首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A deep-level crustal section of the Cretaceous Kohistan arc is exposed in the northern part of the Jijal complex. The occurrence of mafic to ultramafic granulite-facies rocks exhibits the nature and metamorphic evolution of the lower crust. Mafic granulites are divided into two rock types: two-pyroxene granulite (orthopyroxene+clinopyroxene+plagioclase±quartz [1]); and garnet–clinopyroxene granulite (garnet+clinopyroxene+plagioclase+quartz [2]). Two-pyroxene granulite occurs in the northeastern part of the Jijal complex as a relict host rock of garnet–clinopyroxene granulite, where the orthopyroxene-rich host is transected by elongated patches and bands of garnet–clinopyroxene granulite. Garnet–clinopyroxene granulite, together with two-pyroxene granulite, has been partly replaced by amphibolite (hornblende±garnet+plagioclase+quartz [3]). The garnet-bearing assemblage [2] is expressed by a compression–dehydration reaction: hornblende+orthopyroxene+plagioclase=garnet+clinopyroxene+quartz+H2O↑. Subsequent amphibolitization to form the assemblage [3] is expressed by two hydration reactions: garnet+clinopyroxene+plagioclase+H2O=hornblende+quartz and plagioclase+hornblende+H2O=zoisite+chlorite+quartz. The mafic granulites include pod- and lens-shaped bodies of ultramafic granulites which consist of garnet hornblendite (garnet+hornblende+clinopyroxene [4]) associated with garnet clinopyroxenite, garnetite, and hornblendite. Field relation and comparisons in modal–chemical compositions between the mafic and ultramafic granulites indicate that the ultramafic granulites were originally intrusive rocks which dissected the protoliths of the mafic granulites and then have been metamorphosed simultaneously with the formation of garnet–clinopyroxene granulite. The results combined with isotopic ages reported elsewhere give the following tectonic constraints: (1) crustal thickening through the development of the Kohistan arc and the subsequent Kohistan–Asia collision caused the high-pressure granulite-facies metamorphism in the Jijal complex; (2) local amphibolitization of the mafic granulites occurred after the collision.  相似文献   

2.
Feldspathic hornblende granulites from Doubtful Sound, New Zealand with the assemblage plagioclase+hornblende+clinopyroxene+orthopy-roxene +oxide+apatite are criss-crossed by a network of garnetiferous anorthosite veins and pegmatites. The feldspathic gneiss in contact with anorthosite has a reaction zone containing the assemblage plagioclase +garnet+clinopyroxene+quartz+rutile+apatite. The garnet forms distinctive coronas around clinopyroxene. The origin of these rocks is discussed in the light of mineral and whole rock chemical analyses and published experimental work.It is thought that under conditions leading up to 750 °C, 8 kb load pressure and 5 kb H2O pressure, partial melting occured in feldspathic hornblende granulites. The melt migrated into extensional fractures and eventually crystallised as anorthosite pegmatites and veins. The gneisses adjacent to the pegmatites from which the melt was extracted changed composition slightly, by the loss of H2O and Na2O, so that plagioclase reacted simultaneously with hornblende, orthopyroxene, and oxide to form garnet, clinopyroxene, quartz and rutile.  相似文献   

3.
Both high- and medium-pressure granulites have been found asenclaves and boudins in tonalitic–trondhjemitic–granodioriticgneisses in the Hengshan Complex. Petrological evidence fromthese rocks indicates four distinct metamorphic assemblages.The early prograde assemblage (M1) is preserved only in thehigh-pressure granulites and represented by quartz and rutileinclusions within the cores of garnet porphyroblasts, and omphacitepseudomorphs that are indicated by clinopyroxene + sodic plagioclasesymplectic intergrowths. The peak assemblage (M2) consists ofclinopyroxene + garnet + sodic plagioclase + quartz ±hornblende in the high-pressure granulites and orthopyroxene+ clinopyroxene + garnet + plagioclase + quartz in the medium-pressuregranulites. Peak metamorphism was followed by near-isothermaldecompression (M3), which resulted in the development of orthopyroxene+ clinopyroxene + plagioclase symplectites and coronas surroundingembayed garnet grains, and decompression-cooling (M4), representedby hornblende + plagioclase symplectites on garnet. The THERMOCALCprogram yielded peak (M2) P–T conditions of 13·4–15·5kbar and 770–840°C for the high-pressure granulitesand 9–11 kbar and 820–870°C for the medium-pressuregranulites, based on the core compositions of garnet, matrixpyroxene and plagioclase. The P–T conditions of pyroxene+ plagioclase symplectite and corona (M3) were estimated at  相似文献   

4.
Some mafic granulites in the Sanggan area of the northern Trans‐North China Orogen (TNCO) have a relatively simple mineralogy with low energy grain shapes that are compatible with an assumption of equilibrium, but the rock‐forming minerals show variations in composition that create challenges for thermobarometry. The mafic granulites, which occur as apparently disrupted dyke‐like bodies in tonalite–trondhjemite–granodiorite gneisses, are divided into two types based on petrography and chemical composition. Type 1 mafic granulites are fine‐ to medium‐grained with an equilibrated texture and an assemblage of plagioclase+clinopyroxene+garnet+magnetite+ilmenite and sometimes minor hornblende±orthopyroxene. Type 2 mafic granulites are coarse‐grained and hornblende bearing with a peak assemblage of garnet+clinopyroxene+plagioclase+hornblende and variably developed coronae and symplectites of plagioclase+hornblende+orthopyroxene partially replacing porphyroblastic garnet±clinopyroxene. SIMS U–Pb dating of metamorphic zircon from two type 1 mafic granulites yields metamorphic ages of c. 1.84 and 1.83 Ga, consistent with published ages of the type 2 mafic granulites. Based on phase equilibrium modelling, we use the common overlap of P–T fields defined by the mineral assemblage limits, and the mole proportion and composition isopleths of different minerals in each sample to quantify the metamorphic conditions. For type 1 granulites, overlap of the mineral proportion and composition fields for each of three samples yields similar P–T conditions of 710–880°C at 0.57–0.79 GPa, 820–850°C at 0.59–0.63 GPa and 800–860°C at 0.59–0.68 GPa. For the type 2 granulites, overlaying the peak assemblage fields for three samples yields common P–T conditions of 870–890°C at 1.1–1.2 GPa. For the retrograde assemblage, overlap of the mineral proportion and composition fields for each sample yields similar P–T conditions of 820–840°C at 0.85–0.88 GPa, 860–880°C at 0.83–0.86 GPa and 880–930°C at 0.89–0.95 GPa. The PT conditions appear distinct between the two types of mafic granulite, with the mineralogically simple type 1 mafic granulites recording the lowest pressures. However, there are significant uncertainties associated with these results. For the granulites, there are uncertainties related to the determination of modes and composition of the equilibration volume, particularly estimation of O and H2O contents, and in the phase equilibrium modelling there are uncertainties that propagate through the calculation of mole proportions and mineral compositions. The compound uncertainties on pressure and temperature for high‐T granulites are large and the results of our study show that it may be unwise to rely on PT conditions determined from the simple intersection of calculated mineral composition isopleths alone. Since the samples in this study are from a limited area—a few hundred square metres—we infer that they record a single PT path involving both decompression and cooling. However, there is no evidence of the high‐P granulite facies event at 1.93–1.90 Ga that is recorded elsewhere in the TNCO, which suggests that the precursor basic dykes were emplaced late during the assembly of the North China Craton.  相似文献   

5.
Oxygen isotope geothermometry of coexisting minerals from five mafic granulites does not reflect the peak temperature of metamorphism as determined by other methods. Exchange of 18O between phases during slow cooling has (a) lowered the δ 18O of clinopyroxene relative to orthopyroxene in the presence of hornblende, (b) raised the δ 18O of quartz in a manner which is partly dependent on quartz abundance, and (c) lowered the δ 18O of plagioclase in some rocks.  相似文献   

6.
Mafic granulites have been found as structural lenses within the huge thrust system outcropping about 10 km west of Nam Co of the northern Lhasa Terrane, Tibetan Plateau. Petrological evidence from these rocks indicates four distinct metamorphic assemblages. The early metamorphic assemblage (M1) is preserved only in the granulites and represented by plagioclase+hornblende inclusions within the cores of garnet porphyroblasts. The peak assemblage (M2) consists of garnet+clinopyroxene+hornblende+plagioclase in the mafic granulites. The peak metamorphism was followed by near-isothermal decompression (M3), which resulted in the development of hornblende+plagioclase symplectites surrounding embayed garnet porphyroblasts, and decompression-cooling (M4) is represented by minerals of hornblende+plagioclase recrystallized during mylonization. The peak (M2) P-T conditions of garnet+ clinopyroxene+plagioclase+hornblende were estimated at 769-905℃ and 0.86-1.02 GPa based on the geothermometers and geobarometers. The  相似文献   

7.
 The Middle Miocene Tobe hornfels in the Sanbagawa metamorphic belt, western Shikoku, southwest Japan, is characterized by an abnormally steep metamorphic gradient compared with other hornfelses associated with intrusive bodies. The basic hornfels, originally Sanbagawa greenschist rocks, is divided into the following three metamorphic zones: plagioclase, hornblende, and orthopyroxene. The plagioclase zone is defined by the appearance of calcic plagioclase, the hornblende zone by the assemblage of hornblende+calcic plagioclase+quartz, and the orthopyroxene zone is characterized by the assemblage of orthopyroxene + clinopyroxene + plagioclase + quartz. Calcic amphibole compositions change from actinolite to hornblende as a result of the continuous reactions during prograde metamorphism. Petrographical and thermometric studies indicate a metamorphic temperature range of 300–475°C for the plagioclase zone, 475–680°C for the hornblende zone, and 680–730°C for the orthopyroxene zone. The temperature gradient based on petrological studies is approximately 5°C/m, which is unusually high. Geological and petrological studies demonstrate that the hornfelses were formed by the focusing of high-temperature fluids through zones of relatively high fracture permeability. The steep thermal gradient in the Tobe hornfels body is consistent with a large fluid flux, greater than 8.3 × 10–7 m3 m–2S–1, over the relatively short duration of metamorphism, approximately 100 years. Received: 10 October 1995 / Accepted: 28 May 1996  相似文献   

8.
谢燮  杨建国  王小红  王磊  江磊  姜安定 《现代地质》2015,29(6):1259-1270
甘肃北山红柳沟基性-超基性岩体位于塔里木板块北缘北山裂谷带, 岩体侵位于敦煌岩群,主要岩石类型有辉长岩、橄榄辉长岩、橄榄苏长辉长岩、橄榄角闪苏长岩、橄榄辉长苏长岩、二辉橄榄岩、橄榄辉石岩和辉石岩等。橄榄石Fo介于66.97%~82.92%之间,属贵橄榄石,斜方辉石En成分范围为68.49~77.65,属古铜辉石;单斜辉石En成分范围为45.85~48.81,主要为斜顽辉石和透辉石;斜长石An为58.70~72.69,以拉长石为主;角闪石以普通角闪石为主。岩体母岩浆Mg#值为0.59~0.62,属于高镁拉斑玄武质岩浆,岩浆演化过程中主要发生了橄榄石、斜方辉石、单斜辉石和斜长石的分离结晶作用,主要分离结晶矿物受单斜辉石和斜方辉石的控制,岩浆上升侵位过程中遭受到下地壳物质混染。从构造环境、母岩浆、岩体类型、岩浆分异程度、同化混染等方面综合分析认为红柳沟岩体具有形成铜镍硫化物矿床的较大潜力。  相似文献   

9.
The studied tonalitic and trondhjemitic granulites are located in the SSE granulitic domain of the São Francisco craton, Bahia, Brazil, where they represent most of the southern part of the Archean and Paleoproterozoic Itabuna-Salvador-Curaçá Block (ISCB). Chemically, the tonalitic and trondhjemitic granulites belong to a low-K calc-alkaline suite; their REE patterns are steep with strong LREE/HREE fractionation and no significant Eu anomaly. Garnet-bearing mafic granulites that occur as enclaves in the tonalitic and trondhjemitic granulites were derived from basalts and/or gabbros of tholeiitic affinity. Geochemical modelling showed that the tonalitic and trondhjemitic granulites were produced by moderate fractional crystallization of an assemblage of hornblende and plagioclase, with subordinate amounts of magnetite, apatite, allanite and zircon. The garnet-bearing mafic granulites would be the source of the magmas that generated these rocks. Partial melting left a residue made up of plagioclase, garnet, orthopyroxene and hornblende.  相似文献   

10.
High‐pressure kyanite‐bearing felsic granulites in the Bashiwake area of the south Altyn Tagh (SAT) subduction–collision complex enclose mafic granulites and garnet peridotite‐hosted sapphirine‐bearing metabasites. The predominant felsic granulites are garnet + quartz + ternary feldspar (now perthite) rocks containing kyanite, plagioclase, biotite, rutile, spinel, corundum, and minor zircon and apatite. The quartz‐bearing mafic granulites contain a peak pressure assemblage of garnet + clinopyroxene + ternary feldspar (now mesoperthite) + quartz + rutile. The sapphirine‐bearing metabasites occur as mafic layers in garnet peridotite. Petrographical data suggest a peak assemblage of garnet + clinopyroxene + kyanite + rutile. Early kyanite is inferred from a symplectite of sapphirine + corundum + plagioclase ± spinel, interpreted to have formed during decompression. Garnet peridotite contains an assemblage of garnet + olivine + orthopyroxene + clinopyroxene. Thermobarometry indicates that all rock types experienced peak P–T conditions of 18.5–27.3 kbar and 870–1050 °C. A medium–high pressure granulite facies overprint (780–820 °C, 9.5–12 kbar) is defined by the formation of secondary clinopyroxene ± orthopyroxene + plagioclase at the expense of garnet and early clinopyroxene in the mafic granulites, as well as by growth of spinel and plagioclase at the expense of garnet and kyanite in the felsic granulite. SHRIMP II zircon U‐Pb geochronology yields ages of 493 ± 7 Ma (mean of 11) from the felsic granulite, 497 ± 11 Ma (mean of 11) from sapphirine‐bearing metabasite and 501 ± 16 Ma (mean of 10) from garnet peridotite. Rounded zircon morphology, cathodoluminescence (CL) sector zoning, and inclusions of peak metamorphic minerals indicate these ages reflect HP/HT metamorphism. Similar ages determined for eclogites from the western segment of the SAT suggest that the same continental subduction/collision event may be responsible for HP metamorphism in both areas.  相似文献   

11.
The Panrimalai area constitutes part of the granulite-facies rocks of the Madurai block in the Southern Granulite Terrain (SGT), India. Garnet-bearing mafic granulites in Panrimalai occur as small enclaves within charnockite. The common stable assemblage during peak metamorphism contains hornblende, garnet, orthopyroxene, clinopyroxene, quartz and plagioclase. The resorption of garnet in various reaction textures and the development of spectacular orthopyroxene–plagioclase and hornblende–plagioclase symplectites characterize the subsequent stages of metamorphism. Application of multi-equilibrium calculation procedures for mineral core compositions of the early assemblage yields near peak conditions at   900 °C at 9 kbar. These estimates are the highest yet reported in mafic granulites from the Madurai block. The post-peak PT path is constructed for the mafic granulites based on observed microstructural relations and thermobarometric results is characterized by a steep clockwise decompressional PT segment from   9 to  < 4.5 kbar. Constraints from model Nd ages provide evidence for Paleoproterozoic magmatism restricted to the Madurai block in the Southern Granulite Terrain. The early part of the crustal evolution of the Panrimalai granulites could be coeval with the Paleoproterozoic event. Subsequent development of symplectitic assemblages via near-isothermal decompression can be ascribed to a distinctly later tectonic event. Available U–Pb and Sm–Nd mineral dates suggest a widespread Pan-African tectonothermal event in the SGT. Given the general recognition of ultrahigh-temperature (UHT) and isothermal decompression (ITD) in Pan-African age metamorphism in the East-African–Antarctic Orogen (EAAO) , the Panrimalai UHT history is considered to be part of this record.  相似文献   

12.
High‐pressure granulites are characterised by the key associations garnet‐clinopyroxene‐plagioclase‐quartz (in basic rocks) and kyanite‐K‐feldspar (metapelites and felsic rocks) and are typically orthopyroxene‐free in both basic and felsic bulk compositions. In regional metamorphic areas, two essential varieties exist: a high‐ to ultrahigh‐temperature group and a group representing overprinted eclogites. The high‐ to ultrahigh‐temperature type formerly contained high‐temperature ternary feldspar (now mesoperthite) coexisting with kyanite, is associated with garnet peridotites, and formed at conditions above 900 °C and 1.5 GPa. Clinopyroxene in subordinate basic rocks is Al‐rich and textural evidence points to a high‐pressure–high‐temperature melting history. The second variety contains symplectite‐like or poikilitic clinopyroxene‐plagioclase intergrowths indicating former plagioclase‐free, i.e. eclogite facies assemblages. This type of rock formed at conditions straddling the high‐pressure amphibolite/high‐pressure granulite field at around 700–850 °C, 1.0–1.4 GPa. Importantly, in the majority of high‐pressure granulites, orthopyroxene is secondary and is a product of reactions at pressures lower than the peak recorded pressure. In contrast to low‐ and medium‐pressure granulites, which form at conditions attainable in the mid to lower levels of normal continental crust, high‐pressure granulites (of nonxenolith origin) mostly represent rocks formed as a result of short‐lived tectonic events that led to crustal thickening or subduction of the crust into the mantle. Short times at high‐temperature conditions are reflected in the preservation of prograde zoning in garnet and pyroxene. High‐pressure granulites of both regional types, although rare, are known from both old and young metamorphic terranes (e.g. c. 45 Ma, Namche Barwa, E Himalaya; 400–340 Ma, European Variscides; 1.8 Ga Hengshan, China; 1.9 Ga, Snowbird, Saskatchewan and 2.5 Ga Jianping, China). This spread of ages supports proposals suggesting that thermal and tectonic processes in the lithosphere have not changed significantly since at least the end of the Archean.  相似文献   

13.
Dehydration melting of a hornblende‐plagioclase mixture of amphibolitic composition was investigated at 1000°C and at 800 MPa and 1200 MPa. At 1200 MPa the reaction products are garnet, clinopyroxene, melt and relatively Ab‐rich plagioclase (An47). At 800 MPa the products are orthopyroxene, clinopyroxene, magnetite, amphibole (pargasite) and An‐rich plagioclase (An75). The melts are rich in plagioclase components (especially in Ab) and, when compared to tonalites, relatively poor in silica. The grainsize of the starting materials was ≤?5 μm in the 800 MPa and ≤?10 μm in the 1200 MPa runs. All run products show unchanged plagioclase cores, which are the remnants of a very sluggish reaction assumed to be controlled by dissolution/precipitation processes at the plagioclase grain boundaries. The results indicate that only local equilibrium could have been obtained in recent investigations on dehydration melting experiments in plagioclase‐bearing systems. The results also suggest that plagioclase compositions once formed may persist for a very long time, even in hot magma chambers, if the prevailing water activity is low.  相似文献   

14.
Abstract

Intermediate orthogranulites were collected on the western flank of the Galicia bank during the Galinaute II cruise in 1995. The petrography of these rocks reveals two types of granulites. The first type is hydrous granulites with K-feldspar + plagioclase + quartz + orthopyroxene + hornblende + garnet + biotite + opaque + zircon + apatite assemblage. Both hornblende and orthopyroxene define a weak foliation plane. A late deformation event is expressed by some fractures cross-cutting the foliation. The second is anhydrous granulites with K-feldspar + plagioclase + quartz + orthopyroxene + clinopyroxene + opaque + zircon + apatite assemblage. The rocks display a granoblastic texture and are affected by brittle deformation as testified by the development of numerous microfractures. The P-T conditions (7 ± 1 Kbar, 750 ± 50 °C) calculated from two representative samples demonstrate that the rocks equilibrated under granulite facies conditions. Ar-Ar dating gives Precambrian ages ranging between ca. 2500–2000 Ma for the amphibole from the hydrous granulite and 1600–1500 Ma for the core of the K-feldspar from the anhydrous and hydrous granulites. A younger age of 900 Ma is obtained from the recrystallized rims of the K-feldspar from the two samples. These data indicate that the granulitic rocks in the Galicia Bank had already been exhumed and cooled below ca. 140–400 °C (blocking T° for K-feldspar) in Precambrian times (900 Ma). Given the very well preserved granulitic minerals assemblage of the rocks, the granulites behaved as competent and metastable boudins during their exhumation. The granulitic samples were previously interpreted as fragments of the lower continental crust sampled by the main detachment fault during Cretaceous rifting, but they were part of an upper continental crust from the Precambrian. Geochronological data and petrological assemblages suggest that the granulite blocks in the Galicia Bank probably were derived from the North Armorican Domain (northern part of France) where a Precambrian terrain outcrops. The opening of the Bay of Biscay could be responsible for the scattering of the Precambrian terrain and may explain the presence of the granulitic blocks on both sides of the Bay of Biscay. During the subduction of Europe below the Iberian peninsula the granulite blocks were transported southward and incorporated into a Cretaceous conglomerate forming the accrecionary prism on the Northern Iberia Margin. The granulite facies blocks found on the Galicia Bank represent another example of Gondwanian relics supporting the idea that the West European plate belonged to the West African craton during the Proterozoic. © 2000 Éditions scientifiques et médicales Elsevier SAS  相似文献   

15.
Orthopyroxene‐free garnet + clinopyroxene + plagioclase ± quartz‐bearing mineral assemblages represent the paragenetic link between plagioclase‐free eclogite facies metabasites and orthopyroxene‐bearing granulite facies metabasites. Although these assemblages are most commonly developed under P–T conditions consistent with high pressure granulite facies, they sometimes occur at lower grade in the amphibolite facies. Thus, these assemblages are characteristic but not definitive of high pressure granulite facies. Compositional factors favouring their development at amphibolite grade include Fe‐rich mineral compositions, Ca‐rich garnet and plagioclase, and Ti‐poor hornblende. The generalized reaction that accounts for the prograde development of garnet + clinopyroxene + plagioclase ± quartz from a hornblende + plagioclase + quartz‐bearing (amphibolite) precursor is Hbl + Pl + Qtz=Grt + Cpx + liquid or vapour, depending on whether the reaction occurs above or below the solidus. There are significant discrepancies between experimental and natural constraints on the P–T conditions of orthopyroxene‐free garnet + clinopyroxene + plagioclase ± quartz‐bearing mineral assemblages and therefore on the P–T position of this reaction. Semi‐quantitative thermodynamic modelling of this reaction is hampered by the lack of a melt model and gives results that are only moderately successful in rationalizing the natural and experimental data.  相似文献   

16.
《Geodinamica Acta》2000,13(2-3):103-117
Intermediate orthogranulites were collected on the western flank of the Galicia bank during the Galinaute II cruise in 1995. The petrography of these rocks reveals two types of granulites. The first type is hydrous granulites with K-feldspar + plagioclase + quartz + orthopyroxene + hornblende + garnet + biotite + opaque + zircon + apatite assemblage. Both hornblende and orthopyroxene define a weak foliation plane. A late deformation event is expressed by some fractures cross-cutting the foliation. The second is anhydrous granulites with K-feldspar + plagioclase + quartz + orthopyroxene + clinopyroxene + opaque + zircon + apatite assemblage. The rocks display a granoblastic texture and are affected by brittle deformation as testified by the development of numerous microfractures. The P–T conditions (7 ± 1 Kbar, 750 ± 50 °C) calculated from two representative samples demonstrate that the rocks equilibrated under granulite facies conditions. Ar-Ar dating gives Precambrian ages ranging between ca. 2500–2000 Ma for the amphibole from the hydrous granulite and 1600–1500 Ma for the core of the K-feldspar from the anhydrous and hydrous granulites. A younger age of 900 Ma is obtained from the recrystallized rims of the K-feldspar from the two samples. These data indicate that the granulitic rocks in the Galicia Bank had already been exhumed and cooled below ca. 140–400 °C (blocking T° for K-feldspar) in Precambrian times (900 Ma). Given the very well preserved granulitic minerals assemblage of the rocks, the granulites behaved as competent and metastable boudins during their exhumation. The granulitic samples were previously interpreted as fragments of the lower continental crust sampled by the main detachment fault during Cretaceous rifting, but they were part of an upper continental crust from the Precambrian. Geochronological data and petrological assemblages suggest that the granulite blocks in the Galicia Bank probably were derived from the North Armorican Domain (northern part of France) where a Precambrian terrain outcrops. The opening of the Bay of Biscay could be responsible for the scattering of the Precambrian terrain and may explain the presence of the granulitic blocks on both sides of the Bay of Biscay. During the subduction of Europe below the Iberian peninsula the granulite blocks were transported southward and incorporated into a Cretaceous conglomerate forming the accrecionary prism on the Northern Iberia Margin. The granulite facies blocks found on the Galicia Bank represent another example of Gondwanian relics supporting the idea that the West European plate belonged to the West African craton during the Proterozoic.  相似文献   

17.
Abstract The enthalpy of reaction of plagioclase and pyroxene to produce garnet and quartz has been a major source of error in granulite geobarometry because of relatively uncertain enthalpy values available from high-temperature solution calorimetry and compiled indirectly from experimental phase equilibria. Recent, improved calorimetric measurements of ΔHR are shown to yield palaeopressures which are internally consistent between orthopyroxene and clinopyroxene calibrations for many South Indian granulites from the Archaean high-grade terranes of southern Karnataka and northern Tamil Nadu. This represents a considerable improvement over previous calibrations, which gave disparate results for the two independent barometers involving orthopyroxene and clinopyroxene, requiring a 2-kbar ‘empirical adjustment’to force agreement. Palaeopressures thus calculated for 30 well-documented two-pyroxene garnet granulites from South India give internally consistent pressures with a mean of 8.1°1.1 kbar at 750°C, consistent with the presence of both kyanite and sillimanite in many areas. Those samples for which garnet–pyroxene exchange thermometers give plausible granulite-range temperatures and whose minerals are minimally zoned give the best agreement of the two barometers. Samples which yield low palaeotemperatures and different rim and core compositions of minerals yield pressures for the orthopyroxene assemblage as much as 2 kbar lower than for the assemblage with clinopyroxene. This disparity probably represents post-metamorphic-peak re-equilibration. We conclude that considerable confidence may be placed in geobarometry of two-pyroxene granulites where apparent palaeotemperatures are in the granulite facies range (>700°C) and where mineral zonation is minimal. Of the several possible sets of activity–composition relations in use, those constructed from analysis of phase equilibria give slightly higher palaeopressures and appear more consistent with analytical data from the Nilgiri Hills uplift, where kyanite is the only aluminium silicate reported to be stable in peak-metamorphic assemblages. The present results support a palaeopressure gradient, increasing generally from south to north, across the Nilgiri Hills as inferred by previous geobarometry.  相似文献   

18.
Summary Crust-derived xenoliths hosted by Miocene basaltic diatremes in the Hyblean Plateau (south-eastern Sicily, Italy) provide new information regarding the nature of a portion of the central Mediterranean lower crust. These xenoliths can be divided into three groups: gabbros (plagioclase + clinopyroxene + Fe–Ti oxides ± apatite ± amphibole ± Fe-rich green spinel), diorites (An-poor plagioclase, clinopyroxene ± Fe–Ti oxides ± orthopyroxene) and mafic granulites (plagioclase + clinopyroxene + green spinel ± orthopyroxene ± Fe–Ti oxides). Gabbros form the main subject of this paper. They represent cumulates whose igneous texture has been locally obliterated by metamorphic recrystallization and shearing. They were permeated by Fe–Ti-rich melts related to tholeiitic-type fractional crystallisation. Incompatible element ratios (Zr/Nb = 5–26; Y/Nb = 1.4–11) indicate that these cumulate gabbros derived from MORB liquids. Late-stage and hydrothermal fluids caused diverse, sometimes important, metasomatic trasformations. Petrographic and geochemical comparison with gabbroids from well-known geodynamic settings show that the Hyblean lower crustal xenoliths were probably formed in an oceanic or oceanic-continent transition environment.  相似文献   

19.
The Soufrière Hills volcano on Montserrat has for the past 12 years been erupting andesite with basaltic to basaltic–andesite inclusions. The andesite contains a wide variety of phenocryst textures and strongly zoned microlites. Analysis of minor elements in both phenocrysts and microlites allows us to put detailed constraints on their origins. Compositions of clinopyroxene, from overgrowth rims on quartz and orthopyroxene and coarse-grained breakdown rims on hornblende, are identical to those from the mafic inclusions, indicating that these rims form during interaction with mafic magma. In contrast, resorbed quartz and reversely zoned orthopyroxenes form during heating. Microlites of plagioclase and orthopyroxene are chemically distinct from the phenocrysts, being enriched in Fe and Mg, and Al and Ca respectively. However, microlites of plagioclase, orthopyroxene and clinopyroxene are indistinguishable from the compositions of these phases in the mafic inclusions. We infer that the inclusions disaggregated under conditions of high shear stress during ascent in the conduit, transferring mafic material into the andesite groundmass. The mafic component of the system is therefore greater than previously thought. The presence of mafic-derived microlites in the andesite groundmass also means that care must be taken when using this as a starting material for phase equilibrium experiments.  相似文献   

20.
The Fuping Complex and the adjoining Wutai and Hengshan Complexes are located in the central zone of the North China craton. The dominant rock types in the Fuping Complex are high‐grade tonalitic–trondhjemitic–granodioritic (TTG) gneisses, with minor amounts of mafic granulites, syntectonic granitic rocks and supracrustal rocks. The petrological evidence from the mafic granulites indicates three stages of metamorphic evolution. The M1 stage is represented by garnet porphyroblasts and matrix plagioclase, quartz, orthopyroxene, clinopyroxene and hornblende. Orthopyroxene+plagioclase symplectites and clinopyroxene+plagioclase±orthopyroxene coronas formed in response to decompression during M2 following the peak metamorphism at M1. Hornblende+plagioclase symplectites formed as a result of further isobaric cooling and retrograde metamorphism during M3. The P–T estimates using TWQ thermobarometry are: 900–950 °C and 8.0–8.5 kbar for the peak assemblage (M1), based on the core compositions of garnet, matrix pyroxene and plagioclase; 700–800 °C and 6.0–7.0 kbar for the pyroxene+plagioclase symplectites or coronas (M2); and 550–650 °C and 5.3–6.3 kbar for the hornblende+plagioclase symplectites (M3), based on garnet rim and corresponding symplectic mineral compositions. These P–T estimates define a clockwise P–T path involving near‐isothermal decompression for the Fuping Complex, similar to the P–T path estimated for the metapelitic gneisses. The inferred P–T path suggests that the Fuping Complex underwent initial crustal thickening, subsequent exhumation, and finally cooling and retrogression. This tectonothermal path is similar to P–T paths inferred for the Wutai and Hengshan Complexes and other tectonic units in the central zone of the North China craton, but different from anti‐clockwise P–T paths estimated for the basement rocks in the eastern and western zones of the craton. Based on lithological, structural, metamorphic and geochronological data, the eastern and western zones of the craton are considered to represent two different Archean to Paleoproterozoic continental blocks that amalgamated along the central zone at the end of Paleoproterozoic. The P–T paths of the Fuping Complex and other tectonic units in the central zone record the collision between the eastern and western zones that led to the final assembly of the North China craton at c. 1800 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号