首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Time‐lapse 3D seismic reflection data, covering the CO2 storage operation at the Snøhvit gas field in the Barents Sea, show clear amplitude and time‐delay differences following injection. The nature and extent of these changes suggest that increased pore fluid pressure contributes to the observed seismic response, in addition to a saturation effect. Spectral decomposition using the smoothed pseudo‐Wigner–Ville distribution has been used to derive discrete‐frequency reflection amplitudes from around the base of the CO2 storage reservoir. These are utilized to determine the lateral variation in peak tuning frequency across the seismic anomaly as this provides a direct proxy for the thickness of the causative feature. Under the assumption that the lateral and vertical extents of the respective saturation and pressure changes following CO2 injection will be significantly different, discrete spectral amplitudes are used to distinguish between the two effects. A clear spatial separation is observed in the distribution of low‐ and high‐frequency tuning. This is used to discriminate between direct fluid substitution of CO2, as a thin layer, and pressure changes that are distributed across a greater thickness of the storage reservoir. The results reveal a striking correlation with findings derived from pressure and saturation discrimination algorithms based on amplitude versus offset analysis.  相似文献   

2.
The injection of CO2 at the Ketzin pilot site commenced in June 2008 and was terminated in August 2013 after 67 kT had been injected into a saline formation at a depth of 630–650 m. As part of the site monitoring program, four 3D surface seismic surveys have been acquired to date, one baseline and three repeats, of which two were conducted during the injection period, and one during the post‐injection phase. The surveys have provided the most comprehensive images of the spreading CO2 plume within the reservoir layer. Both petrophysical experiments on core samples from the Ketzin reservoir and spectral decomposition of the 3D time‐lapse seismic data show that the reservoir pore pressure change due to CO2 injection has a rather minor impact on the seismic amplitudes. Therefore, the observed amplitude anomaly is interpreted to be mainly due to CO2 saturation. In this study, amplitude versus offset analysis has been applied to investigate the amplitude versus offset response from the top of the sandstone reservoir during the injection and post‐injection phases, and utilize it to obtain a more quantitative assessment of the CO2 gaseous saturation changes. Based on the amplitude versus offset modelling, a prominent decrease in the intercept values imaged at the top of the reservoir around the injection well is indeed associated solely with the CO2 saturation increase. Any change in the gradient values, which would, in case it was positive, be the only signature induced by the reservoir pressure variations, has not been observed. The amplitude versus offset intercept change is, therefore, entirely ascribed to CO2 saturation and used for its quantitative assessment. The estimated CO2 saturation values around the injection area in the range of 40%–60% are similar to those obtained earlier from pulsed neutron‐gamma logging. The highest values of 80% are found in the second seismic repeat in close vicinity to the injection and observation wells.  相似文献   

3.
The cross‐calibration of different vintage data is an important prerequisite in attempting to determine the time‐lapse seismic effects induced by hydrocarbon production in a reservoir. This paper reports the preprocessing and cross‐calibration procedures adopted to modify the data of four seismic vintages (1982, 1989, 1992 and 1999) from the Oseberg field in the North Sea, for optimal conditions for a time‐lapse seismic amplitude analysis. The final results, in terms of time‐lapse variations, of acoustic impedance and of amplitude‐versus‐offset, are illustrated for selected data sets. The application of preprocessing to each individual vintage data set reduces the effects of the different acquisition and noise conditions, and leads to consistency in the amplitude response of the four vintages. This consistency facilitates the final amplitude cross‐calibration that is carried out using, as reference, the Cretaceous horizon reflections above the Brent reservoir. Such cross‐calibration can be considered as vintage‐consistent residual amplitude correction. Acoustic impedance sections, intercept and gradient amplitude‐versus‐offset attributes and coherent amplitude‐versus‐offset estimates are computed on the final cross‐calibrated data. The results, shown for three spatially coincident 2D lines selected from the 1982, 1989 and 1999 data sets, clearly indicate gas‐cap expansion resulting from oil production. Such expansion is manifested as a decrease in acoustic impedance and a modification of the amplitude‐versus‐offset trends in the apical part of the reservoir.  相似文献   

4.
We extend the frequency‐ and angle‐dependent poroelastic reflectivity to systematically analyse the characteristic of seismic waveforms for highly attenuating reservoir rocks. It is found that the mesoscopic fluid pressure diffusion can significantly affect the root‐mean‐square amplitude, frequency content, and phase signatures of seismic waveforms. We loosely group the seismic amplitude‐versus‐angle and ‐frequency characteristics into three classes under different geological circumstances: (i) for Class‐I amplitude‐versus‐angle and ‐frequency, which corresponds to well‐compacted reservoirs having Class‐I amplitude‐versus‐offset characteristic, the root‐mean‐square amplitude at near offset is boosted at high frequency, whereas seismic energy at far offset is concentrated at low frequency; (ii) for Class‐II amplitude‐versus‐angle and ‐frequency, which corresponds to moderately compacted reservoirs having Class‐II amplitude‐versus‐offset characteristic, the weak seismic amplitude might exhibit a phase‐reversal trend, hence distorting both the seismic waveform and energy distribution; (iii) for Class‐III amplitude‐versus‐angle and ‐frequency, which corresponds to unconsolidated reservoir having Class‐III amplitude‐versus‐offset characteristic, the mesoscopic fluid flow does not exercise an appreciable effect on the seismic waveforms, but there exists a non‐negligible amplitude decay compared with the elastic seismic responses based on the Zoeppritz equation.  相似文献   

5.
Gaussian beam migration is a versatile imaging method for geologically complex land areas, which overcomes the limitation of Kirchhoff migration in imaging multiple arrivals and has no steep‐dip limits of one‐way wave‐equation migration. However, its imaging accuracy depends on the geometry of Gaussian beam that is determined by the initial parameter of dynamic ray tracing. As a result, its applications in exploration areas with strong variations in topography and near‐surface velocity are limited. Combined with the concept of Fresnel zone and the theory of wave‐field approximation in effective vicinity, we present a more robust common‐shot Fresnel beam imaging method for complex topographic land areas in this paper. Compared with the conventional Gaussian beam migration for irregular topography, our method improves the beam geometry by limiting its effective half‐width with Fresnel zone radius. Moreover, through a quadratic travel‐time correction and an amplitude correction that is based on the wave‐field approximation in effective vicinity, it gives an accurate method for plane‐wave decomposition at complex topography, which produces good imaging results in both shallow and deep zones. Trials of two typical models and its application in field data demonstrated the validity and robustness of our method.  相似文献   

6.
Sensitivity of time-lapse seismic to reservoir stress path   总被引:1,自引:1,他引:1  
The change in reservoir pore pressure due to the production of hydrocarbons leads to anisotropic changes in the stress field acting on the reservoir. Reservoir stress path is defined as the ratio of the change in effective horizontal stress to the change in effective vertical stress from the initial reservoir conditions, and strongly influences the depletion‐induced compaction behaviour of the reservoir. Seismic velocities in sandstones vary with stress due to the presence of stress‐sensitive regions within the rock, such as grain boundaries, microcracks, fractures, etc. Since the response of any microcracks and grain boundaries to a change in stress depends on their orientation relative to the principal stress axes, elastic‐wave velocities are sensitive to reservoir stress path. The vertical P‐ and S‐wave velocities, the small‐offset P‐ and SV‐wave normal‐moveout (NMO) velocities, and the P‐wave amplitude‐versus‐offset (AVO) are sensitive to different combinations of vertical and horizontal stress. The relationships between these quantities and the change in stress can be calibrated using a repeat seismic, sonic log, checkshot or vertical seismic profile (VSP) at the location of a well at which the change in reservoir pressure has been measured. Alternatively, the variation of velocity with azimuth and distance from the borehole, obtained by dipole radial profiling, can be used. Having calibrated these relationships, the theory allows the reservoir stress path to be monitored using time‐lapse seismic by combining changes in the vertical P‐wave impedance, changes in the P‐wave NMO and AVO behaviour, and changes in the S‐wave impedance.  相似文献   

7.
Fluid depletion within a compacting reservoir can lead to significant stress and strain changes and potentially severe geomechanical issues, both inside and outside the reservoir. We extend previous research of time‐lapse seismic interpretation by incorporating synthetic near‐offset and full‐offset common‐midpoint reflection data using anisotropic ray tracing to investigate uncertainties in time‐lapse seismic observations. The time‐lapse seismic simulations use dynamic elasticity models built from hydro‐geomechanical simulation output and a stress‐dependent rock physics model. The reservoir model is a conceptual two‐fault graben reservoir, where we allow the fault fluid‐flow transmissibility to vary from high to low to simulate non‐compartmentalized and compartmentalized reservoirs, respectively. The results indicate time‐lapse seismic amplitude changes and travel‐time shifts can be used to qualitatively identify reservoir compartmentalization. Due to the high repeatability and good quality of the time‐lapse synthetic dataset, the estimated travel‐time shifts and amplitude changes for near‐offset data match the true model subsurface changes with minimal errors. A 1D velocity–strain relation was used to estimate the vertical velocity change for the reservoir bottom interface by applying zero‐offset time shifts from both the near‐offset and full‐offset measurements. For near‐offset data, the estimated P‐wave velocity changes were within 10% of the true value. However, for full‐offset data, time‐lapse attributes are quantitatively reliable using standard time‐lapse seismic methods when an updated velocity model is used rather than the baseline model.  相似文献   

8.
碳酸盐岩孔洞型储集体地震反射特征分析   总被引:5,自引:1,他引:4       下载免费PDF全文
定量分析碳酸盐岩孔洞型储集体的地震响应特征,对孔洞储集体的预测和刻画研究有着重要意义.基于声波方程,在忽略多次散射的情况下,导出了深层小尺度孤立洞体的地震响应近似解析式,该解析表达式给出了孔洞尺度、充填程度与地震振幅属性之间的关系.分析表明:(1)当孔洞异常体尺度小于地震波长的1/8时,反射波振幅与异常体体积呈近似正比关系;(2)异常体横向上的尺度对反射波振幅的影响主要由菲涅耳半径控制,同时振幅随横向尺度的变化规律受到纵向尺度的影响;(3)异常体纵向上的尺度对反射振幅的影响主要表现为调谐效应,当纵向上的尺度等于调谐厚度(地震波长的1/4)时,反射振幅最强.不同尺度溶洞的数值模拟研究结果以及不同填充物的单洞物理模型试验和溶洞群物理模型试验验证了以上结论的正确性.  相似文献   

9.
Seismic amplitudes contain important information that can be related to fluid saturation. The amplitude‐versus‐offset analysis of seismic data based on Gassmann's theory and the approximation of the Zoeppritz equations has played a central role in reservoir characterization. However, this standard technique faces a long‐standing problem: its inability to distinguish between partial gas and “fizz‐water” with little gas saturation. In this paper, we studied seismic dispersion and attenuation in partially saturated poroelastic media by using frequency‐dependent rock physics model, through which the frequency‐dependent amplitude‐versus‐offset response is calculated as a function of porosity and water saturation. We propose a cross‐plotting of two attributes derived from the frequency‐dependent amplitude‐versus‐offset response to differentiate partial gas saturation and “fizz‐water” saturation. One of the attributes is a measure of “low frequency”, or Gassmann, of reflectivity, whereas the other is a measure of the “frequency dependence” of reflectivity. This is in contrast to standard amplitude‐versus‐offset attributes, where there is typically no such separation. A pragmatic frequency‐dependent amplitude‐versus‐offset inversion for rock and fluid properties is also established based on Bayesian theorem. A synthetic study is performed to explore the potential of the method to estimate gas saturation and porosity variations. An advantage of our work is that the method is in principle predictive, opening the way to further testing and calibration with field data. We believe that such work should guide and augment more theoretical studies of frequency‐dependent amplitude‐versus‐offset analysis.  相似文献   

10.
Equations have been presented previously which predict that reflector curvature can affect significantly seismic reflection amplitudes at both zero and nonzero source-receiver offsets. Here the fact that faults are generally concave-upward is used to examine the curvature effect for compaction-driven faults which the sediments have both exponential and logarithmic porosity decreases with increasing depth.The curvature effect is generally larger over upwardly concave reflectors where amplitudes can either increase with offset (exposed focus) or decrease with offset (buried focus). The magnitude of the effect depends on the ratio between the depth to the structure and the radius of curvature of the structure. A phase change of 90° also occurs at a critical offset in the case of an exposed focus concave-upward reflector, with decreasing amplitude at offsets larger than the critical value. Dip move-out (DMO) dominantly removes the amplitude variation with offset due to curvature. These results suggest that when looking for amplitude variations with offset in a fault prospect, DMO should be applied as a preprocessing step. Compaction-driven faults have an exposed focus and, for an exponential variation of porosity with depth, there is a maximum curvature effect at a depth roughly the same as the scaling depth for the porosity. Logarithmic porosity with depth variations suggest a continued increase in the curvature effect of faults with increasing depth, to a maximum amplitude increase of about 35% relative to a plane interface.  相似文献   

11.
Natural fractures in reservoirs play an important role in determining fluid flow during production and knowledge of the orientation and density of fractures is required to optimize production. Variations in reflection amplitude versus offset (AVO) are sensitive to the presence of fractures but current models used to invert the seismic response often make simplified assumptions that prevent fractured reservoirs from being characterized correctly. For example, many models assume a single set of perfectly aligned fractures, whereas most reservoirs contain several fracture sets with variable orientation within a given fracture set. In addition, many authors only consider the azimuthal variation in the small offset amplitude versus offset and azimuth response (the variation in AVO gradient with azimuth), while the effect of fractures on amplitude versus offset and azimuth increases with increasing offset. In this paper, the variation in the reflection coefficient of seismic P -waves as a function of azimuth and offset due to the presence of multiple sets of fractures with variable orientation within any fracture set is used to determine the components of a second-rank fracture compliance tensor  α ij   . The variation in the trace of this tensor as a function of position in the reservoir can be used to estimate the variation in fracture density with position in the reservoir and may be used to choose the location of infill wells in the field. The principal axes of  α ij   reveal the most compliant direction within the reservoir and may be used to optimize the trajectory of deviated wells. The determination of the principal axes of  α ij   requires wide azimuth acquisition and the use of the small-offset amplitude versus offset and azimuth (the azimuthal variation of the AVO gradient) may give misleading results.  相似文献   

12.
We have developed a straightforward and ray based methodology to estimate both the maximum offset and reflection imaging radius for multi‐layered velocity models, which can be used for a 2D/3D VSP survey design. Through numerical examples, we demonstrate that the presence of a high‐velocity layer above a target zone significantly reduces the maximum offset and reflection imaging radius. Our numerical examples also show that including in a migration VSP data acquired beyond a recommended maximum offset, radically degrades the quality of the final VSP image. In addition, unlike the conventional straight‐line based approximation that often produces an incorrect large reflection imaging radius, our methodology predicts the VSP imaging radius with more accuracy than does the conventional approximation.  相似文献   

13.
TTI介质qP波入射精确和近似反射透射系数   总被引:8,自引:5,他引:3       下载免费PDF全文
介质各向异性是影响振幅随炮检距变化(AVO)的重要因素之一本文将Aki和Richards以及Rüger的方法进行推广,推导出两个弹性倾斜横向各向同性(TTI)介质密接条件下平面波反射和透射系数及其近似式.从位移波函数出发,利用位移连续和应力连续边界条件,建立了TTI介质qP波人射的拟Zoeppritz方程,求解得到精确...  相似文献   

14.
Frequency-dependent amplitude variation with offset offers an effective method for hydrocarbon detections and analysis of fluid flow during production of oil and natural gas within a fractured reservoir. An appropriate representation for the frequency dependency of seismic amplitude variation with offset signatures should incorporate influences of dispersive and attenuating properties of a reservoir and the layered structure for either isotropic or anisotropic dispersion analysis. In this study, we use an equivalent medium permeated with aligned fractures that simulates frequency-dependent anisotropy, which is sensitive to the filled fluid of fractures. The model, where pores and fractures are filled with two different fluids, considers velocity dispersion and attenuation due to mesoscopic wave-induced fluid flow. We have introduced an improved scheme seamlessly linking rock physics modelling and calculations for frequency-dependent reflection coefficients based on the propagator matrix technique. The modelling scheme is performed in the frequency-slowness domain and can properly incorporate effects of both bedded structure of the reservoir and velocity dispersion quantified with frequency-dependent stiffness. Therefore, for a dispersive and attenuated layered model, seismic signatures represent a combined contribution of impedance contrast, layer thickness, anisotropic dispersion of the fractured media and tuning and interference of thin layers, which has been avoided by current conventional methods. Frequency-dependent amplitude variation with offset responses was studied via considering the influences of fracture fills, layer thicknesses and fracture weaknesses for three classes amplitude variation with offset reservoirs. Modelling results show the applicability of the introduced procedure for interpretations of frequency-dependent seismic anomalies associated with both layered structure and velocity dispersion of an equivalent anisotropic medium. The implications indicate that anisotropic velocity dispersion should be incorporated accurately to obtain enhanced amplitude variation with offset interpretations. The presented frequency-dependent amplitude variation with offset modelling procedure offers a useful tool for fracture fluid detections in an anisotropic dispersive reservoir with layered structures.  相似文献   

15.
由共成像点道集抽取的共偏移距道集可以当成相同地下成像的多次观测.由于偏移误差的影响,在不同共偏移距道集上,同一采样点存在水平和垂直方向上的错位.本文提出一种基于地震图像校准的共成像点道集增强技术,实现了不同偏移距道集在时间和空间上的逐点匹配对齐.在本文中以2D局部归一化互相关来表征共偏移距道集和叠加道集在相同时空位置的相似度,假设在不同水平和垂直移动量时的互相关满足连续凸函数,利用求导方法估计共偏移距道集在该位置处的非整数校正量,最后采用双线性内插方法估计成像振幅.传统道集拉平技术在垂直方向进行校正量消除,本文方法能有效估计共偏移距道集中的水平和垂直校正量,并在亚像素域估计正确的成像振幅.模型数据和实际数据的处理结果表明,本文方法能有效增强共成像点道集中同相轴的一致性,提高叠加结果的分辨率.  相似文献   

16.
隐伏逆断层破裂扩展特征的实验研究及其地震地质意义   总被引:3,自引:1,他引:2  
通过模拟实验研究了逆断层活动过程中上覆沉积层的破裂扩展特征,采用投影条纹测试方法分析了沉积层表面离面(即垂直)位移场的演化过程。结果表明,在沉积层厚度和断层倾角一定的条件下,基岩中的逆断层逐渐向上扩展,并在沉积层表面围绕基岩断层上断点的投影线形成一个离面位移梯度带(即形变带),基岩断层的位移越大,沉积层中的形变带越宽、变形越强烈;但当断层扩展至沉积层表面后,形变带宽度将保持稳定,只是变形随断层位移增加而更集中。对于同样的基岩断层位移和断层倾角,沉积层厚度越大,受基岩断层控制的形变带越宽,即基岩断层的影响范围越大;当沉积层厚度超过某一临界值时,沉积层中会发育因隆起引起的表面拉张破裂。在沉积层厚度和基岩断层位移量一定的情况下,基岩断层倾角的增加将会使表面形变带的宽度减小,但会使变形破坏程度更强烈。实验结果意味着,临界断层位移、临界沉积层厚度以及断层倾角对于确定隐伏逆断层发震产生的地表变形和破坏特征具有重要意义。文中的研究结果有助于进一步认识汶川MS8.0地震的地表变形特征  相似文献   

17.
For 3‐D shallow‐water seismic surveys offshore Abu Dhabi, imaging the target reflectors requires high resolution. Characterization and monitoring of hydrocarbon reservoirs by seismic amplitude‐versus‐offset techniques demands high pre‐stack amplitude fidelity. In this region, however, it still was not clear how the survey parameters should be chosen to satisfy the required data quality. To answer this question, we applied the focal‐beam method to survey evaluation and design. This subsurface‐ and target‐oriented approach enables quantitative analysis of attributes such as the best achievable resolution and pre‐stack amplitude fidelity at a fixed grid point in the subsurface for a given acquisition geometry at the surface. This method offers an efficient way to optimize the acquisition geometry for maximum resolution and minimum amplitude‐versus‐offset imprint. We applied it to several acquisition geometries in order to understand the effects of survey parameters such as the four spatial sampling intervals and apertures of the template geometry. The results led to a good understanding of the relationship between the survey parameters and the resulting data quality and identification of the survey parameters for reflection imaging and amplitude‐versus‐offset applications.  相似文献   

18.
We present the results obtained by processing high-resolution seismic data acquired along the spring line located in the Friuli-Venezia Giulia plain (NE of Italy), in order to characterize an important multilayered aquifer. This system is made of an unconfined layer and, at increasing depths, of several confined aquifers of variable thickness and hydraulic permeability, mainly consisting of sand and gravel material. The main targets of this study are two shallow aquifers located at about 30 m and 200 m depth respectively. The seismic method is not frequently used for this type of study but in this case, it was considered a good tool due to the depth of the targets. The detailed velocity model we obtained reveals lateral velocity variations with a maximum value of 600 m/s. The higher velocities could be associated to layers that are confined aquifers; in fact, sand and gravel are characterized by higher seismic velocity compared to clay layers. Pre-stack depth migration using this velocity model gives a clear picture of the multilayered aquifer, highlighting lateral changes of seismic amplitude along the main reflectors. Finally, vertical variations of Poisson's ratio, computed by amplitude versus offset analysis, provide useful information about the petrophysical properties, such as the fluid content of the subsoil and lithologic changes.  相似文献   

19.
地震后在断层两侧的强变形与破裂带是地震灾害最严重的区域.为系统、定量研究同震地表变形带特征及其影响因素,本研究建立了走滑断层的三维有限元模型,分别探讨了断层位错量、断层倾角、错动方式、上覆松散层厚度、沉积层土性等因素的影响规律.模拟结果显示:走滑断层同震地表变形表现为以断层为中心的近似对称单峰分布,强地表变形集中在断层两侧各50 m宽度范围,地表变形量峰值随位错量增加而增大,破裂带宽度也随位错量增加而增大,但增量逐渐减小,并趋于一个渐近值;断层倾角对地表变形与破裂带宽度影响表现为随倾角减小变形量峰值点向上盘小距离偏移;走滑兼正断位错引起的变形量峰值最大,但地表破裂带宽度最小,走滑兼逆断引起的变形量峰值最小,但地表破裂带宽度最大,直立纯走滑断层的两参量都居中;走滑断层地表变形量峰值随上覆松散层厚度增大而减小,但随厚度减小的速率逐渐变小,松散层厚度从5 m增加到20 m时,破裂带宽度随厚度增加而缓慢增加,但自厚度大于20 m时,破裂带宽度开始随厚度增加而逐渐下降;当不同土性覆盖层(粗砂、粉砂、黏土)厚度相同时,地震引起的地表变形量峰值自粗砂、粉砂、黏土逐次增大,当粗砂厚度为60 m以上时,3.6 m的同震水平位错已不能形成地表破裂,而粉砂的厚度为70 m以上,黏土的厚度则为75 m以上.  相似文献   

20.
Pore-pressure depletion causes changes in the triaxial stress state. Pore-pressure depletion in a flat reservoir, for example, can be reasonably approximated as uniaxial compaction, in which the horizontal effective stress change is smaller than the vertical effective stress. Furthermore, the stress sensitivity of velocities can be angle-dependent. Therefore, time-lapse changes in reservoir elastic anisotropy are expected as a consequence of production, which can complicate the interpretation of the 4D seismic response. The anisotropic 4D seismic response caused by pore-pressure depletion was investigated using existing core velocity measurements. To make a direct comparison between the anisotropic 4D seismic response and the isotropic response based only on vertical velocities, pseudoisotropic elastic properties were utilized, and the two responses were compared in terms of a dynamic rock physics template. A comparison of the dynamic rock physics templates indicates that time-lapse changes in reservoir elastic anisotropy have a noticeable impact on the interpretation of 4D seismic data. Changes in anisotropy as a result of pore-pressure depletion cause a time-lapse amplitude variation with offset response as if there is a reduction in VP/VS (i.e., pseudoisotropic VP/VS decreases), although the vertical VP/VS increases. The impact of time-lapse changes in anisotropy on the amplitude variation with offset gradient was also investigated, and the time-lapse anisotropy was found to enhance changes in the amplitude variation with offset gradient for a given case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号