to whether the mean flow and turbulent vorticity strongly interact are considered using a proposed analysis by Panchev. It is demonstrated that the arguments by Panchev cannot be consistent with surface-layer turbulence. Using dimensional analysis and Heisenberg's turbulent viscosity model, new constraints are proposed. The new constraints agree with the open channel and atmospheric surface-layer measurements, Townsend's inactive eddy motion hypothesis, and the Perry et al. analysis.  相似文献   

9.
Big eddies in the outer part of the atmospheric boundary layer contribute to the variance of the horizontal velocity fluctuations near the surface. Because of the slow adjustment of these eddies to new boundary conditions, they carry the roughness characteristics of a large upstream terrain. A scaling relation is proposed that accounts for the memory effects in the big eddies. It is concluded that the standard deviation of the horizontal wind ( u ) measured at a given height is representative for the shear stress at greater height. This gives at least qualitative support to existing work where u is used for exposure correction of mean wind.  相似文献   

10.
During the Energy Balance Experiment, patch-to-patch irrigation generated gradients in soil moisture in a north-south oriented cotton field. An internal boundary layer (IBL) developed as a result of strong horizontal advection from relatively dry upstream patches to relatively wet downstream patches associated with the prevailing northerly winds. This generated large eddies of multiple sizes, which had significant influences on the structure of turbulence in the IBL. The power spectra and cospectra of wind speed, temperature, humidity, and energy fluxes measured at two heights within the IBL are presented and used to investigate the influence of the IBL on surface layer turbulence. The spectra and cospectra were greatly enhanced by external disturbances at low frequencies. The peak frequencies of these disturbances did not change with height. The spectra and cospectra typically converged and were parallel to the Kansas spectrum at high frequencies (in the inertial subrange). A clear gap in the spectra of horizontal wind velocity existed at intermediate frequencies when the surface layer was stable. The results indicate that large eddies that originated in the upstream convective boundary layer had considerable impacts on the spectra and cospectra of surface layer turbulence. The influence of these large eddies was greater (1) when the IBL was well-developed in the near surface layer than when the IBL did not exist, (2) at higher levels than at lower levels, and (3) when the atmospheric surface layer (ASL) was unstable than when the ASL was stable. The length scales of these large eddies were consistent with the dominant scales of surface heterogeneity at the experiment site.  相似文献   

11.
Our focus is the time evolution of the turbulent kinetic energy for decaying turbulence in the convective boundary layer. The theoretical model with buoyancy and inertial transfer terms has been extended by a source term due to mechanical energy and validated against large-eddy simulation data. The mechanical effects in a boundary layer of height z i at a convective surface-layer height z = 0.05z i are significant in the time evolution of the vertical component of the spectrum, i.e. they enhance the decay time scale by more than an order of magnitude. Our findings suggest that shear effects seem to feedback to eddies with smaller wavenumbers, preserving the original shape of the spectrum, and preventing the spectrum from shifting towards shorter wavelengths. This occurs in the case where thermal effects only are considered.  相似文献   

12.
Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NOx transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O3 at the surface.The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NOx loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.  相似文献   

13.
The processes of interaction between the atmospheric surface and mixed layers in daytime convective conditions over land are studied using a data set obtained during flights by an instrumented aircraft. Profiles of partitioned run-averaged statistics and examples of time series plots are discussed in the light of results from a recently published study by the authors, in which the average structure and flow within coherent eddies was reconstruced using a compositing technique. This evidence is used to support a conceptual model of the mechanisms of interaction between surface-layer plumes and mixed-layer thermal columns. The divergent flow created near the surface by the downdraft arms of the large-scale mixed-layer circulation patterns, forces the development of lines of convergence in the surface layer (the so-called thermal walls), which channel air into the bases of the mixed-layer thermals. Plumes progressively group and merge together with height in the surface and free convection layers, and move along these convergence lines toward large collector plumes at the intersection points, or hubs. Above the hubs are the thermals, and air parcels originating from plumes and their environment are strongly mixed as they rise, leading to an increased difficulty of the conditional sampling method to distinguish between them. The observed influence of mixed-layer convective processes far down into the surface layer, and the form of the averaged profiles, supports recent refinements of the theory of surface-layer structure suggested in Kader and Yaglom (1990).Notation CBL convective boundary layer - SL surface layer - FCL free convection layer - ML mixed layer  相似文献   

14.
15.
Direct numerical simulation of the turbulent Ekman layer over a smooth wall is used to investigate bulk properties of a planetary boundary layer under stable stratification. Our simplified configuration depends on two non-dimensional parameters: a Richardson number characterizing the stratification and a Reynolds number characterizing the turbulence scale separation. This simplified configuration is sufficient to reproduce global intermittency, a turbulence collapse, and the decoupling of the surface from the outer region of the boundary layer. Global intermittency appears even in the absence of local perturbations at the surface; the only requirement is that large-scale structures several times wider than the boundary-layer height have enough space to develop. Analysis of the mean velocity, turbulence kinetic energy, and external intermittency is used to investigate the large-scale structures and corresponding differences between stably stratified Ekman flow and channel flow. Both configurations show a similar transition to the turbulence collapse, overshoot of turbulence kinetic energy, and spectral properties. Differences in the outer region resulting from the rotation of the system lead, however, to the generation of enstrophy in the non-turbulent patches of the Ekman flow. The coefficient of the stability correction function from Monin–Obukhov similarity theory is estimated as \(\beta \approx 5.7\) in agreement with atmospheric observations, theoretical considerations, and results from stably stratified channel flows. Our results demonstrate the applicability of this set-up to atmospheric problems despite the intermediate Reynolds number achieved in our simulations.  相似文献   

16.
A large-eddy simulation of the atmospheric boundary layer, large enough to contain both an urban surface layer and a convective mixed layer, was performed to investigate inner-layer and outer-layer scale motions. The objective was to determine the applicability of Monin–Obukhov similarity theory to inner-layer motions, to investigate the influence of outer-layer motions on surface-layer structure, as well as to assess the interaction of the two scales of motion. The urban surface roughness consisted of square-patterned cubic buildings of dimension H (40 m). A spatial filter was used to decompose the two scales in the inertial sublayer. The horizontal square filter of size 10H was effective in separating the inner-layer (surface-layer height ≈ 2 H) and outer-layer scales (boundary-layer height δ ≈ 30H), where the Reynolds stress contribution of the inner layer dominates in the logarithmic layer (depth 2H). Similarity coefficients for velocity fluctuations were successfully determined for inner-layer motions in the surface layer, proving the robustness of Monin–Obukhov similarity for surface-layer turbulence. The inner-layer structures exhibit streaky structures that have similar streamwise length but narrower spanwise width relative to the streamwise velocity fluctuation field, consistent with observations from an outdoor scale model. The outer-layer motions to some extent influence the location of ejections and sweeps through updraft and downdraft motions, respectively, thus, disturbing the homogeneity and similarity of inner-layer motions. Although the horizontal averages of the variances and covariance of motions reveal that the Reynolds stresses are dominated by inner-layer structures, the localized influence of the interaction of outer-layer horizontal and inner-layer vertical motions on the Reynolds stress is not insignificant.  相似文献   

17.
During the Energy Balance EXperiment, the patch-by-patch, flood irrigation in a flat cotton field created an underlying surface with heterogeneous soil moisture, leading to a dry (warm)-to-wet (cool) transition within the cotton field under northerly winds. Moreover, the existence of an extremely dry, large bare soil area upstream beyond the cotton field created an even larger step transition from the bare soil region to the cotton field. We investigated the turbulence spectra and cospectra in the atmospheric surface layer (ASL) that was disturbed by large eddies generated over regions upstream and also influenced by horizontal advection. In the morning, the ASL was unstable while in the afternoon a stable internal boundary layer was observed at the site. Therefore, the turbulence data at 2.7 and 8.7 m are interpreted and compared in terms of interactions between large eddies and locally generated turbulence under two atmospheric conditions: the unstable ASL beneath the convective boundary layer (CBL) (hereafter the unstable condition) and the stable ASL beneath the CBL (hereafter the stable condition). We identified the influences of multiple sizes of large eddies on ASL turbulence under both stratifications; these large eddies with multiple sizes were produced over the dry patches and dry, large bare soil areas upstream. As a consequence of the disturbance of large eddies, the broadening, erratic variability, and deviation of spectra and cospectra, relative to those described by Monin–Obukhov similarity theory, are evident in the low- to mid-frequencies. Transfer of momentum, heat, and water vapour by large eddies is distinctly observed from the turbulence cospectra and leads to significant run-to-run variations of residuals of the surface energy balance closure. Our results indicate that these large eddies have greater influences on turbulence at higher levels compared to lower levels, and in the unstable ASL compared to the stable ASL.  相似文献   

18.
Turbulence measurements taken at a Swedish lake are analyzed. Although the measurements took place over a relatively large lake with several km of undisturbed fetch, the turbulence structure was found to be highly influenced by the surrounding land during daytime. Variance spectra of both horizontal velocity and scalars during both unstable and stable stratification displayed a low frequency peak. The energy at lower frequencies showed a daily variation, increasing in the morning and decreasing in the afternoon. This behaviour is explained by spectral lag, where the low frequency energy due to large eddies that originate from the convective boundary layer above the surrounding land. When the air is advected over the lake the small eddies rapidly equilibrate with the new surface forcing. However, the large eddies remain for an appreciable distance and influence the turbulence in the developing lake boundary layer. The variances of the horizontal velocity and scalars are increased by these large eddies, while the turbulent fluxes are mainly unaffected. The drag coefficient, Stanton number and Dalton number used to parametrize the momentum flux, heat flux and latent heat flux respectively all compare well with current parametrizations developed for open sea conditions. The diurnal cycle of the partial pressure of methane, $p\mathrm{CH}_{4}$ , observed at this site is closely related to the diurnal cycle of the lake-air methane flux. An idealized two-dimensional model simulation of the boundary layer at a lake site indicates that the strong response of $p\mathrm{CH}_{4}$ to the surface methane flux is due to the shallow internal boundary layer that develops above the lake, allowing methane to accumulate in a relatively small volume.  相似文献   

19.
The adaptation of the atmospheric boundary layer to a change in the underlying surface roughness is an interesting problem and hence much research, theoretical, experimental, and numerical, has been undertaken. Within the atmospheric boundary layer an accurate numerical model for the turbulent properties of the atmospheric boundary layer needs to be implemented if physically realistic results are to be obtained. Here, the adaptation of the atmospheric boundary layer to a change in surface roughness is investigated using a first-order turbulence closure model, a one-and-a-half-order turbulence closure model and a second-order turbulence closure model. Perturbations to the geostrophic wind and the pressure gradients are included and it is shown that the second-order turbulence closure model, namely the standard k - model, is inferior to a lower-order closure model if a modification to limit the turbulent eddy size within the atmospheric boundary layer is not included within the model.  相似文献   

20.
Radiosondes releases during the NOPEX-WINTEX experiment carried out in late winter in Northern Finland were analysed for the determination of the height h of the atmospheric boundary layer. We investigate various possible scaling approaches, based on length scales using micrometeorological turbulence surface measurements and the background atmospheric stratification above h. Under stable conditions, the three previously observed turbulence regimes delineated by values of z/L (L is the Obukhov length) appears as a blueprint for understanding the departures found for the suitability of the Ekman scaling based on LE = u/f (u is the friction velocity and f the Coriolis parameter). The length scale LN = u/N (where N is the Brunt–Väisälä frequency) appears to be a useful scale under most stable conditions, especially in association with L. Under unstable conditions, shear production of turbulence is still significant, so that the three scales L, LN and LE are again relevant and the dimensionless ratios N = LN/L and LN/LE = N/f describe well the WINTEX data. Furthermore, in the classical scaling framework, the unstable domain may also be divided into three regimes as reflected by the dependence ofu/f on instability (z/L).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号