首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
本文通过对南海海底沉积物样品的声学物理参数和沉积粒度特征统计分析,发现了高、低含砂量沉积物的声学物理特征存在明显差异,建立了海底沉积物的含砂量与压缩波速度、孔隙度、含水量和密度等经验公式,分析了含砂量变化与沉积物的体积压缩模量和密度变化的关系,从声速理论基础上阐明了含砂量变化引起沉积物压缩波速度变化的内在原因是含砂量变化引起了体积压缩模量和密度发生了变化,说明了含砂量增大引起沉积物压缩波速度增大的内在原因是含砂量增大引起了体积压缩模量变化量大于密度变化量,从而在数据统计和理论分析结合基础上,论证了含砂量是影响海底沉积物压缩波速度的重要因素之一。这一研究对声学方法反演海底沉积物粒度参数和沉积物类型、地声参数转换模型的建立,以及对水声反演海底和海底资源勘探等方面都具有重要理论意义和应用价值。  相似文献   

2.
渤海海冰侧限压缩强度的影响因素分析   总被引:2,自引:0,他引:2  
为研究海冰在侧向作用下的压缩强度,针对A型侧限加载方式,对不同温度、盐度和加载速率下的海冰压缩强度进行了试验研究。利用统计方法分析了试验结果,表明侧限压缩强度与卤水体积的平方根存在负幂函数关系,与侧限应力呈线性关系,而受加载速率的影响并不明显。海冰侧限压缩强度与各影响因素(海冰温度、盐度、侧向力)间的函数关系可为冰荷载的确定提供参考。  相似文献   

3.
利用水饱和法制备含天然气水合物试样,进行等向压缩试验和不排水三轴试验.采用天然气水合物临界状态(M HCS)模型同时预测排水条件和不排水条件下的三轴试验,并进行变动参数分析.不排水条件下,密实纯砂发生应变硬化,而相近密实度的含水合物试样出现应变软化,峰值偏应力随水合物饱和度和围压增大.通过与排水和不排水三轴试验结果的对...  相似文献   

4.
钙质砂因特殊的成因,具有不规则形状和复杂孔隙等特征,容易发生颗粒破碎。本文对南海某岛礁天然钙质砂进行等向压缩试验和大直径三轴排水试验,同时测量颗粒相对破碎率,结果表明:钙质砂强度随轴向应变逐渐增大,达到峰值后明显软化,且峰值偏应力随围压增大而增大;颗粒破碎随着剪切逐渐发生,且围压越大破碎程度越大。采用描述颗粒破碎的SIMSAND模型预测排水条件下的三轴剪切试验,通过试验与预测结果的对比,揭示了模型对钙质砂预测的局限性。本文改进了SIMSAND模型,提出了围压不超过1 MPa时的颗粒相对破碎率公式,优化后的公式能更合理地预测峰值应力对应的轴向应变和颗粒破碎程度的演化。  相似文献   

5.
海冰单轴压缩强度是寒区海洋工程中的一个重要设计参数,也是影响海冰动力学行为的主要因素。在2008-2012年间的三个冬季,对渤海沿岸的海冰单轴压缩强度进行了现场与室内试验,由此分析了其在温度、卤水体积和应力率下的基本特征。测试结果表明,海冰单轴压缩强度与其温度呈幂函数关系,与卤水体积平方根呈指数关系,与应力率呈线性关系。此外还分别在不同温度与卤水体积下确定了海冰单轴压缩强度上包络限的变化规律。最后,综合考虑卤水体积和应力率的影响,对海冰单轴压缩强度分布特征进行了分析。以上研究有助于揭示渤海海冰基本力学性质,为冰区结构设计和海冰动力学分析提供参考依据。  相似文献   

6.
冰的蠕变特性是其自身独特的一种性质,正是由于这一特性才导致了其本构关系的复杂性。室内确定海冰静压力强度特征的标准方法有:恒变形速率或加载速率下的压缩强度试验和恒荷载下的压缩蠕变试验。本文是根据近年来进行的海冰圆柱状试样单轴压缩强度和单轴压缩蠕变试验的结果,分析海冰的长期强度特征并给出统计结果。分析结果还表明海冰的弹性范围很小,即便是单轴压缩强度试验,也只有在加载时间很短的情况下,才表现出拟弹性阶段。  相似文献   

7.
王强  刘海笑  李洲 《海洋工程》2021,39(3):83-94
利用带误差控制的显式积分算法,将一种适用于饱和砂土排水循环动力分析的边界面塑性模型编写成可供有限元软件调用的用户自定义材料子程序。建立土体单元有限元数值模型对Toyoura砂的静、动排水三轴试验进行模拟,验证了模型具备合理描述砂土在不同荷载条件下力学响应的能力。建立饱和砂土中板锚循环承载分析的数值模型,针对板锚在砂土中的单调抗拔特性和循环承载特性进行数值分析,得到了与模型试验一致的荷载—位移响应规律。考察循环荷载要素对板锚循环承载特性的影响,结果发现,随着循环荷载的施加,板锚永久位移逐渐累积,循环荷载会导致板锚持续移动,循环幅值越大,初始位移和位移变化率越大;循环均值越大,初始位移越大,但位移变化率越小。  相似文献   

8.
《海洋预报》2021,38(4)
2018—2021年3个冬季期间在渤海辽东湾鲅鱼圈海域沿岸进行海冰单轴压缩试验。采用典型的柱状结构海冰作为试验对象,试验中加载方向垂直于柱状结构冰晶的轴向,应变率选取区间为4.5×10-5~7.5×10-3/s,海冰试样的温度在-3~-33℃之间。每组试验完成后对温度、盐度和密度进行了测量,用于计算每个试验试样的卤水体积。试验结果表明:海冰试样的应变-应力曲线表现出3种典型形式:韧性破坏、单峰值脆性破坏和多峰值脆性破坏。海冰名义压缩强度和卤水体积呈指数关系,应变率影响下的海冰单轴名义压缩强度出现韧性区-过渡区-脆性区的转化过程,在韧性区和脆性区阶段海冰的单轴名义压缩强度和应变率均呈幂函数关系。此外,综合卤水体积和应变率的影响,确定了海冰名义单轴压缩强度在两者共同影响下的变化规律。  相似文献   

9.
混凝土动态压缩试验及其本构模型   总被引:7,自引:0,他引:7  
按照地震荷载作用的速率范围,利用最新研制和改造的大型混凝土静,动试验系统,进行了4种数量级加载速率下混凝土轴向压缩试验,测得了混凝土动态强度,弹性模量,泊松比及应力-应变关系,根据加载条件和混凝土静,动态试验结果间的关系,建立了混凝土的动态本构模型,为地震区的混凝土结构,海上混凝土采油平台和核防御壳等结构受动荷载作用的分析提供参考。  相似文献   

10.
中国近海风机大多采用长径比10~20范围内的非柔性桩基础,而现有规范方法主要针对长径比大于20的柔性桩,对我国风机基础的适用性一直存在争议。本文利用有限元法研究砂土中非柔性桩的水平受荷响应,主要关注容许范围内的桩基倾斜,因此采用硬化土小应变本构模型描述砂土的应力应变关系。建立钢管桩-土三维有限元模型进行变参数分析,探究土体相对密实度、桩基直径对初始地基反力模量的影响;讨论了正切双曲线函数和双曲线函数描述土体弹簧刚度(即p-y曲线)的合理性;最终提出了适用于砂土中非柔性桩的修正p-y曲线表达式,并通过与三种不同砂土相对密实度与桩基组合工况下的有限元结果对比,验证了修正p-y公式的合理性。结果表明:土体相对密实度、桩基直径与初始地基反力模量均呈正相关;双曲线函数更适合描述非柔性桩的p-y曲线;修正后的p-y公式提高了水平荷载作用下非柔性桩响应的预测精度。  相似文献   

11.
The compressibility characteristics of Singapore marine clay in reconstituted and undisturbed states were studied using oedometer, constant rate of strain, Rowe cell, and isotropic consolidation tests. The intrinsic compression curve of the reconstituted clay was found to be similar to that proposed earlier with some minor deviations at low vertical stresses of less than 100?kPa. The field and laboratory compression behaviors were found to be similar, hence the laboratory curve could be used as a reference for interpreting the field behavior. Factors affecting the measurements of compression index and yield stress were discussed. As the coefficient of lateral earth pressure at the top upper clay was close to 1, the compression curves of vertically and horizontally trimmed samples were almost similar. The yield stress was mainly controlled by the strain rate; i.e., the higher strain rate resulted in the higher yield stress. Constrained modulus as derived from cone penetration tests and flat dilatometer tests were also examined and compared with laboratory test results. The in situ tests showed the decrease in constrained modulus with depth and generally the dilatometer test was found to register a higher modulus value.  相似文献   

12.
Cement-stabilized clay is widely used in soft clay improvement for deep excavation, underground construction, and land reclamation. This paper presents a study on the evaluation of elastic modulus for cement-stabilized marine clay. First, two types of cement-stabilized soils were studied through isotropic compression tests and cylinder split tensile tests. Specimens with different mix ratios and curing periods were used. Stress–strain behavior under isotropic compression was discussed, followed by an introduction and estimation of the stress-free bulk modulus. Empirical correlations between elastic moduli and functions for estimating elastic moduli were then proposed. Further estimation of elastic modulus was conducted with another data set. The results showed that the proposed function for estimating elastic modulus is effective for cement-improved marine clay. Finally, the proposed method and empirical functions were validated with other types of cement-stabilized clay.  相似文献   

13.
In deep-sea mining engineering, the compression–shear coupling effect of the sediment on the moving tracked mining vehicle must be considered, since it is proved to be existing in compression–shear creep test of the sediment simulant. Based on the endochronic theory, the compression–shear coupling rheological model is established by the definition of intrinsic time and calculation of deviatoric tensor, where the coupling rheological parameters can be obtained by the compression–shear creep test. For simulating sinkage and traction force of the moving tracked mining vehicle, the compression–shear coupling rheological model as well as compressive rheological model and direct shear rheological model (regardless of coupling rheological effect) is programmed and introduced into RecurDyn software (with only traditional elastic–plastic constitutive model) for comparison. Research results show that the sinkage is the largest, and the traction force is the smallest under the compression–shear coupling rheological model, which could better reflect the worse working situation. The compression–shear coupling rheological model could provide theoretical basis for optimal design and safety assessment of the tracked mining vehicle.  相似文献   

14.
15.
针对海底声学探测仪器采集数据量大而存储容量有限、数据传输带宽不足的实际问题,基于Lempel-Ziv-Welch(LZW)无损压缩算法,研究海底声学探测数据的实时压缩方法,提高数据压缩效果、节省传输带宽。并在LZW无损压缩算法的基础上结合数据存储的特点对压缩结果进行内存重新分配,极大提高压缩比(压缩数据大小/原始数据大小)。利用海底地震仪(OBS)采集的原始声学探测数据进行测试验证,结果表明该方法对于OBS声学探测数据有很好的压缩比,可用于对OBS采集的声学探测数据进行压缩处理,对于海底探测仪器的研发有很好的指导意义。  相似文献   

16.
The multi-spring shear mechanism plastic model in this paper is defined in strain space to simulate pore pressure generation and development in sands under cyclic loading and undrained conditions,and the rotation of principal stresses can also be simulated by the model with cyclic behavior of anisotropic consolidated sands.Seismic residual deformations of typical caisson quay walls under different engineering situations are analyzed in detail by the plastic model,and then an index of liquefaction extent is applied to describe the regularity of seismic residual deformation of caisson quay wall top under different engineering situations.Some correlated prediction formulas are derived from the results of regression analysis between seismic residual deformation of quay wall top and extent of liquefaction in the relative safety backfill sand site.Finally,the rationality and the reliability of the prediction methods are validated by test results of a 120 g-centrifuge shaking table,and the comparisons show that some reliable seismic residual deformation of caisson quay can be predicted by appropriate prediction formulas and appropriate index of liquefaction extent.  相似文献   

17.
Oedometer tests have been carried out on 70 undisturbed surficial clays (at approximately 250 mm below the mudline), mostly collected by free-fall corers from sites widely scattered throughout the deep-sea North Atlantic. Acoustic measurements were also made, initially on contiguous samples and ultimately on the same sample using a geophysically instrumented oedometer which also collected electrical resistivity data. Apart from those quiescent areas below the carbonate compensation depth, such as north of the West Indies where very fine clays exist, most of the samples are silty clays whose geotechnical-geophysical properties are dependent on the type of clay minerals present (and their ability to take in moisture), the sand-size fraction, and the quantity of carbonate present. Thus the pure clays have high compressibilities which decrease on the addition of coarse particles, while the converse is true for the acoustic parameters, these increasing with the sand fraction. Using the notion of the intrinsic compression line for all samples, and comparison to it of the measured compression curves, it is clear that, contrary to some previously held ideas, most deep-sea clays are normally consolidated; the addition of carbonate has the effect of creating an open, stronger sediment skeleton. Interestingly, where information is available, the variation with depth of a sample's acoustic velocity follows the void ratio pressure relationship of the compression curve. This allows the construction of an in-situ sediment compression curve using the in-situ geophysical observations.  相似文献   

18.
Nansha clay is an interactive marine and terrestrial deposited soft clay that is widely spread in Guangzhou, Pearl River Delta, China. To avoid excessive settlement after construction, there is a need for better quantifying the time-dependent deformation of the soft clay. This paper presents a preliminary study to predict the one-dimensional compression of Nansha clay using fractional derivatives. A fractional Merchant model was introduced to describe the time-dependent settlement, and analytical solutions were obtained in terms of the Mittag-Leffler function. The oedometer test results were presented to validate this model. Compared with classical rheological models, the fractional derivative-based model enabled close estimation of the one-dimensional compression with fewer parameters. The meaning of the order of fractional derivative and its relationship with the clay physical properties were explored. It shows that a smaller value of this order corresponded to a higher coefficient of consolidation and a lower coefficient of secondary consolidation. The amplitude of both the primary and secondary consolidation of clay may be estimated quantitatively by the order of fractional derivative. Taken together, these results may open up new avenues for theoretical and empirical modeling of rheological phenomena in clay using fractional derivatives.  相似文献   

19.
Oedometer tests have been carried out on 70 undisturbed surficial clays (at approximately 250 mm below the mudline), mostly collected by free-fall corers from sites widely scattered throughout the deep-sea North Atlantic. Acoustic measurements were also made, initially on contiguous samples and ultimately on the same sample using a geophysically instrumented oedometer which also collected electrical resistivity data. Apart from those quiescent areas below the carbonate compensation depth, such as north of the West Indies where very fine clays exist, most of the samples are silty clays whose geotechnical-geophysical properties are dependent on the type of clay minerals present (and their ability to take in moisture), the sand-size fraction, and the quantity of carbonate present. Thus the pure clays have high compressibilities which decrease on the addition of coarse particles, while the converse is true for the acoustic parameters, these increasing with the sand fraction. Using the notion of the intrinsic compression line for all samples, and comparison to it of the measured compression curves, it is clear that, contrary to some previously held ideas, most deep-sea clays are normally consolidated; the addition of carbonate has the effect of creating an open, stronger sediment skeleton. Interestingly, where information is available, the variation with depth of a sample's acoustic velocity follows the void ratio pressure relationship of the compression curve. This allows the construction of an in-situ sediment compression curve using the in-situ geophysical observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号