首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
1.Introduction Owingtothesimilaritiesbetweenthesurfacewaveandtheinterfacialwave,itisnaturaltoapply themethodsdevelopedforsurfacewavestothestudyofinterfacialwavesasreviewedbyUmeyama (1998;2000).Recently,Song(2004)derivedsecond ordersolutionsforrandominterfacialwavesat aconstantdepthinatwo layerfluidsystemwitharigidlidusinganexpansiontechnique,analogousto thatusedbyLonguet Higgins(1963)andSharmaandDean(1979),tostudyrandomsurfacewaves. Inthispaper,Song’sresultsareextendedtoamoregeneralcaseoft…  相似文献   

2.
Interfacial waves and wave-induced tangential stress are studied for geostrophic small amplitude waves of two-layer fluid with a top free surface and a flat bottom. The solutions were deduced from the general form of linear fluid dynamic equations of two-layer fluid under the f-plane approximation, and wave-induced tangential stress were estimated based on the solutions obtained. As expected, the solutions derived from the present work include as special cases those obtained by Sun et al. (2004. Science in China, Ser. D, 47(12):1147-1154) for geostrophic small amplitude surface wave solutions and wave-induced tangential stress if the density of the upper layer is much smaller than that of the lower layer. The results show that the interface and the surface will oscillate synchronously, and the influence of the earth''s rotation both on the surface wave solutions and the interfacial wave solutions should be considered.  相似文献   

3.
Interfacial waves and wave-induced tangential stress are studied for geostrophic small amplitude waves of two-layer .uid with a top free surface and a .at bottom. The solutions were deduced from the general form of linear .uid dynamic equations of two-layer .uid under the f -plane approximation, and wave-induced tangential stress were estimated based on the solutions obtained. As expected, the solutions derived from the present work include as special cases those obtained by Sun et al. (2004. Science in China, Ser. D, 47(12): 1147–1154) for geostrophic small amplitude surface wave solutions and wave-induced tangential stress if the density of the upper layer is much smaller than that of the lower layer. The results show that the interface and the surface will oscillate synchronously, and the in.uence of the earth’s rotation both on the surface wave solutions and the interfacial wave solutions should be considered.  相似文献   

4.
The hydroelastic response of a semi-infinite thin elastic plate floating on a two-layer fluid of finite depth due to obliquely incident waves is investigated. The upper and lower fluids with different densities separated by a sharp and stable interface are assumed to be inviscid and incompressible and the motion to be irrotational. Simply time-harmonic incident waves of the surface and interfacial wave modes with a given angular frequency are considered within the framework of linear potential flow theory. With the aid of the methods of matched eigenfunction expansion and the inner product of the two-layer fluid, a closed system of simultaneous linear equations is derived for the reflection and transmission coefficients of the series solutions. Based on the dispersion relations for the gravity waves and the flexural–gravity waves in a two-layer fluid and Snell’s law for refraction, we obtain a critical angle for the incident waves of the surface wave mode and three critical angles for the incident waves of the interfacial wave mode, which are related to the existence of the propagating waves. Graphical representations of the series solutions show the interaction between the water waves and the plate. The effects of several physical parameters, including the density and depth ratios of the fluid and the thickness of the plate, on the wave scattering and the hydroelastic response of the plate are studied. It is found that the variation of the thickness of the plate may change the wave numbers and the critical angles. The density ratio is the main factor to influence the wave numbers of the interfacial wave modes. Finally, the stress state is considered.  相似文献   

5.
The effects of a porous-elastic seabed on interfacial wave propagation   总被引:2,自引:0,他引:2  
S.J. Williams  D.-S. Jeng   《Ocean Engineering》2007,34(13):1818-1831
A theoretical model for the decay of progressive interfacial gravity waves propagating above a porous bed is developed assuming potential flow in a two-layer system with a free surface and a sharp interface. A new wave dispersion relation for two-layer flow above a quasi-static porous seabed is derived and investigated. The solutions for the nonlinear wave profile are derived using a perturbation method and the effects of geometric and flow parameters including bed characteristics, depth ratios and the densities of the two fluids are studied and discussed. Comparisons with existing analytical solutions for viscous interfacial wave attenuation over a rigid bed demonstrate the relative importance of the porous bed as a mechanism for wave decay. It is shown that the influence of a porous seabed on wave propagation is significant when the depth of the lower layer, normalised by the wavenumber, is less than π.  相似文献   

6.
In this paper, the diffraction of water waves by a vertically floating cylinder in a two-layer fluid of a finite depth is studied. Analytical expressions for the hydrodynamic loads on the vertically floating cylinder are obtained by use of the method of eigenfunction expansions. The hydrodynamic loads on the vertically floating cylinder in a two-layer fluid inelude not only the surge, heave and pitch exciting forces due to the incident wave of the surface-wave mode, but also those due to the incident wave of the internal-wave mode. This is different from the case of a homogenous fluid. Some given examples show that, for a two-layer fluid system with a small density difference, the hydrodynamic loads for the surface-wave mode do not differ significantly from those due to surface waves in a single-layer fluid, but the hydrodynamic loads for the internal-wave mode are important over a wide range of frequencies. Moreover, also considered are the free surface and interface elevations generated by the diffraction wave due to the incident wave of the surface-wave and interhal-wave modes, and transfer of energy between modes.  相似文献   

7.
可渗透结构具有使波浪作用减弱的效应,而海水的层化及水波的非线性使结构的波绕射产生多层复杂机制。将可渗透结构应用于复杂海况条件中,海水的层化性、波浪的非线性及结构的透空性构成了波绕射的一个十分复杂的数学问题。该问题存在理论研究的必要性,而文章则着重探讨其数学分析的可能性。通过引入二层海的层化海模式及Stokes二阶波的非线性波模式,给出了二阶多色波对透空结构的波绕射的定解问题提法,提出了复合形式的二阶多色波辐射条件式及可渗透结构的二阶物面条件式,应用特征函数解法与积分法推导了多色波对结构绕射的一阶势解与二阶作用的耦合积分解式,并讨论了解式所涉及无穷积分的算法。  相似文献   

8.
Green functions with pulsating sources in a two-layer fluid of finite depth   总被引:1,自引:0,他引:1  
The derivation of Green function in a two-layer fluid model has been treated in different ways.In a two-layer fluid with the upper layer having a free surface,there exist two modes of waves propagating due to the free surface and the interface.This paper is concerned with the derivation of Green functions in the three dimensional case of a stationary source oscillating.The source point is located either in the upper or lower part of a two-layer fluid of finite depth.The derivation is carried out by the method of singularities.This method has an advantage in that it involves representing the potential as a sum of singularities or multipoles placed within any structures being present.Furthermore,experience shows that the systems of equations resulted from using a singularity method possess excellent convergence characteristics and only a few equations are needed to obtain accurate numerical results.Validation is done by showing that the derived two-layer Green function can be reduced to that of a single layer of finite depth or that the upper Green function coincides with that of the lower,for each case.The effect of the density on the internal waves is demonstrated.Also,it is shown how the surface and internal wave amplitudes are compared for both the wave modes.The fluid in this case is considered to be inviscid and incompressible and the flow is irrotational.  相似文献   

9.
1 .Introduction The dynamics of soft mud under surface water waves is of great importance to the sedimentationprocesses in approach channels and harbors ,and has long been drawing attention. Advancements innumerous engineering applications inthe shallowco…  相似文献   

10.
在流体力学中,描述流体运动有Lagrange方法和Euler方法.Euler方法是通过观测通过空间各固定位置点处流体质点的运动行为来描述流体运动规律,而Lagrange方法是跟踪各个流体质点,通过观测它们在时空运动中所走过的路径来描述流体的运动规律.在数学处理上,Euler方法较Lagrange方法简单,但Lagrange方法可以完全描述流体运动的整个流场的所有特性,而Euler方法却无法描述每个流体质点的运动轨迹.本文,我们研究具有刚性边界的三层流体系统中的界面内波,其中上层流体的密度比下层流体的密度大.通过在界面处引入朗格朗日匹配条件并使用微扰法得到了拉格朗日描述下的界面内波的一阶解、二阶解及三阶解,给出了质量输运速度、波频率、平均水平和质点运动轨迹的解.结果表明对于质量输运速度、波频率、平均水平和质点运动轨迹在界面处会有不连续性,但是我们发现在满足一定的三层流体水深比和密度比条件时这种不连续性将会消失.  相似文献   

11.
The hydroelastic response of a circular, very large floating structure (VLFS), idealized as a floating circular elastic thin plate, is investigated for the case of time-harmonic incident waves of the surface and interfacial wave modes, of a given wave frequency, on a two-layer fluid of finite and constant depth. In linear potential-flow theory, with the aid of angular eigenfunction expansions, the diffraction potentials can be expressed by the Bessel functions. A system of simultaneous equations is derived by matching the velocity and the pressure between the open-water and the plate-covered regions, while incorporating the edge conditions of the plate. Then the complex nested series are simplified by utilizing the orthogonality of the vertical eigenfunctions in the open-water region. Numerical computations are presentedto investigate the effects of different physical quantities, such as the thickness of the plate, Young's modulus, the ratios ofthe densities and of the layer depths, on the dispersion relations of the flexural-gravity waves for the two-layer fluid.Rapid convergence of the method is observed, but is slower at higher wave frequency. At high frequency, it is found that there is some energy transferred from the interfacial mode to the surface mode.  相似文献   

12.
Within the framework of the linear theory of long waves, we study baroclinic free waves in a bounded basin of variable depth without vertical walls. We consider the case of two-layer stratification. The profile of the bottom of the basin and the form of the interface vary according to the parabolic law. Under these conditions, for the first three modes, we obtain analytic expressions for the frequencies of free oscillations, wave velocities, and the profiles of the free surface and interface. We analyze the dependences of frequencies, wave amplitudes, and wave velocities on the parameters of stratification and geometric characteristics of the basin.  相似文献   

13.
The response of near-surface current profiles to wind and random surface waves are studied based on the approach of Jenkins [1989. The use of a wave prediction model for driving a near surface current model. Dtsch. Hydrogr. Z. 42, 134–149] and Tang et al. [2007. Observation and modeling of surface currents on the Grand Banks: a study of the wave effects on surface currents. J. Geophys. Res. 112, C10025, doi:10.1029/2006JC004028]. Analytic steady solutions are presented for wave-modified Ekman equations resulting from Stokes drift, wind input and wave dissipation for a depth-independent constant eddy viscosity coefficient and one that varies linearly with depth. The parameters involved in the solutions can be determined by the two-dimensional wavenumber spectrum of ocean waves, wind speed, the Coriolis parameter and the densities of air and water, and the solutions reduce to those of Lewis and Belcher [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans. 37, 313–351] when only the effects of Stokes drift are included. As illustrative examples, for a fully developed wind-generated sea with different wind speeds, wave-modified current profiles are calculated and compared with the classical Ekman theory and Lewis and Belcher's [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans 37, 313–351] modification by using the Donelan and Pierson [1987. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. 92, 4971–5029] wavenumber spectrum, the WAM wave model formulation for wind input energy to waves, and wave energy dissipation converted to currents. Illustrative examples for a fully developed sea and the comparisons between observations and the theoretical predictions demonstrate that the effects of the random surface waves on the classical Ekman current are important, as they change qualitatively the nature of the Ekman layer. But the effects of the wind input and wave dissipation on surface current are small, relative to the impact of the Stokes drift.  相似文献   

14.
This paper studies the moonpool resonance of two heaving rectangular bodies in a two-layer fluid. A mathematical model is proposed based on an eigenfunction matching approach. The motion of the two-dimensional bodies is assumed to be vertical and harmonic. Heave added mass and damping coefficients are computed to examine the hydrodynamic behavior of the twin bodies. The free surface and internal wave elevations are obtained near the resonant frequencies. The presented results and analyses reveal that there exist both Helmholtz and higher-order resonances in the two-layer fluid system, which is similar to the single-layer fluid case. It is also found that the resonances are closely associated with the free surface elevation inside moonpool gap, not the wave elevation at the interfacial surface. In addition, parametric studies have been performed to identify the dependencies of hydrodynamic behavior on geometry and density stratification.  相似文献   

15.
This is a numerical study on the time development of surface waves generated by a submerged body moving steadily in a two-layer fluid system, in which a layer of water is underlain by a layer of viscous mud. The fully nonlinear Navier-Stokes equations are solved on FLUENT with the Volume-of-Fluid (VOF) multiphase scheme in order to simulate the free surface waves as well as the water-mud interface waves as functions of time. The numerical model is validated by mimicking a reported experiment in a one-layer ...  相似文献   

16.
Statistical analysis of nonlinear random waves is important in coastal and ocean engineering. One approach for modeling nonlinear waves is second-order random wave theory, which involves sum- and difference-frequency interactions between wave components. The probability distribution of the non-Gaussian surface elevation can be solved using a technique developed by Kac and Siegert [21]. The wave field can be significantly modified by wave diffraction due to a structure, and the nonlinear diffracted wave elevation can be of interest in certain applications, such as the airgap prediction for an offshore structure. This paper investigates the wave statistics due to second-order diffraction, motivated by the scarcity of prior research. The crossing rate approach is used to evaluate the extreme wave elevation over a specified duration. The application is a bottom-supported cylindrical structure, for which semi-analytical solutions for the second-order transfer functions are available. A new efficient statistical method is developed to allow the distribution of the diffracted wave elevation to be obtained exactly, accounting for the statistical dependency between the linear, sum-frequency and difference-frequency components. Moreover, refinements are proposed to improve the efficiency for computing the free surface integral. The case study yields insights into the problem. In particular, the second-order nonlinearity is found to significantly amplify the extreme wave elevation, especially in the upstream region; conversely, the extreme elevation at an oblique location downstream is attenuated due to sheltering effects. The statistical dependency between the linear and sum-frequency components is also shown to be important for the extreme wave statistics.  相似文献   

17.
The scattering of plane surface waves by bottom undulations in an ice-covered ocean modelled as a two-layer fluid consisting of a layer of fresh water of lesser density above a deep layer of salt water, is investigated here by using a simplified perturbation analysis. In such a two-layer fluid there exist waves of two different modes, one with higher mode propagates along the interface and the other with lower mode propagates along the ice-cover. An incident wave of a particular mode gets reflected and transmitted by the bottom undulations into waves of both the modes so that transfer of wave energy from one mode to another takes place. The first-order reflection and transmission coefficients of two different modes are obtained due to incident waves of again two different modes by employing Fourier transform technique in the mathematical analysis. For sinusoidal bottom topography these coefficients are depicted graphically against the wavenumber. These figures show how the transfer of energy from one mode to another takes place.  相似文献   

18.
This paper describes experiments on interfacial phenomena in a stratified shear flow having a sharp velocity shear at a density interface. The interface was visualized in vertical cross-section using dye, and the flow pattern was traced using aluminum powder. Two kinds of internal waves with different phase velocities and wave profiles were observed. They are here named p(positive)-waves and n(negative)-waves, respectively. By means of a two-dimensional visualization technique, the following facts have been confirmed regarding these waves. (1) The two kinds of waves propagate in the opposite direction relative to a system moving with the mean velocity at the interface, and their dispersion relations approximately agree with the two solutions of interfacial waves in a two-layer system of a linear basic shear flow. (2) The p-wave has sharp crests and flat troughs, and the n-wave has the reverse of this. This difference in wave profile is due to the finite amplitude effect. (3) Phase velocity of each wave lies within the range of the mean velocity profile, so that a critical layer exists and each wave has a “cat's eye” flow pattern in the vicinity of the critical layer, when observed in a system moving with the phase velocity. Consequently, these two waves are symmetrical with respect to the interface. The mechanisms of generation of these waves, and the entrainment process are discussed. It is inferred that when the “cat's eye” flow pattern is distorted and a stagnation point approaches the interface, entrainment in the form of a stretched wisp from the lower to the upper layer occurs for the p-wave, and from the upper to the lower layer for the n-wave.  相似文献   

19.
Internal waves driven by external excitation constitute important phenomena that are often encountered in environmental fluid mechanics. In this study, a pseudospectral σ-transformation model is used to simulate parametric excitation of stratified liquid in a two-layer rectangular tank. The σ-transformation maps the physical domain including the liquid free surface, the interface between the liquid layers, and the bed, onto a pair of fixed rectangular computational domains corresponding to the two layers. The governing equation and boundary conditions are discretised using Chebyshev collocation formulae. The numerical model is verified for two analytical sloshing problems: horizontal excitation of constant density liquid in a rectangular tank, and vertical excitation of stratified liquid in a rectangular tank. A detailed analysis is provided of liquid motions in a shallow water tank due to excitations in the horizontal and the vertical directions. Also, the effect of pycnocline on the wave motions and patterns is studied. It is found that wave regimes and patterns are considerably influenced by the pycnocline, especially when the excitation frequency is large. The present study demonstrates that a pseudospectral σ-transformation is capable to model non-linear sloshing waves in a two-layer rectangular tank.  相似文献   

20.
We study wave perturbations appearing at the surface of a two-layer fluid flowing around an underwater obstacle in the lower layer of the fluid. The obstacle is modeled as a point source. A class of asymptotic solutions was obtained that demonstrate that realistic conditions of the open sea and the given parameters of the source in the neighborhood of the source of hydrodynamic perturbations allow for the formation of two types of surface waves. The waves of the first type only slightly depend on the stratification, and, in the conditions of the real sea, they are almost not observed. The characteristics of the second type of waves were repeatedly recorded in field experiments during radar and optical monitoring of the sea surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号