首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 17-year record (1995–2012) of a suite of environmental tracer concentrations in discharge from 34 springs located along the crest of the Blue Ridge Mountains in Shenandoah National Park (SNP), Virginia, USA, reveals patterns and trends that can be related to climatic and environmental conditions. These data include a 12-year time series of monthly sampling at five springs, with measurements of temperature, specific conductance, pH, and discharge recorded at 30-min intervals. The monthly measurements include age tracers (CFC-11, CFC-12, CFC-113, CFC-13, SF6, and SF5CF3), dissolved gases (N2, O2, Ar, CO2, and CH4), stable isotopes of water, and major and trace inorganic constituents. The chlorofluorocarbon (CFC) and sulfur hexafluoride (SF6) concentrations (in pptv) in spring discharge closely follow the concurrent monthly measurements of their atmospheric mixing ratios measured at the Air Monitoring Station at Big Meadows, SNP, indicating waters 0–3 years in age. A 2-year (2001–2003) record of unsaturated zone air displayed seasonal deviations from North American Air of ±10 % for CFC-11 and CFC-113, with excess CFC-11 and CFC-113 in peak summer and depletion in peak winter. The pattern in unsaturated zone soil CFCs is a function of gas solubility in soil water and seasonal unsaturated zone temperatures. Using the increase in the SF6 atmospheric mixing ratio, the apparent (piston flow) SF6 age of the water varied seasonally between about 0 (modern) in January and up to 3 years in July–August. The SF6 concentration and concentrations of dissolved solutes (SiO2, Ca2+, Mg2+, Na+, Cl?, and HCO3 ?) in spring discharge demonstrate a fraction of recent recharge following large precipitation events. The output of solutes in the discharge of springs minus the input from atmospheric deposition per hectare of watershed area (mol ha?1 a?1) were approximately twofold greater in watersheds draining the regolith of Catoctin metabasalts than that of granitic gneisses and granitoid crystalline rocks. The stable isotopic composition of water in spring discharge broadly correlates with the Oceanic Niño Index. Below normal precipitation and enriched stable isotopic composition were observed during El Niño years.  相似文献   

2.
The groundwater of major karst systems and submarine springs in the coastal limestone aquifer of Syria has been investigated using chemical and isotopic techniques. The δ18O values of groundwater range from ?6.8 to ?5.05‰, while those for submarine springs vary from ?6.34 to +1.08‰ (eastern Mediterranean seawater samples have a mean of +1.7‰). Groundwater originates from the direct infiltration of atmospheric water. Stable isotopes show that the elevation of the recharge zones feeding the Banyas area (400–600 m a.s.l.) is higher than that feeding the Amrit area (100–300 m a.s.l.). The 18Oextracted (18O content of the seawater contribution) for the major submarine springs suggests a mean recharge area elevation of 600–700 m a.s.l., and lower than 400 m a.s.l. for the spring close to Amrit. Based on the measured velocity and the percentage of fresh water at the submarine springs outlet, the estimated discharge rate is 350 million m3/year. The tritium concentrations in groundwater (1.6–5.9 TU) are low and very close to the current rainfall values (2.9–5.6 TU). Adopting a model with exponential time distribution, the mean turnover time of groundwater in the Al-sen spring was evaluated to be 60 years. A value of about 3.7 billion m3 was obtained for the maximum groundwater reservoir size.  相似文献   

3.
Abiotic methane in serpentinized peridotites (MSP) has implications for energy resource exploration, planetary geology, subsurface microbiology and astrobiology. Once considered a rare occurrence on Earth, reports of MSP are increasing for numerous localities worldwide in low temperature, land-based springs and seeps. We report the discovery of six methane-rich water springs and two ponds with active gas bubbling in the Ronda peridotite massif, in southern Spain. Water is hyperalkaline with typical hydrochemical features of active serpentinization (pH: 10.7 to 11.7, T: 17.1 to 21.5 °C, Ca–OH facies). Dissolved CH4 concentrations range from 0.1 to 3.2 mg/L. The methane stable C and H isotope ratios in the natural spring and bubbling sites (δ13CCH4: −12.3 to −37‰ VPDB; δ2HCH4: −280 to −333‰ VSMOW) indicate a predominant abiotic origin. In contrast, springs with manmade water systems, i.e., pipes or fountains, appear to have mixed biotic-abiotic origin (δ13CCH4: −44 to −69‰; δ2HCH4: −180 to −319‰). Radiocarbon (14C) analyses show that methane C in a natural spring is older than ca. 50,000 y BP, whereas dissolved inorganic carbon (DIC) analysed in all springs has an apparent 14C age ranging from modern to 2334 y BP. Therefore most, if not all, of the CH4 is allochthonous, i.e., not generated from the carbon in the hyperalkaline water. Methane is also released as bubbles in natural ponds and as diffuse seepages (∼101–102 mg CH4 m−2d−1) from the ground up to several tens of metres from the seeps and springs, albeit with no overt visual evidence. These data suggest that the gas follows independent migration pathways, potentially along faults or fracture systems, physically isolated from the hyperalkaline springs. Methane does not seem to be genetically related to the hyperalkaline water, which may only act as a carrier of the gas. Gas-bearing springs, vents and invisible microseepage in land-based peridotites are more common than previously thought. In addition to other geological sources, MSP is potentially a natural source of methane for the troposphere and requires more worldwide flux measurements.  相似文献   

4.
An investigation was conducted in Beijing to identify the groundwater evolution and recharge in the quaternary aquifers. Water samples were collected from precipitation, rivers, wells, and springs for hydrochemical and isotopic measurements. The recharge and the origin of groundwater and its residence time were further studied. The groundwater in the upper aquifer is characterized by Ca-Mg-HCO3 type in the upstream area and Na-HCO3 type in the downstream area of the groundwater flow field. The groundwater in the lower aquifer is mainly characterized by Ca-Mg-HCO3 type in the upstream area and Ca-Na-Mg-HCO3 and Na-Ca-Mg-HCO3 type in the downstream area. The δD and δ18O in precipitation are linearly correlated, which is similar to WMWL. The δD and δ18O values of river, well and spring water are within the same ranges as those found in the alluvial fan zone, and lay slightly above or below LMWL. The δD and δ18O values have a decreasing trend generally following the precipitation → surface water → shallow groundwater → spring water → deep groundwater direction. There is evidence of enrichment of heavy isotopes in groundwater due to evaporation. Tritium values of unconfined groundwater give evidence for ongoing recharge in modern times with mean residence times <50 a. It shows a clear renewal evolution along the groundwater flow paths and represents modern recharge locally from precipitation and surface water to the shallow aquifers (<150 m). In contrast, according to 14C ages in the confined aquifers and residence time of groundwater flow lines, the deep groundwater is approximately or older than 10 ka, and was recharged during a period when the climate was wetter and colder mainly from the piedmont surrounding the plain. The groundwater exploitation is considered to be “mined unsustainably” because more water is withdrawn than it is replenished.  相似文献   

5.
Groundwater from karst subterranean streams is among the world’s most important sources of drinking water supplies, and the hydrochemical characteristics of karst water are affected by both natural environment and people. Therefore, the study of karst groundwater hydrochemistry and its solutes’ sources is very important to ensure the normal function of life support systems. This paper focused on the major ion chemistry and sulfate isotope of karst groundwater in Chongqing for tracing the sulfate sources and related hydrochemical processes. Hydrochemical types of karst groundwater in Chongqing were mainly of the Ca-HCO3 type or Ca(Mg)-HCO3 type. However, some hydrochemical types were the K + Na + Ca-SO4 type (G25 site) or Ca-HCO3 + SO4 type (G26 and G14 sites), indicating that the hydrochemistry of these sites may be strongly influenced by anthropogenic activities or unique geological characteristics. The δ34S-SO4 2? of collected karst groundwater sample fell into a range of ?6.8 to 21.5 ‰, with a mean value of 5.6 ‰. In dolomite aquifer, the δ34S-SO4 2? value ranges from ?4.3 to 11.0 ‰, and in limestone aquifer, it ranged from ?6.8 to 21.5 ‰. The groundwater samples from different land use types showed distinctive δ34S-SO4 2? value. The δ34S-SO4 2? value of groundwater samples had range of ?6.8 to 16.7 ‰ (mean 4.0 ‰, n = 11) in cultivated land areas, 1.5–21.5 ‰ (mean 7.2 ‰, n = 20) in forested land areas, and ?4.3 to 0.8 ‰ (mean ?1.7 ‰, n = 2) in coalmine areas. The δ34S-SO4 2? values of groundwater samples collected from factory area and town area were 2.2 and 9.9 ‰, respectively. According to the δ34S information of potential sulfate sources, this paper discussed the possible sulfate sources of collected karst groundwater samples in Chongqing. The variations of both δ34S and 1/SO4 2? values of the groundwater samples indicated that the atmospheric acid deposition (AAD), dissolution of gypsum (GD), oxidation of sulfide mineral (OS) or anthropogenic inputs (SF: sewage or fertilizer) contributed to sulfate in karst groundwater. The influence of oxidation of sulfide mineral, atmospheric acid deposit and anthropogenic inputs to groundwater in Chongqing karst areas was much widespread. For protecting, sustaining, and utilizing the groundwater resources, the sewage possibly originating from urban, mine or industrial area must be controlled and treated, and the use of fertilizer should be limited.  相似文献   

6.
In this paper, the hydrochemical isotopic characteristics of samples collected from geothermal springs in the Ilica geothermal field, Eastern Anatolia of Turkey, are examined and described. Low-temperature geothermal system of Ilica (Erzurum, Turkey) located along the Eastern Anatolian fault zone was investigated for hydrogeochemical and isotopic characteristics. The study of ionic and isotopic contents shows that the thermal water of Ilica is mainly, locally fed by groundwater, which changes chemically and isotopically during its circulation within the major fault zone reaching depths. The thermal spring has a temperature of 29–39 °C, with electrical conductivity ranging from 4,000 to 7,510 µS/cm and the thermal water is of Na–HCO3–Cl water type. The chemical geothermometers applied in the Ilica geothermal waters yielded a maximum reservoir temperature of 142 °C according to the silica geothermometers. The thermal waters are undersaturated with respect to gypsum, anhydrite and halite, and oversaturated with respect to dolomite. The dolomite mineral possibly caused scaling when obtaining the thermal waters in the study area. According to the enthalpy chloride-mixing model, cold water to the thermal water-mixing ratio is changing between 69.8 and 75 %. The δ18O–δ2H compositions obviously indicate meteoric origin of the waters. Thermal water springs derived from continental precipitation falling on to higher elevations in the study area. The δ13C ratio for dissolved inorganic carbonate in the waters lies between 4.63 and 6.48 ‰. In low-temperature waters carbon is considered as originating from volcanic (mantle) CO2.  相似文献   

7.
Thirty-five S isotope analyses obtained from six carbonatite complexes from the Superior Province, Canadian Shield, ranging in age from 1,897 Ma to 1,093 Ma, have δ34SCDT values of between ?4.5‰ and +3.4‰. Pyrrhotite, chalcopyrite and pyrite mineral separates were used. Each complex possesses its own distinct range and mean S isotope composition. The range for Schryburt Lake is: ?4.5‰ to ?3.4‰ ( mean?=??3.9‰), for Big Beaver House: ?3.6‰ to ?1.5‰ (mean?=??2.2‰), for Cargill: ?1.5‰–+0.5‰ (mean?=??0.7‰), for Spanish River: ?0.1‰–+0.1‰ (mean?=?0.0‰), and for Firesand River: +1.3‰–+3.4‰ (mean?=?+1.7‰). A single sample from Carb Lake yielded a δ34SCDT value of +2.8‰. Differences in isotope compositions can be related to isotope effects brought about during melt generation and emplacment, such as variations in fo2 and temperature. The different S and C isotope data for most complexes, however, suggest that the parental melts could have been generated from a heterogeneous mantle source, although process-driven changes cannot be completely ruled out.  相似文献   

8.
On the basis of the isotopic composition of water in the northern part of Epirus, Greece, from springs at different altitudes with well-defined recharge areas, the altitude effect on the δ18O value of groundwater is –0.142±0.003ö (100?m)–1 and is uniform over the entire study area. Using the δ18O composition of surface water and groundwaters, the contribution of Ioannina Lake and the channel draining the lake water to the Kalamas River to the recharge of springs and boreholes was confirmed and quantitatively defined. In contrast, the Voidomatis and Vikos Rivers are not sources for recharge of the big springs along their banks. However, water from the Aoos River does replenish the aquifer in the unconsolidated deposits underlying the plain of Konitsa. In addition, limestones of Senonian–Late Eocene ages, dolomites, and limestones of the "Vigles" facies are hydraulically interconnected, and the limestones of the "Pantokrator" facies are hydraulically isolated from the other carbonate formations.  相似文献   

9.
The reported study contributes to research on earthquake prediction. Between 2007 and 2009, changes were observed in two geothermal and mineral springs located in Eskipazar (~3–5 km to the north of the North Anatolian Fault Zone) in Turkey, in relation to small-magnitude earthquakes. During pre-seismic and post-seismic activities, variations were observed in the hydrogeological parameters of the spring waters. Temperature increases of 0.4–1°C were measured in one of the springs prior to three different earthquakes. There was a slight increase in the spring discharge with respect to the first earthquake, which occurred closest to the spring. This led to a reduction in electrical conductivity (EC), total dissolved solids (TDS), Ca, HCO3, δ13C, Al, Mn, and Fe concentrations in the spring water, whereas tritium and Se values increased. Several days before the third earthquake, which occurred at a shallower depth, a decrease was observed in the discharge, which led to a reduction in tritium, δ13C and Si concentrations. These variations could be explained by changes in the mixing ratio of waters of different genesis, depending on changes in permeability, pore pressure, and flow paths of the aquifer due to regional stress changes.  相似文献   

10.
The surface sediments of two mud mounds (“Mound 11” and “Mound 12”) offshore southwest Costa Rica contain abundant authigenic carbonate concretions dominated by high-Mg calcite (14–20 mol-% MgCO3). Pore fluid geochemical profiles (sulfate, sulfide, methane, alkalinity, Ca and Mg) indicate recent carbonate precipitation within the zone of anaerobic oxidation of methane (AOM) at variable depths. The current location of the authigenic carbonate concretions is, however, not related to the present location of the AOM zone, suggesting mineral precipitation under past geochemical conditions as well as changes in the flow rates of upward migrating fluids. Stable oxygen and carbon isotope analysis of authigenic carbonate concretions yielded δ18Ocarbonate values ranging between 34.0 and 37.7 ‰ Vienna standard mean ocean water (VSMOW) and δ13Ccarbonate values from ?52.2 to ?14.2 ‰ Vienna Pee Dee belemnite (VPDB). Assuming that no temperature changes occurred during mineral formation, the authigenic carbonate concretions have been formed at in situ temperature of 4–5 °C. The δ18Ocarbonate values suggest mineral formation from seawater-derived pore fluid (δ18Oporefluid = 0 ‰ VSMOW) for Mound 12 carbonate concretions but also the presence of an emanating diagenetic fluid (δ18Oporefluid ≈5 ‰) in Mound 11. A positive correlation between δ13Ccarbonate and δ18Ocarbonate is observed, indicating the admixing of two different sources of dissolved carbon and oxygen in the sediments of the two mounds. The carbon of these sources are (1) marine bicarbonate (δ13Cporefluid ≈0 ‰) and (2) bicarbonate which formed during the AOM (δ13Cporefluid ≈?70 ‰). Furthermore, the δ18Oporefluid composition, with values up to +4.7 ‰ Vienna standard mean ocean water (VSMOW), is interpreted to be affected by the presence of emanating, freshened and boron-enriched fluids. Earlier, it has been shown that the origin of 18O-enriched fluids are deep diagenetic processes as it was indicated by the presence of methane with thermogenic signature (δ13CCH4 = ?38 ‰). A combination of present geochemical data with geophysical observations indicates that Mounds 11 and 12 represent a single fluid system interconnected by deep-seated fault(s).  相似文献   

11.
Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca–HCO3 (six), Na–Cl (four), and mixed (one). The evolution of water chemistry for Ca–HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na–Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4–53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca–HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na–Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.The online version of the original article can be found at  相似文献   

12.
Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca–HCO3 (six), Na–Cl (four), and mixed (one). The evolution of water chemistry for Ca–HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na–Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4–53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca–HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na–Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.An erratum to this article can be found at  相似文献   

13.
Caldas de Moledo thermal (27–46 °C) spring and borehole waters issue in the region of the famous Port Wine vineyards, in the Douro River valley (Northern Portugal). The most abundant lithotypes are lower Cambrian metasedimentary rocks, Variscan granitoids and aplite-pegmatitic veins. The thermal waters are characterised by pH ≈ 9.0, TDS ranging from 200 to 350 mg/L, and belong to the HCO3–Na facies indicating that the reservoir rock should be mainly granite. Since the local Spa is strongly dependent on water quality, the effects of mixing between local shallow cold groundwaters and deep thermal waters have been properly investigated. In the SO4 2? (mg/L) versus δ18O (‰ vs. V-SMOW) diagram we can observe that some of the thermal springs show evidences of mixing (higher SO4 2? concentrations) with local meteoric waters infiltrated at lower altitude sites (enriched δ18O signatures), showing the “altitude effect” in the isotopic composition of the recharge waters. Similar trends can be found in the K+, NO3 ?, Ca2+ and Na+ (mg/L) versus δ18O (‰ vs. V-SMOW) diagrams. It should be stated that SO4 2?, K+ and Ca2+ are present in the fertilizers and fungicides used in the vineyards in the northern part of the country. Up to now, the thermal waters from boreholes used in the local Spa do not show evidences of mixing with shallow groundwaters contaminated with agrochemicals. The results obtained so far indicate that in the near future, special attention should be put on the possible occurrence of diffuse agricultural contamination (related to the Port Wine vineyards) in the thermal spring waters.  相似文献   

14.
There is considerable debate about the mode and age of formation of large (up to ∼200 m long) hematite and goethite ironstone bodies within the 3.2 to 3.5 Ga Barberton greenstone belt. We examined oxygen and hydrogen isotopes and Rare Earth Element (REE) concentrations of goethite and hematite components of the ironstones to determine whether these deposits reflect formation from sea-floor vents in the Archean ocean or from recent surface and shallow subsurface spring systems. Goethite δ18O values range from −0.7 to +1.0‰ and δD from −125 to −146‰, which is consistent with formation from modern meteoric waters at 20 to 25 °C. Hematite δ18O values range from −0.7 to −2.0‰, which is consistent with formation at low to moderate temperatures (40-55 °C) from modern meteoric water. REE in the goethite and hematite are derived from the weathering of local sideritic ironstones, silicified ultramafic rocks, sideritic black cherts, and local felsic volcanic rocks, falling along a mixing line between the Eu/Eu* and shale-normalized HREEAvg/LREEAvg values for the associated silicified ultramafic rocks and felsic volcanic rocks. Contrasting positive Ce/Ce* of 1.3 to 3.5 in hematite and negative Ce/Ce* of 0.2 to 0.9 in goethite provides evidence of oxidative scavenging of Ce on hematite surfaces during mineral precipitation. These isotopic and REE data, taken together, suggest that hematite and goethite ironstone pods formed from relatively recent meteoric waters in shallow springs and/or subsurface warm springs.  相似文献   

15.
Biogeochemical processes were investigated in alpine river—Kamni?ka Bistrica River (North Slovenia), which represents an ideal natural laboratory for studying anthropogenic impacts in catchments with high weathering capacity. The Kamni?ka Bistrica River water chemistry is dominated by HCO3 ?, Ca2+ and Mg2+, and Ca2+/Mg2+ molar ratios indicate that calcite weathering is the major source of solutes to the river system. The Kamni?ka Bistrica River and its tributaries are oversaturated with respect to calcite and dolomite. pCO2 concentrations were on average up to 25 times over atmospheric values. δ13CDIC values ranged from ?12.7 to ?2.7 ‰, controlled by biogeochemical processes in the catchment and within the stream; carbonate dissolution is the most important biogeochemical process affecting carbon isotopes in the upstream portions of the catchment, while carbonate dissolution and organic matter degradation control carbon isotope signatures downstream. Contributions of DIC from various biogeochemical processes were determined using steady state equations for different sampling seasons at the mouth of the Kamni?ka Bistrica River; results indicate that: (1) 1.9–2.2 % of DIC came from exchange with atmospheric CO2, (2) 0–27.5 % of DIC came from degradation of organic matter, (3) 25.4–41.5 % of DIC came from dissolution of carbonates and (4) 33–85 % of DIC came from tributaries. δ15N values of nitrate ranged from ?5.2 ‰ at the headwater spring to 9.8 ‰ in the lower reaches. Higher δ15N values in the lower reaches of the river suggest anthropogenic pollution from agricultural activity. Based on seasonal and longitudinal changes of chemical and isotopic indicators of carbon and nitrogen in Kamni?ka Bistrica River, it can be concluded that seasonal changes are observed (higher concentrations are detected at low discharge conditions) and it turns from pristine alpine river to anthropogenic influenced river in central flow.  相似文献   

16.
The Xiangxi River basin, South China, is a steep terrane with well-developed karst features and an important Cambrian-Ordovician aquifer. Meteoric water in this mountainous area features a mean δ18O elevation gradient of –2.4?‰/km. This gradient was used to estimate mean recharge elevations of 760 m for Shuimoxi (SMX) spring, 1,060 m for Xiangshuidong (XSD) spring, and 1,430 m for drill hole ZK03, indicating multiple flow paths in the Cambrian-Ordovician karst aquifer. Mean residence times of 230 and 320 days and ~2 years were estimated for these features, respectively, using the damped running average model that predicts the isotopic variations in groundwater from those in precipitation. Groundwater in the regional karst flow system has the longest residence time, the highest recharge elevation, the longest flow paths, the lowest addition of anthropogenic components, and the greatest amount of water–rock interaction as indicated by its higher dissolved solids, Mg2+ concentrations and Mg/Ca ratios than the springs. In contrast, the local and shallow karst flow systems respond rapidly to recharge events. Artificial tracer tests prove that these shallow karst systems can also quickly transmit anthropogenic contaminants, indicating that they are highly vulnerable to human impacts, which include the enrichment of NO3 . The intensity of water–rock interaction and groundwater vulnerability are mainly determined by the structure and dynamics of the multiple karst flow systems.  相似文献   

17.
An investigation using environmental isotopes (δ18O and δD) was conducted to gain insight into the hydrological processes of the Ganga Alluvial Plain, northern India. River-water, shallow-groundwater and lake-water samples from the Gomati River Basin were analyzed. During the winter season, the δ18O and δD compositions of the Gomati River water ranged from ?1.67 to ?7.62 ‰ and ?25.08 to ?61.50 ‰, respectively. Deuterium excess values in the river water (+0.3 to ?13 ‰) and the lake water (?20 ‰) indicate the significance of evaporation processes. Monthly variation of δ18O and δD values of the Gomati River water and the shallow groundwater follows a similar trend, with isotope-depleted peaks for δ18O and δD synchronized during the monsoon season. The isotopically depleted peak values of the river water (δ18O?=??8.30 ‰ and δD?=??57.10 ‰) can be used as a proxy record for the isotopic signature of the monsoon precipitation in the Ganga Alluvial Plain.  相似文献   

18.
Water samples from the river network and from some shallow and brackish springs located in a tectonic window of the northern Apennines of Italy were studied in the frame of a comprehensive hydrogeological investigation in order to better understand the origin and the mixing processes between the two water types noticed also in previous studies (Ca–HCO3 and Na–Cl). A sampling campaign covering the drought period during year 2010 was planned to gather electric conductivity, temperature and redox potential data along the river network and on groundwater occurrences located inside the tectonic structure. Additionally, eight water samples were collected for hydrochemical (major anions and cations: Na+, K+, Ca2+, Mg2+, HCO3 ?, Cl?, SO4 2? and trace ion Btot) and isotopic (δ18O, δ2H, 3H) analyses and compared with other eighteen samples from shallow and brackish springs collected near the study site during the period 2005–2012. Moreover, river discharge and water balance estimations were carried out. Results confirmed the presence of old Na–Cl water with salinity progressively increasing up to 5.5 g l?1 at the northern termination of the tectonic window. These values are in agreement with the ions contents of the most mineralized spring (Macognano spring: salinity of 7.6 g l?1), which has been considered as having the deepest and longest flow-path. Stable isotopes and trace ions contents are consistent with rainfall and snowmelt water mixed with brines associated with a hydrocarbon reservoir hosted at depth. Considering as end-member the more mineralized Na–Cl water, a cumulate inflow in the range of 12.9 ± 5.9 l s?1 has been estimated. This aliquot is released into the river network with different mixing proportions by the groundwater occurrences discharging from the autochthonous flysch unit.  相似文献   

19.
The geochemical and isotopic compositions of river water are controlled by different factors. The seasonal and spatial variations in the geochemical composition, δD, δ18O, and δ15N–NO3 of the Kumho River were investigated to reveal the geochemical processes occurring at different seasons. The Kumho River, which runs through different geologic terrains with different land use characteristics, is the largest tributary of the Nakdong River, the longest river in South Korea. The data varied significantly according to the land use and the season. Each monitoring station showed the lowest concentrations of various ions during July, the rainy season, due to the increase of precipitation rate. The ionic concentrations gradually increased downstream by the mineral weathering and anthropogenic activity. At the upper regions of the river, Ca and HCO3, which are closely associated with mineral weathering, were the most dominant cation and anion, respectively. The relatively high Si concentration of the headwater samples, caused by the weathering of volcanic rocks, also showed the importance of weathering in the upper regions mainly composed of volcanic rocks. The downstream regions of the Kumho River are mainly influenced by sedimentary rocks. At the lower reaches of the river, especially near the industrial complexes in Daegu, the third largest city in Korea, Na, Cl, and SO4 became the dominant ions, indicating that the anthropogenic pollution became more important in regulating the chemical composition of the river. The increasing (Ca + Mg + Na + K)/HCO3 ratio downstream also indicates that the anthropogenic effects became more important as the river flows downstream. The isotopic compositions of δD and δ18O indicate that the river waters were significantly affected by evaporation during May and July, but the evaporation effect was relatively low during October. The isotopic composition of δ15N–NO3 increased downstream, also confirming that anthropogenic effects became more significant at the lower reach of the river and near Daegu.  相似文献   

20.
Excess nutrient (N and P) loads are recognized as the major cause of serious water quality problems in China. River systems play a very important role in nitrate (NO3 ?) transportation and transformation in the aquatic environment. To understand and clarify the sources and processes affecting NO3 ? in river basins, we have examined spatial and temporal variations of concentration and dual-isotopic composition of NO3 ? in the dam-controlled Jialing River, a major tributary of the Yangtze River where land use is dominated by agriculture. Water samples were collected in July 2008 and February 2009 from the main channel of the Jialing River and its major tributaries. The δ15N and δ18O of NO3 ? range from 1.5 to 11.0 ‰ (average 6.2 ‰) and ?5.0 to 11.1 ‰ (average, 1.6 ‰), respectively. NO3 ? isotope data and δ18O of water interpreted in combination with hydrological and chemical data suggest that most of the NO3 ? input is from nitrification during the rainy season, and discharge of sewage and manure in the upper course and from cities accounts for much of the NO3 ? load during the dry season. The construction of cascade dams has led to retention of Si and a decrease in the Si/N ratio, implying that assimilation and/or denitrification may significantly affect NO3 ? in the dam area, as demonstrated by NO3 ? and dissolved Si concentrations, and \(\updelta^{ 1 5} {\text{N}}_{{{\text{NO}}_{3} }}\) and \(\updelta^{ 1 8} {\text{O}}_{{{\text{NO}}_{3} }}\) values. This study indicates that dual-isotopic data can be used to identify NO3 ? pollution sources and the processes NO3 ? has undergone during its retention and transport in the watershed of the dam-controlled Jialing River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号