首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Possible models for the thermal evolution of the Moon are constrained by a wide assortment of lunar data. In this work, theoretical lunar temperature models are computed taking into account different initial conditions to represent possible accretion models and various abundances of heat sources to correspond to different compositions. Differentiation and convection are simulated in the numerical computational scheme.Models of the thermal evolution of the Moon that fit the chronology of igneous activity on the lunar surface, the stress history of the lunar lithosphere implied by the presence of mascons, and the surface concentrations of radioactive elements, involve extensive differentiation early in lunar history. This differentiation may be the result of rapid accretion and large-scale melting or of primary chemical layering during accretion. Differences in present-day temperatures for these two possibilities are significant only in the inner 1000 km of the Moon and are not resolvable with presently available data.If the Apollo 15 heat flow is a representative value, the average uranium concentration in the moon is 65±15 ppb. This is consistent with achondritic bulk composition (between howardites and eucrites) for the Moon.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

2.
The thermal evolution of the Moon as it can be defined by the available data and theoretical calculations is discussed. A wide assortment of geological, geochemical and geophysical data constrain both the present-day temperatures and the thermal history of the lunar interior. On the basis of these data, the Moon is characterized as a differentiated body with a crust, a 1000-km-thick solid mantle (lithosphere) and an interior region (core) which may be partially molten. The presence of a crust indicates extensive melting and differentiation early in the lunar history. The ages of lunar samples define the chronology of igneous activity on the lunar surface. This covers a time span of about 1.5 billion yr, from the origin to about 3.16 billion yr ago. Most theoretical models require extensive melting early in the lunar history, and the outward differentiation of radioactive heat sources.Thermal history calculations, whether based on conductive or convective computation codes define relatively narrow bounds for the present day temperatures in the lunar mantle. In the inner region of the 700 km radius, the temperature limits are wider and are between about 100 and 1600°C at the center of the Moon. This central region could have a partially or totally molten core.The lunar heat flow values (about 30 ergs/cm2s) restrict the present day average uranium abundance to 60 ± 15 ppb (averaged for the whole Moon) with typical ratios of K/U = 2000 and Th/U = 3.5. This is consistent with an achondritic bulk composition for the Moon.The Moon, because of its smaller size, evolved rapidly as compared to the Earth and Mars. The lunar interior is cooling everywhere at the present and the Moon is tectonically inactive while Mars could be and the Earth is definitely active.  相似文献   

3.
Seismic data from the Apollo Passive Seismic Network stations are analyzed to determine the velocity structure and to infer the composition and physical properties of the lunar interior. Data from artificial impacts (S-IVB booster and LM ascent stage) cover a distance range of 70–1100 km. Travel times and amplitudes, as well as theoretical seismograms, are used to derive a velocity model for the outer 150 km of the Moon. TheP wave velocity model confirms our earlier report of a lunar crust in the eastern part of Oceanus Procellarum.The crust is about 60 km thick and may consist of two layers in the mare regions. Possible values for theP-wave velocity in the uppermost mantle are between 7.7 km s–1 and 9.0 km s–1. The 9 km s–1 velocity cannot extend below a depth of about 100 km and must decrease below this depth. The elastic properties of the deep interior as inferred from the seismograms of natural events (meteoroid impacts and moonquakes) occurring at great distance indicate that there is an increase in attenuation and a possible decrease of velocity at depths below about 1000 km. This verifies the high temperatures calculated for the deep lunar interior by thermal history models.Paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.  相似文献   

4.
The Kuiper Belt zone is unique insofar as the major heat sources of objects a few tens of kilometers in size—solar radiation on the one hand and radioactive decay on the other—have comparable power. This leads to unique evolutionary patterns, with heat waves propagating inward from the irradiated surface and outward from the radioactively heated interior. A major radioactive source that is considered in this study is 26Al. The long-term evolution of several models with characteristics typical of Kuiper Belt objects is followed by means of a 1-D numerical code that solves the heat and mass balance equations on a spherically symmetric grid. The free parameters considered are radius (10-500 km), heliocentric distance (30-120 AU), and initial 26Al content (0-5×10−8 by mass). The initial composition assumed is a porous mixture of ices (H2O, CO, and CO2) and dust. Gases released in the interior are allowed to escape to the surface. It is shown that, depending on parameters, the interior may reach quite high temperatures (up to 180 K). The models suggest that Kuiper Belt objects are likely to lose the ices of very volatile species during early evolution; ices of less volatile species are retained in a surface layer, about 1 km thick. The models indicate that the amorphous ice crystallizes in the interior, and hence some objects may also lose part of the volatiles trapped in amorphous ice. Generally, the outer layers are far less affected than the inner part, resulting in a stratified composition and altered porosity distribution. These changes in structure and composition should have significant consequences for the short-period comets, which are believed to be descendants of Kuiper Belt objects.  相似文献   

5.
Analysis of seismic signals from man-made impacts, moonquakes, and meteoroid impacts has established the presence of a lunar crust, approximately 60 km thick in the region of the Apollo seismic network; an underlying zone of nearly constant seismic velocity extending to a depth of about 1000 km, referred to as the mantle; and a lunar core, beginning at a depth of about 1000 km, in which shear waves are highly attenuated suggesting the presence of appreciable melting. Seismic velocitites in the crust reach 7 km s–1 beneath the lower-velocity surface zone. This velocity corresponds to that expected for the gabbroic anorthosites found to predominate in the highlands, suggesting that rock of this composition is the major constituent of the lunar crust. The upper mantle velocity of about 8 km s–1 for compressional waves corresponds to those of terrestrial olivines, pyroxenites and peridotites. The deep zone of melting may simply represent the depth at which solidus temperatures are exceeded in the lower mantle. If a silicate interior is assumed, as seems most plausible, minimum temperatures of between 1450°C and 1600°C at a depth of 1000 km are implied. The generation of deep moonquakes, which appear to be concentrated in a zone between 600 km and 1000 km deep, may now be explained as a consequence of the presence of fluids which facilitate dislocation. The preliminary estimate of meteoroid flux, based upon the statistics of seismic signals recorded from lunar impacts, is between one and three orders of magnitude lower than previous estimates from Earth-based measurements.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.  相似文献   

6.
Evaluation of all reasonable sources of stress in the lunar crust indicates that compressional thermoelastic stresses are the only ones which have been tectonically significant on the global scale during the last 3.5×109 yr of lunar history — i.e., the post-Imbrian. However, the thermoelastic stresses calculated for lunar models which have accretional heating profiles at the beginning of lunar history; i.e., a molten zone only a few hundred kilometers deep and a cool deep interior, are less than 1 kbar in the crust. Such stresses are lower than the more than 1 to 7 kbar needed to initiate thrust faulting in the outer crust according to Anderson's theory of thrust faulting. Thus such accretional models predict that no significant global thrust faulting has occurred during the post-Imbrian and that the crust should currently be seismically quiet on the global scale.In contrast, the compressional thermoelastic stresses generated in a Moon which was initially totally molten, as is the case if the Moon formed by fission, are up to 3.5 kbar in the outer few km of the crust at present. These stresses are well within the range needed to cause thrust faulting in the outer 4 km of the crust. According to this model there should be modest scale (10 km), young ( 0.5 to 1×109 yr old) thrust fault scarps in the highlands.Photoselenological investigations confirm that scarps with the expected age and geometric characteristics are found in the highlands. Thus the currently available photoselenological data support the stress model derived for an initially totally molten Moon, but not one which was molten only in the outer few hundreds of km.  相似文献   

7.
The electrical conductivity of olivine and pyroxene is a strong function of the fugacity of oxygen in the atmosphere with which the mineral is in equilibrium. Lunar temperature profiles calculated from data on the electrical conductivity of these two minerals at oxygen fugacities similar to those which exist in the Moon indicate considerably higher temperatures for the lunar interior than obtained from conductivity data collected under normal atmospheric conditions. These high interior temperatures, the extensive differentiation associated with the formation of the lunar maria, and the radioactive element content of the Moon indicate that the Moon accreted at temperatures between 600 and 1000°C. Gravitational heating during accretion would lead to melting of at least the outer 200 km of the Moon and would produce conditions favourable to separation of a metal-sulfide melt sufficient to form a core of 200–300 km radius. Such a core would reach the center of the Moon within a few million years after accretion. This core could produce the remanent magnetization observed in the surface rocks. Dynamo action would cease with the cessation of convective motion within the core as the temperature of the surrounding mantle increased due to radioactive heating. With the radioactivity assumed in the present model and the high accretion temperature, this event would require less than 2 b.y., but more than 1.6 b.y.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

8.
Heat convection, being a more general theory than conduction theory, compels one to give reasons for using the latter theory as the basis of thermal evolution studies. Such reasons are supplied by considerations of material rheology.The specific case of the thermal regime of the Moon is first considered as a steady state problem. It is demonstrated that no plausible creep resistance of lunar material and heat generation is compatible with a purely conductive theory of lunar thermal evolution. The most plausible, steady state models give convective cores extending to within 200–300 km of the surface. The radial temperature gradients in such cores is virtually confined to a thermal boundary layer but averages to about a tenth of degree/km. The (steady) central temperature for the most plausible lunar rheologies lie between 600–1000°C. Such models are compatible with the first interpretations of lunar magnetometry. The case for considering the lunar thermal state as such a quasi-static state is discussed.It is also predicted that in very local zones the viscous dissipation of the general circulation produces much higher temperatures. Chemical differentiation and seismicity would have their origin in such low viscosity zones.  相似文献   

9.
There have been many models describing the evolution of our sister planet. As information from the intensive exploration by the Apollo program has accumulated, more constraints on these models have emerged. We specifically consider a hypothesis in which there is a present day asthenosphere, a heat flow between 24 and 32 ergs cm−2 s−1 and a crust which developed early in the Moon's history by melting of the outer 100 to 200 km. We have also introduced a constraint which keeps the deep interior below the Curie point of iron for the first 1 to 1.5 b.y. so that it is able to carry the memory of an early field which magnetized the cold interior. The magnetized mare basalts and breccias cooled in this field from above the Curie point of iron (≈800°C.) and acquired a thermoremanent magnetization. While fully recognizing that some of these constraints are subject to other interpretations, it is nevertheless instructive to consider the thermal history that follows from such a model. First, the initial temperature must be high enough to cause melting in the outer 100–200 km, while the interior temperature must be cool enough to be below the Curie point of iron. Second, the crust in this model cools off so rapidly that the mare basalts could not be developed as late as indicated in lunar history. Rather we propose that the mare basalts result from local remelting associated with giant impacts. Third, the Moon's deep interior must have warmed up enough to erase the memory of the ancient magnetic field from the deep interior and to develop the asthenosphere which has been detected seismically. Fourth, if this asthenosphere is real, the viscosity of the Moon as a function of temperature must be high enough to have prevented convective cooling until the temperature increased to a value near the solidus temperature. At this temperature, the Moon would then likely cool by convection in the solid state. It is, therefore, a consequence of this model that solid body convection tool place late in lunar history. This may well have contributed to the lunar center of figure and center of mass offset, to the low order terms in its gravity field and to, its disequilibrium moment of inertia differences.  相似文献   

10.
The internal temperatures, heat fluxes, and rates of evolution of volcanic liquids for lunar models with initial radioactivities and temperatures that decrease going downward in the Moon are calculated. These conditions lead to a volcanism concentrated very early in lunar history even when other heat sources, e.g. melting due to accretion, are excluded.  相似文献   

11.
Lunar heat-flow calculations are carried out for a model Moon in which (a) near-surface initial temperatures are very high (as the occurence of a surface anorthositic layer seems to require), and (b) heat-generating radionuclides are transported upward when melting occurs. Near-surface regions are found to cool and then experience a resurgence of high temperature, as radionuclide-rich magmas from the lunar interior accumulate near the surface. This peaking of near-surface temperature can be brought into correspondence with the episode of vulcanism (∼ 3.5 × 109 years ago) that gave rise to the basalts represented in the Apollo samples, if we assume relatively high lunar temperatures in early times (due to high initial temperatures, or high content of radioactive elements, or both).  相似文献   

12.
An empirically derived lunar gravity field   总被引:1,自引:0,他引:1  
The heat-flow experiment is one of the Apollo Lunar Surface Experiment Package (ALSEP) instruments that was emplaced on the lunar surface on Apollo 15. This experiment is designed to make temperature and thermal property measurements in the lunar subsurface so as to determine the rate of heat loss from the lunar interior through the surface. About 45 days (1 1/2 lunations) of data has been analyzed in a preliminary way. This analysis indicates that the vertical heat flow through the regolith at one probe site is 3.3 × 10–6 W/cm2 (±15%). This value is approximately one-half the Earth's average heat flow. Further analysis of data over several lunations is required to demonstrate that this value is representative of the heat flow at the Hadley Rille site. The mean subsurface temperature at a depth of 1 m is approximately 252.4K at one probe site and 250.7K at the other. These temperatures are approximately 35K above the mean surface temperature and indicate that conductivity in the surficial layer of the Moon is highly temperature dependent. Between 1 and 1.5m, the rate of temperature increase as a function of depth is 1.75K/m (±2%) at the probe 1 site. In situ measurements indicate that the thermal conductivity of the regolith increases with depth. Thermal-conductivity values between 1.4 × 10–4 and 2.5 × 10–4 W/cm K were determined; these values are a factor of 7 to 10 greater than the values of the surface conductivity. If the observed heat flow at Hadley Base is representative of the moonwide rate of heat loss (an assumption which is not fully justified at this time), it would imply that overall radioactive heat production in the Moon is greater than in classes of meteorites that have formed the basis of Earth and Moon bulk composition models in the past.Lamont-Doherty Geological Observatory Contribution Number 1800.  相似文献   

13.
A model is presented for the lateral variations of density within the Moon. The model gives rise to a gravitational potential which is equal to the observed potential at the lunar surface, moreover, it minimizes the total shear-strain energy of the Moon. The model exhibits lateral variations of about ±0.25 g cc–1 within 50 km depth. The variations, however, reduce to ±0.06 and ±0.008 g cc–1 within layers at 50–135 and 135–235 km respectively, and they become negligible below this region. The associated stress differences are found to be about 50 bar within 600 km depth, having their maximum values of about 90 bars at a depth of about 250 km. On the basis of these stress differences a strength of about 100 bar is concluded for the upper 400 km of the lunar interior for the last 3.3 b.y.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.The Lunar Science Institute is operated by the Universities Space Research Association under Contract No. NSR 09-051-001 with the National Aeronautics and Space Administration. This paper is Lunar Science Institute Contribution No. 117.  相似文献   

14.
Thermal evolutions of the terrestrial planets   总被引:1,自引:0,他引:1  
The thermal evolution of the Moon, Mercury, Mars, Venus and hypothetical minor planets is calculated theoretically, taking into account conduction, solid-state convection, and differentiation. An assortment of geological, geochemical, and geophysical data is used to constrain both the present day temperatures and thermal histories of the planets' interiors. Such data imply that the planets were heated during or shortly after formation and that all the terrestrial planets started their differentiations early in their history. Initial temperatures and core formation play the most important roles in the early differentiation. The size of the planet is the primary factor in determining its present day thermal state. A planetary body with radius less than 1000 km is unlikely to reach melting given heat source concentrations similar to terrestrial values and in the absence of intensive early heating such as short half-life radioactive heating and inductive heating.Studies of individual planets are constrained by varying amounts of data. Most data exist for the Earth and Moon. The Moon is a differentiated body with a crust, a thick solid mantle and an interior region which may be partially molten. It is presently cooling rapidly and is relatively inactive tectonically.Mercury most likely has a large core. Thermal calculations indicate it may have a 500 km thick solid lithosphere, and the core may be partially molten if it contains some heat sources. If this is not the case, the planet's interior temperatures are everywhere below the melting curve for iron. The thermal evolution is dominated by core separation and the high conductivity of iron which makes up the bulk of Mercury.Mars, intermediate in size among the terrestrial planets, is assumed to have differentiated an Fe–FeS core. Differentiation and formation of an early crust is evident from Mariner and Viking observations. Theoretical models suggest that melting and differentiation of the mantle silicates has occurred at least up until 1 billion years ago. Present day temperature profiles indicate a relatively thick (250 km) lithosphere with a possible asthenosphere below. The core is molten.Venus is characterized as a planet similar to the Earth in many respects. Core formation probably occurred during the first billion years after the formation. Present day temperatures indicate a partially molten upper mantle overlain by a 100 km thick lithosphere and a molten Fe–Ni core. If temperature models are good indicators, we can expect that today, Venus has tectonic processes similar to the Earth's.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May 1978.  相似文献   

15.
Model calculations show that the thermal history of a Moon which originated by fission from the proto-Earth is the same as that for the Moon as it is currently understood. In particular, a fissioned Moon currently has a small percent of partial melt or at least near solidus temperatures below depths of 800 km in accord with the seismic data which show that the deep interior of the Moon has a very lowQ. The models have moderate (20–50%) degrees of partial melting in the upper mantle (depths < 300 or 200 km) in the period between 3 to 4 × 109 years ago and, therefore, can account for the mare filling epoch. Finally the heat flow of the models is 18 ergs cm–2 s–1 which is close to the average of 19 ergs cm–2 s–1 derived from the Apollo heat flow experiments. These findings add further support for the fission origin of the Moon.  相似文献   

16.
Javier Ruiz  Rosa Tejero 《Icarus》2003,162(2):362-373
Two opposing models to explain the geological features observed on Europa’s surface have been proposed. The thin-shell model states that the ice shell is only a few kilometers thick, transfers heat by conduction only, and can become locally thinner until it exposes an underlying ocean on the satellite’s surface. According to the thick-shell model, the ice shell may be several tens of kilometers thick and have a lower convective layer, above which there is a cold stagnant lid that dissipates heat by conduction. Whichever the case, from magnetic data there is strong support for the presence of a layer of salty liquid water under the ice. The present study was performed to examine whether the possibility of convection is theoretically consistent with surface heat flows of ∼100-200 mW m−2, deduced from a thin brittle lithosphere, and with the typical spacing of 15-23 km proposed for the features usually known as lenticulae. It was obtained that under Europa’s ice shell conditions convection could occur and also account for high heat flows due to tidal heating of the convective (nearly isothermal) interior, but only if the dominant water ice rheology is superplastic flow (with activation energy of 49 kJ mol−1; this is the rheology thought dominant in the warm interior of the ice shell). In this case the ice shell would be ∼15-50 km thick. Furthermore, in this scenario explaining the origin of the lenticulae related to convective processes requires ice grain size close to 1 mm and ice thickness around 15-20 km.  相似文献   

17.
A simple analytical model is developed from which we have calculated the temperature throughout the lunar interior resulting from internal heat sources and the imposition of surface temperature boundary conditions. The surface temperature is determined almost entirely by the balance of solar heating and surface reradiation; as a consequence this temperature is latitude dependent, decreasing towards the lunar poles. The internal solution shows that the latitude effect exists almost undiminished to great depths within the Moon. It is suggested that this dependence on latitude may have a significant effect on the Moon’s thermal evolution. Using the liquefaction model the high concentration of lunar maria at low latitudes may be explained.  相似文献   

18.
If a molten, or partially molten, lunar core exists at present, constraints would be placed on the viscosity of the solid mantle and the distribution of radioactive heat sources. Models in which the heat sources have been concentrated near the surface would rapidly solidify if the effective viscosity was equal to, or less than, 1022 cm2 s−1. Retention of most of the heat sources throughout the mantle would permit present day solid convection to occur without cooling the core.  相似文献   

19.
Recent geochemical and geophysical data suggest that the initial temperature of the Moon was strongly peaked toward the lunar surface. To explain such an initial temperature distribution, a simple model of accretion process of the Moon is presented. The model assumes that the Moon was formed from the accumulation of the solid particles or gases in the isolated, closed cloud. Two equations are derived to calculate the accretion rate and surface temperature of the accreting Moon. Numerical calculations are made for a wide range of the parameters particle concentration and particle velocity in the cloud. A limited set of the parameters gives the initial temperature profiles as required by geochemical and geophysical data. These models of the proto-moon cloud indicate that the lunar outershell, about 400 km thick, was partially or completely molten just after the accretion of the Moon and that the Moon should have been formed in a period shorter than 1000 yr. If the Moon formed at a position nearer to the Earth than its present one, the Moon might have been formed in a period of less than one year.On leave from Geophysical Institute, University of Tokyo.Contribution No. 2104, Division of Geological and Planetary Sciences, California Institute of Technology.  相似文献   

20.
The thermal emission of the lunar surface has been mapped by an infrared scanner from lunar orbit. Samples from approximately 2.5 × 105 scans reveal the full range of lunar temperatures from 80 K to 400 K. The temperature resolution was 1 K with about ± 2 K absolute precision. Spatial resolution was approximately 2 km over most of the horizon-to-horizon scan. The total mapped area amounted to approximately 30% of the lunar surface. The data currently available confirms the large population of nighttime thermal anomalies in western Oceanus Procellarum predicted by Earthbased observations. Most of these ‘hot spots’ are associated with fresh impact features or boulder fields. Also seen in the data are ‘cold spots’ where  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号