首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Volcanic Risk Assessment and Mapping in the Vesuvian Area Using GIS   总被引:3,自引:0,他引:3  
Lirer  Lucio  Vitelli  Livia 《Natural Hazards》1998,17(1):1-15
This paper assesses the risk to people and property from lava flow hazard in the Vesuvian area of Italy using a Geographical Information System (GIS). The intense urbanisation and dense population near Mt. Vesuvius make the area very hazardous. Due to the large amount of available data, GIS is an essential tool to facilitate risk evaluation and constant monitoring of the zone. This analysis is based mainly on a lava flow hazard map of Mt. Vesuvius, determined from volcanic activity between 1631 and 1944. A land-use zonation map of the area was created in order to show areal distribution of the resources, built-up centres and population. For each of the 17 municipalities in the area, demographic and urban data were entered into the GIS database and linked to each appropriate geographic unit in order to create a set of reference maps at the 1:50 000 scale. The lava flow hazard map was overlain on the land use map, and spatial and numerical information of risk were extracted from the resulting maps.  相似文献   

2.
Seismic hazard studies were conducted for Gaziantep city in the South Anatolia of Turkey. For this purpose, a new attenuation relationship was developed using the data of Zaré and Bard and accelerations were predicted employing this new equation. Deterministic approach, total probability theorem and GIS methodology were all together utilized for the seismic assessments. Seismic hazard maps with 0.25° grid intervals considering the site conditions were produced by the GIS technique. The results indicated that the acceleration values by the GIS hazard modelings were matched with the ones from the deterministic approach, however, they were underestimated comparing with the total probability theorem. In addition, the GIS based seismic hazard maps showed that the current seismic map of Turkey fairly yields conservative acceleration values for the Gaziantep region. Therefore, the constructed GIS hazard models are offered as a base map for a further modification of the current seismic hazard map.  相似文献   

3.
In general, landslides in Malaysia mostly occurred during northeast and southwest periods, two monsoonal systems that bring heavy rain. As the consequence, most landslide occurrences were induced by rainfall. This paper reports the effect of monsoonal-related geospatial data in landslide hazard modeling in Cameron Highlands, Malaysia, using Geographic Information System (GIS). Land surface temperature (LST) data was selected as the monsoonal rainfall footprints on the land surface. Four LST maps were derived from Landsat 7 thermal band acquired at peaks of dry and rainy seasons in 2001. The landslide factors chosen from topography map were slope, slope aspect, curvature, elevation, land use, proximity to road, and river/lake; while from geology map were lithology and proximity to lineament. Landslide characteristics were extracted by crossing between the landslide sites of Cameron Highlands and landslide factors. Using which, the weighting system was derived. Each landslide factors were divided into five subcategories. The highest weight values were assigned to those having the highest number of landslide occurrences. Weighted overlay was used as GIS operator to generate landslide hazard maps. GIS analysis was performed in two modes: (1) static mode, using all factors except LST data; (2) dynamic mode, using all factors including multi-temporal LST data. The effect of addition of LST maps was evaluated. The final landslide hazard maps were divided into five categories: very high risk, high risk, moderate, low risk, and very low risk. From verification process using landslide map, the landslide model can predict back about 13–16% very high risk sites and 70–93% of very high risk and high risk combined together. It was observed however that inclusion of LST maps does not necessarily increase the accuracy of the landslide model to predict landslide sites.  相似文献   

4.
The present study deals with the application of analytical hierarchy process to prepare landslide hazard risk map of the Shivkhola Watershed applying remote sensing and geographic information system (GIS). Firstly, to integrate all the required thematic data layers and to prepare landslide susceptibility map, prioritised class rating value and prioritised factor rating value were obtained by developing couple-comparing matrix with a reasonable consistency and with the help of MATLAB software after Saaty. Three important risk factor/element maps, that is, weighted land use/land cover map, road contributing area map and settlement density map, were developed and their weighted linear combination was performed to prepare landslide risk exposure map. Then by integrating landslide susceptibility map and landslide risk exposure map, a classification was incorporated on ARC GIS Platform to prepare landslide hazard risk map. To evaluate the validity of the landslide hazard risk map, probability/chance of landslide hazard risk event has been estimated by means of frequency ratio between landslide hazard risk area (%) and number of risk events (%) for each landslide hazard risk class. Finally, an accuracy assessment was also made on ERDAS Imagine (8.5) which depicts that the classification accuracy of the landslide hazard risk map was 92.89 with overall Kappa statistics of 0.8929.  相似文献   

5.
Drought risk assessment in the western part of Bangladesh   总被引:14,自引:8,他引:6  
Though drought is a recurrent phenomenon in Bangladesh, very little attention has been so far paid to the mitigation and preparedness of droughts. This article presents a method for spatial assessment of drought risk in Bangladesh. A conceptual framework, which emphasizes the combined role of hazard and vulnerability in defining risk, is used for the study. Standardized precipitation index method in a GIS environment is used to map the spatial extents of drought hazards in different time steps. The key social and physical factors that define drought vulnerability in the context of Bangladesh are identified and corresponding thematic maps in district level are prepared. Composite drought vulnerability map is developed through the integration of those thematic maps. The risk is computed as the product of the hazard and vulnerability. The result shows that droughts pose highest risk to the northern and northwestern districts of Bangladesh.  相似文献   

6.
This paper illustrates the development of flood hazard and risk maps in Greater Dhaka of Bangladesh using geoinformatics. Multi-temporal RADARSAT SAR and GIS data were employed to delineate flood hazard and risk areas for the 1998 historical flood. Flood-affected frequency and flood depth were estimated from multi-date SAR data and considered as hydrologic parameters for the evaluation of flood hazard. Using land-cover, gemorphic units and elevation data as thematic components, flood hazard maps were created by considering the interactive effect of flood frequency and flood water depth concurrently. Analysis revealed that a major portion of Greater Dhaka was exposed to high to very high hazard zones while a smaller portion (2.72%) was free from the potential flood hazard. Flood risk map according to administrative division showed that 75.35% of Greater Dhaka was within medium to very high risk areas of which 53.39% of areas are believed to be fully urbanized by the year 2010.  相似文献   

7.
Groundwater is a very important resource across Ismailia area as it is used in domestic, agricultural, and industrial purposes. This makes it absolutely necessary that the effects of land use change on groundwater resources are considered when making land use decisions. Careful monitoring of groundwater resource helps minimize the contamination of this resource. This study developed a GIS-based model to assess groundwater contamination in the West Ismailia area based on its hydrochemical characteristics. The model incorporated five different factors which are standardized to a common evaluation scale. The produced factor maps include the depth to the water table, the potential recharge, the soil type, the topography, and the thickness of saturation. These maps are combined in ERDAS Imagine, ARC INFO, and ARC GIS software using geostatistics and a weighted overlay process to produce the final groundwater potential risk map. The model output is then used to determine the vulnerability of groundwater to contamination by domestic, agricultural, and industrial sources. The produced risk maps are then combined with the groundwater contamination potentiality map using an arithmetic overlay in order to identify areas which were vulnerable to contamination. The results of this study revealed that the groundwater is highly vulnerable to contamination that may result from the inappropriate application of agrichemicals and domestic and industrial activities. The produced integrated potential contamination maps are very useful tools for a decision maker concerned with groundwater protection and development.  相似文献   

8.
Increasing pressure on water resources worldwide has resulted in groundwater contamination, and thus the deterioration of the groundwater resources and a threat to the public health. Risk mapping of groundwater contamination is an important tool for groundwater protection, land use management, and public health. This study presents a new approach for groundwater contamination risk mapping, based on hydrogeological setting, land use, contamination load, and groundwater modelling. The risk map is a product of probability of contamination and impact. This approach was applied on the Gaza Strip area in Palestine as a case study. A spatial analyst tool within Geographical Information System (GIS) was used to interpolate and manipulate data to develop GIS maps of vulnerability, land use, and contamination impact. A groundwater flow model for the area of study was also used to track the flow and to delineate the capture zones of public wells. The results show that areas of highest contamination risk occur in the southern cities of Khan Yunis and Rafah. The majority of public wells are located in an intermediate risk zone and four wells are in a high risk zone.  相似文献   

9.
RS与GIS支持下的汶川县城周边地质灾害危险性评价   总被引:1,自引:1,他引:0       下载免费PDF全文
刘汉湖 《中国地质》2012,39(1):243-251
地质灾害危险性评价是防灾减灾工作的重要依据。本文以汶川县城周边64 km2为例,应用遥感信息提取技术与GIS空间分析方法,根据IKONOS遥感图像和地形图及野外调查资料,提取了崩塌和滑坡易发性评价因子,采用信息量法确定了因子分值,计算了崩塌和滑坡易发性,并分别提出崩塌和滑坡的危险性计算方法,形成了汶川地区崩塌和滑坡危险性分区图。研究结果表明:新的崩塌和滑坡危险性评价方法能够反映区内地质灾害危险程度,该方法可行,结果合理,这为中、大比例尺区域范围内地质灾害危险性研究提供了有益的思路。  相似文献   

10.
The production of flood hazard assessment maps is an important component of flood risk assessment. This study analyses flood hazard using flood mark data. The chosen case study is the 2013 flood event in Quang Nam, Vietnam. The impacts of this event included 17 deaths, 230 injuries, 91,739 flooded properties, 11,530 ha of submerged and damaged agricultural land, 85,080 animals killed and widespread damage to roads, canals, dykes and embankments. The flood mark data include flood depth and flood duration. Analytic hierarchy process method is used to assess the criteria and sub-criteria of the flood hazard. The weights of criteria and sub-criteria are generated based on the judgements of decision-makers using this method. This assessment is combined into a single map using weighted linear combination, integrated with GIS to produce a flood hazard map. Previous research has usually not considered flood duration in flood hazard assessment maps. This factor has a rather strong influence on the livelihood of local communities in Quang Nam, with most agricultural land within the floodplain. A more comprehensive flood hazard assessment mapping process, with the additional consideration of flood duration, can make a significant contribution to flood risk management activities in Vietnam.  相似文献   

11.
城市泥石流风险评价探讨   总被引:5,自引:1,他引:5       下载免费PDF全文
唐川  朱静 《水科学进展》2006,17(3):383-388
探讨了城市泥石流风险评价的系统方法,该方法包括泥石流扇形地危险区划、城市易损性分析和城市泥石流风险评价三个主要内容。泥石流堆积扇危险区划是基于数值模拟计算出的泥深和流速分布图进行叠合完成的。以美国高分辨率的“快鸟”卫星影像为数据源,完成了研究区的城市土地覆盖类型遥感解译,在此基础上完成了城市泥石流易损性分析,应用地理信息系统提供的统计和分析工具,完成了研究区泥石流风险评价。该风险区划图可用于指导对泥石流易泛区的不同风险地带的土地利用进行规划和决策,从而达到规避和减轻灾害的目的,也为生活在泥石流危险区的城市居民提供有关灾害风险信息,以作避难和灾害防治的依据。  相似文献   

12.
The presented research was performed in order to model the fire risk in a part of Hyrcanian forests of Iran. The fuzzy sets integrated with analytic hierarchy process (AHP) in a decision-making algorithm using geographic information system (GIS) was used to model the fire risk in the study area. The used factors included four major criteria (topographic, biologic, climatic, and human factors) and their 17 sub-criteria. Fuzzy AHP method was used for estimating the importance (weight) of the effective factors in forest fire. Based on this modeling method, the expert ideas were used to express the relative importance and priority of the major criteria and sub-criteria in forest fire risk in the study area. The expert ideas mean was analyzed based on fuzzy extent analysis. Then, the fuzzy weights of criteria and sub-criteria were obtained. The major criteria models and fire risk model were presented based on these fuzzy weights. On the other hand, the spatial data of 17 sub-criteria were provided and organized in GIS to obtain the sub-criteria maps. Each sub-criterion map was converted to raster format and it was reclassified based on risk of its classes to fire occurrence. Then, all sub-criteria maps were converted to fuzzy format using fuzzy membership function in GIS. The fuzzy map of each major criterion (topographic, biologic, climatic, and human criteria) was obtained by weighted overlay of its sub-criteria fuzzy maps considering to major criterion model in GIS. Finally, the fuzzy map of fire risk was obtained by weighted overlay of major criteria fuzzy maps considering to fire risk model in GIS. The actual fire map was used for validation of fire risk model and map. The results showed that the fuzzy estimated weights of human, biologic, climatic, and topographic criteria in fire risk were 0.301, 0.2595, 0.2315, and 0.208, respectively. The results obtained from the fire risk map showed that 38.74% of the study area has very high and high risk for fire occurrence. Results of validation of the fire risk map showed that 80% of the actual fires were located in the very high and high risk areas in fire risk map. It can show the acceptable accuracy of the fire risk model and map obtained from fuzzy AHP in this study. The obtained fire risk map can be used as a decision support system for predicting of the future fires in the study area.  相似文献   

13.
The creation of earthquake hazard maps requires various datasets with selected attenuation relations. Based on the selected attenuation relation, the calculation time varies from half an hour to a couple of days. The length of time needed to create an earthquake hazard map also depends on the resolution of the resulting map. The time gets longer as the resolution of the resulting earthquake hazard map gets higher. The basic form of an attenuation relation requires complex calculation algorithms including geospatial information related to the region of interest. Nowadays, next-generation attenuation (NGA) models are introduced to generate more realistic earthquake hazard maps. However, the more complex the attenuation relation is, the longer time will be required to create a hazard map. This paper offers a new method to create high-resolution earthquake hazard maps, faster than using traditional attenuation relation methods, by using an analytic hierarchy process of spatial multi-criteria decision analysis and geographic information systems. This method has been generated and tested for the city of Istanbul. The resulting maps are compared with the earthquake hazard maps created for the city of Istanbul by using the NGA model of Boore and Atkinson (in Boore–Atkinson NGA ground motion relations for the geometric mean horizontal component of peak and spectral ground motion parameters (trans: Engineering Co, University of California B). Pacific Earthquake Engineering Research Center 2007). A second output of this paper is a map of the elements at risk (EaR) for the population and buildings of Istanbul, and the introduction of a new approach of net elements at risk (NEaR).  相似文献   

14.
For the socio-economic development of a country, the highway network plays a pivotal role. It has therefore become an imperative to have landslide hazard assessment along these roads to provide safety. The current study presents landslide hazard zonation maps, based on the information value method and frequency ratio method using GIS on 1:50,000 scale by generating the information about the landslide influencing factors. The study was carried out in the year 2017 on a part of Ravi river catchment along one of the landslide-prone Chamba to Bharmour road corridor of NH-154A in Himachal Pradesh, India. A number of landslide triggering geo-environmental factors like “slope, aspect, relative relief, soil, curvature, Land Use and Land Cover (LULC), lithology, drainage density, and lineament density” were selected for landslide hazard mapping based on landslide inventory. The landslide inventory has been developed using satellite imagery, Google earth and by doing exhaustive field surveys. A digital elevation model was used to generate slope gradient, slope aspect, curvature, and relative relief map of the study area. The other information, i.e., soil maps, geological maps, and toposheets, have been collected from various departments. The landslide hazard zonation map was categorized namely “very high hazard, high hazard, medium hazard, low hazard, and very low hazard.” The results from these two methods have been validated using area under curve (AUC) method. It has been found that hazard zonation map prepared using frequency ratio model had a prediction rate of 75.37% while map prepared using information value method had prediction rate of 78.87%. Hence, on the basis of prediction rate, the landslide hazard zonation map, obtained using information value method, was experienced to be more suitable for the study area.  相似文献   

15.
Worldwide, earthquakes and related disasters have persistently had severe negative impacts on human livelihoods and have caused widespread socioeconomic and environmental damage. The severity of these disasters has prompted recognition of the need for comprehensive and effective disaster and emergency management (DEM) efforts, which are required to plan, respond to and develop risk mitigation strategies. In this regard, recently developed methods, known as multi-criteria decision analysis (MCDA), have been widely used in DEM domains by emergency managers to greatly improve the quality of the decision-making process, making it more participatory, explicit, rational and efficient. In this study, MCDA techniques of the Analytical Hierarchical Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), integrated with GIS, were used to produce earthquake hazard and risk maps for earthquake disaster monitoring and analysis for a case study region of Küçükçekmece in Istanbul, Turkey. The five main criteria that have the strongest influence on the impact of earthquakes on the study region were determined: topography, distance to epicentre, soil classification, liquefaction and fault/focal mechanism. AHP was used to determine the weights of these parameters, which were also used as input into the TOPSIS method and GIS (ESRI ArcGIS) for simulating these outputs to produce earthquake hazard maps. The resulting earthquake hazard maps created by both the AHP and TOPSIS models were compared, showing high correlation and compatibility. To estimate the elements at risk, population and building data were used with the AHP and TOPSIS hazard maps for potential loss assessment; thus, we demonstrated the potential of integrating GIS with AHP and TOPSIS in generating hazard maps for effective earthquake disaster and risk management.  相似文献   

16.
Risk assessment of earth fracture hazards is particularly useful for regulatory, managerial, and decision-making purposes at all levels of government. A three-map method that includes intrinsic vulnerability, specific vulnerability, and hazard maps is developed to assess the earth fracture hazards in Yuci City, Shanxi, China. The intrinsic (natural) vulnerability map is based on the assessment of various natural factors by coupling the technologies of a Geographical Information System (GIS) to an Artificial Neural Network (ANN). The specific vulnerability map is generated by coupling the technologies of a GIS and an Analytical Hierarchy Process (AHP). According to the overlapping principles of multiple geo-information systems, the hazard map is therefore defined by overlapping the intrinsic and specific vulnerability maps using a spatial-operation function in the GIS. Unlike the intrinsic vulnerability map, the hazard map takes into account human activities and the importance of the area to be assessed. The proposed three-map approach is not only scientifically valuable, but provides a more realistic assessment of earth fracture hazards as well.  相似文献   

17.
Probabilistic landslide hazards and risk mapping on Penang Island, Malaysia   总被引:15,自引:0,他引:15  
This paper deals with landslide hazards and risk analysis of Penang Island, Malaysia using Geographic Information System (GIS) and remote sensing data. Landslide locations in the study area were identified from interpretations of aerial photographs and field surveys. Topographical/geological data and satellite images were collected and processed using GIS and image processing tools. There are ten landslide inducing parameters which are considered for landslide hazard analysis. These parameters are topographic slope, aspect, curvature and distance from drainage, all derived from the topographic database; geology and distance from lineament, derived from the geologic database; landuse from Landsat satellite images; soil from the soil database; precipitation amount, derived from the rainfall database; and the vegetation index value from SPOT satellite images. Landslide susceptibility was analyzed using landslide-occurrence factors employing the probability-frequency ratio model. The results of the analysis were verified using the landslide location data and compared with the probabilistic model. The accuracy observed was 80.03%. The qualitative landslide hazard analysis was carried out using the frequency ratio model through the map overlay analysis in GIS environment. The accuracy of hazard map was 86.41%. Further, risk analysis was done by studying the landslide hazard map and damageable objects at risk. This information could be used to estimate the risk to population, property and existing infrastructure like transportation network.  相似文献   

18.
Wind-erosion risk is a challenge that threatens land development in dry-land regions. Soil analysis, remote sensing, climatic, vegetal cover and topographic data were used in a geographic information system (GIS), using multi-criteria analysis (MCA) to map wind-erosion risk (Rwe) in Laghouat, Algeria. The approach was based on modelling the risk and incorporating topographic and climatic effects. The maps were coded according to their sensitivity to wind erosion and to their socio-economic potential, from low to very high. By overlapping the effects of these layers, qualitative maps were drawn to reflect the potential sensitivity to wind erosion per unit area. The results indicated that severe wind erosion affects mainly all the southern parts and some parts in the north of Laghouat, where wind-erosion hazard (Hwe) is very high in 43% of the total area, and which was affected mainly by natural parameters such as soil, topography and wind. The results also identified features vulnerable to Rwe. The product of the hazard and the stake maps indicated the potential risk areas that need preventive measures; this was more than half of the study area, making it essential to undertake environmental management and land-use planning.  相似文献   

19.
A simplified methodology for mapping groundwater vulnerability and contamination risk is proposed, and the first application of the methodology, in a mountainous tropical karst area, is presented. The test site is the Tam Duong area, one of the poorest and remotest regions in northern Vietnam. The methodology requires a minimum of input data, which makes it particularly useful for developing countries. Vulnerability is assessed on the basis of two factors, which take into account the duality of recharge processes in karst aquifer systems: the overlying layers (O) and the concentration of flow (C). The risk map is obtained by putting together the vulnerability map and a simplified hazard assessment. The resulting maps provide a basis for groundwater protection zoning and land-use planning. Tracer tests and microbiological data confirmed the vulnerability and risk assessment in the test site.  相似文献   

20.
Landslide hazard or susceptibility assessment is based on the selection of relevant factors which play a role on the slope instability, and it is assumed that landslides will occur at similar conditions to those in the past. The selected statistical method compares parametric maps with the landslide inventory map, and results are then extrapolated to the entire evaluated territory with a final product of landslide hazard or susceptibility map. Elements at risk are defined and analyzed in relation with landslide hazard, and their vulnerability is thus established. The landslide risk map presents risk scenarios and expected financial losses caused by landslides, and it utilizes prognoses and analyses arising from the landslide hazard map. However, especially the risk scenarios for future in a selected area have a significant importance, the literature generally consists of the landslide susceptibility assessment and papers which attempt to assess and construct the map of the landslide risk are not prevail. In the paper presented herein, landslide hazard and risk assessment using bivariate statistical analysis was applied in the landslide area between Hlohovec and Sered?? cities in the south-western Slovakia, and methodology for the risk assessment was explained in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号