首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A Eulerian–Lagrangian method (ELM) is employed for the simulation of wave propagation in the present research. The wave action conservation equation, instead of the wave energy balance equation, is used. The wave action is conservative and the action flux remains constant along the wave rays. The ELM correctly accounts for this physical characteristic of wave propagation and integrates the wave action spectrum along the wave rays. Thus, the total derivative for wave action spectrum may be introduced into the numerical scheme and the complicated partial differential wave action balance equation is simplified into an ordinary differential equation. A number of test cases on wave propagation are carried out and show that the present method is stable, accurate and efficient. The results are compared with analytical solutions and/or other computed results. It is shown that the ELM is superior to the first-order upwind method in accuracy, stability and efficiency and may better reflect the complicated dynamics due to the complicated bathymetry features in shallow water areas.  相似文献   

2.
《Ocean Engineering》1999,26(3):255-276
A Eulerian–Lagrangian method (ELM) is employed for the simulation of wave propagation in the present research. The wave action conservation equation, instead of the wave energy balance equation, is used. The wave action is conservative and the action flux remains constant along the wave rays. The ELM correctly accounts for this physical characteristic of wave propagation and integrates the wave action spectrum along the wave rays. Thus, the total derivative for wave action spectrum may be introduced into the numerical scheme and the complicated partial differential wave action balance equation is simplified into an ordinary differential equation. A number of test cases on wave propagation are carried out and show that the present method is stable, accurate and efficient. The results are compared with analytical solutions and/or other computed results. It is shown that the ELM is superior to the first-order upwind method in accuracy, stability and efficiency and may better reflect the complicated dynamics due to the complicated bathymetry features in shallow water areas.  相似文献   

3.
球坐标系下MASNUM海浪数值模式的建立及其应用   总被引:24,自引:5,他引:24  
为开展海浪对海洋上混合层的搅拌混合作用及其对海气界面通量的影响等研究,在LAGFD WAM区域海浪数值模式基础上建立了球坐标系下的全球海浪数值模式.重点导出了球坐标系下的海浪能量谱平衡方程及其复杂特征线方程,该组方程包含了背景流场对波动传播的调整、波动沿大圆传播的折射等.数值积分则采用复杂特征线嵌入计算格式.初步数值模拟结果表明,该海浪全球数值模式能够较为精确地刻画海浪的动力过程.  相似文献   

4.
《Coastal Engineering》2005,52(2):177-195
An improved SWAN model using the Finite Element Method (FEM) was developed for wind waves simulations in both large-scale oceanic deep water regions and small-scale shallow water regions. The model employs a Taylor–Galerkin finite element technique for the discretization of the modeled area, which makes it flexible to represent bottom topography and irregular boundaries. The fractional step numerical scheme was adopted to split the wave action balance equation into three one-dimensional space equations, which can be solved efficiently by one-dimensional algorithms. The Flux-Corrected Transport method was also applied to circumvent the steep-gradients of the action density in the frequency space. The FEM code with unstructured grids improves the numerical schemes in the original SWAN to maintain computational efficiency at the operational stage. A simulation of wind wave activities for the monsoon and the 2000 Typhoon Bilis were performed using the FEM and SWAN models. The simulated results were compared with field observations in order to verify the suitability of the method.  相似文献   

5.
A quasi three-dimensional numerical model of wave-driven coastal currents with the effects of surface rollers is developed for the study of the spatial lag between the location of the maximum wave-induced current and the wave breaking point.The governing equations are derived from Navier-Stokes equations and solved by the hybrid method combining the fractional step finite different method in the horizontal plane with a Galerkin finite element method in the vertical direction.The surface rollers effects are considered through incorporating the creation and evolution of the roller area into the free surface shear stress.An energy equation facilitates the computation process which transfers the wave breaking energy dissipation to the surface roller energy.The wave driver model is a phase-averaged wave model based on the wave action balance equation.Two sets of laboratory experiments producing breaking waves that generated longshore currents on a planar beach are used to evaluate the model's performance.The present wave-driven coastal current model with the roller effect in the surface shear stress term can produce satisfactory results by increasing the wave-induced nearshore current velocity inside the surf zone and shifting the location of the maximum longshore current velocity landward.  相似文献   

6.
Wave Numerical Model for Shallow Water   总被引:4,自引:0,他引:4  
The history of forecasting wind waves by wave energy conservation equation is briefly des-cribed.Several currently used wave numerical models for shallow water based on different wave theoriesare discussed.Wave energy conservation models for the simulation of shallow water waves are introduced,with emphasis placed on the SWAN model,which takes use of the most advanced wave research achieve-ments and has been applied to several theoretical and field conditions.The characteristics and applicabilityof the model,the finite difference numerical scheme of the action balance equation and its source termscomputing methods are described in detail.The model has been verified with the propagation refractionnumerical experiments for waves propagating in following and opposing currents;finally.the model is ap-plied to the Haian Gulf area to simulate the wave height and wave period field there,and the results arecompared with observed data.  相似文献   

7.
波能平衡方程是研究风浪要素及波能传播问题的很有效的方法,计算较为简单,在海洋学及海岸动力学中得到广泛的应用。本文采用考虑波能侧向传递机制和耗损制约的波能平衡方程组作为研究波浪折射——绕射变形的控制方程。对数学模型用差分法进行了数值模拟,并用两个例题进行了验证  相似文献   

8.
Cnoidal wave theory is appropriate to periodic wave progressing in water whose depth is less than 1/10 wavelength. However, the cnoidal wave theory has not been widely applied in practical engineering because the formula for wave profile involves Jacobian elliptic function. In this paper, a cnoidal wave-seabed system is modeled and discussed in detail. The seabed is treated as porous medium and characterized by Biot's partly dynamic equations (up model). A simple and useful calculating technique for Jacobian elliptic function is presented. Upon specification of water depth, wave height and wave period, Taylor's expression and precise integration method are used to estimate Jacobian elliptic function and cnoidal wave pressure. Based on the numerical results, the effects of cnoidal wave and seabed characteristics, such as water depth, wave height, wave period, permeability, elastic modulus, and degree of saturation, on the cnoidal wave-induced excess pore pressure and liquefaction phenomenon are studied.  相似文献   

9.
To solve problems concerning wave elements and wave propagation, an effective way is the wave energy balance equation, which is widely applied in oceanography and ocean dynamics for its simple computation. The present papaer advances wave energy balance equations considering lateral energy transmission and energy loss as the governing equation for the study of wave refraction-diffraction. For the mathematical model, numerical simulation is made by means of difference method, and the result is verified with two examples.  相似文献   

10.
特征线计算格式下共轭方程两种导出途径的比较   总被引:1,自引:0,他引:1  
共轭方程的导出是建立资料同化模型的关键,其导出方式有两种途径:AFD形式与FDA形式。在特征线计算格式基础上针对一类较广泛海洋动力控制方程分析了其两种共轭方程(AFD形式与FDA形式)之间的关系,并将理论结果应用于波谱共轭方程的讨论。  相似文献   

11.
The coupling numerical model of wave interaction with porous medium is used to study waveinduced pore water pressure in high permeability seabed.In the model,the wave field solver is based on the two dimensional Reynolds-averaged Navier-Stokes(RANS) equations with a k-ε closure,and Forchheimer equations are adopted for flow within the porous media.By introducing a Velocity-Pressure Correction equation for the wave flow and porous flow,a highly efficient coupling between the two flows is implemented.The numerical tests are conducted to study the effects of seabed thickness,porosity,particle size and intrinsic permeability coefficient on regular wave and solitary wave-induced pore water pressure response.The results indicate that,as compared with regular wave-induced,solitary wave-induced pore water pressure has larger values and stronger action on seabed with different parameters.The results also clearly show the flow characteristics of pore water flow within seabed and water wave flow on seabed.The maximum pore water flow velocities within seabed under solitary wave action are higher than those under regular wave action.  相似文献   

12.
浅海水下地形的SAR遥感仿真研究   总被引:2,自引:0,他引:2  
结合连续性方程和布拉格后向散射模型,在准一维简化浅海水下地形情况下,建立了浅海水下地形SAR海面相对后向散射强度仿真模型,将浅海水下地形区域的SAR海面后向散射强度的相对变化与大尺度背景流场、海面风场和雷达系统参数等联系起来.海上实验和研究结果表明,浅海水下地形的SAR成像主要由通过受水下地形影响的海表层流场对海表面风引起的微尺度波的水动力调制而获取浅海水下地形信息,其中潮流与水下地形的相互作用过程改变海表层流场,变化的海表层流与海表面微尺度波之间的相互作用改变海表面波的空间分布,雷达波与海表面波之间的相互作用决定雷达海面后向散射强度.因此SAR图像中浅海水下地形或水深信息量的多少不仅与海表层流场和海面风速有关,而且与雷达工作波段、雷达波束入射角和极化方式也密切相关.认为由水下地形变化引起的缓慢变化的表层流场中海表面定常微尺度波谱能量密度的变化满足波作用量谱平衡方程;而在波数空间中,海表面微尺度波谱的成长过程也可以用波数谱平衡方程描述,在此基础上,得出了海表面波高频谱(毛细-重力波)形式的解析表达式.众所周知,浅海水下地形信息是由于水下地形影响下SAR海面后向散射强度与背景海面后向散射强度的相对差异而在SAR图像上的呈现,从而在建立浅海水下地形SAR海面相对后向散射强度仿真模型的基础上,仿真计算了浅海水下地形SAR海面相对后向散射强度相对于海表层流场、海面风场等海况参数和SAR工作波段、SAR波束入射角、极化方式等雷达系统参数的数值仿真结果,分析得到了有关浅海水下地形SAR海面相对后向散射强度的特征和SAR浅海水下地形遥感的最佳海况参数与最佳雷达系统参数,为研究和开展SAR浅海水下地形遥感研究提供了有价值的参考.  相似文献   

13.
LAGFD-WAM numerical wave model——Ⅰ. Basic physical model   总被引:4,自引:1,他引:4  
The LAGFD-WAM wave model is a third generation wave model. In the present paper the physical aspect of the model was shown in great detail including energy spectrum balance equation, complicated characteristics equations and source functions.  相似文献   

14.
The in-line response of a vertical flexibly mounted cylinder in regular and random waves is reported.Both theoretical analyses and experimental measurements have been performed.The theoretical predictions are based on the Morison equation which is solved by the incremental harmonic balance method.Experiments are then performed in a wave flume to determine the accuracy of the Morison equation in predicting the in-line response of the cylinder in regular and random waves.The interaction between waves and vibrating cylinders are investigated.  相似文献   

15.
Boussinesq型方程是研究水波传播与演化问题的重要工具之一,本文就1967-2018年常用的Boussinesq型水波方程从理论推导和数值应用两个方面进行了回顾,以期推动该类方程在海岸(海洋)工程波浪水动力方向的深入研究和应用。此类方程推导主要从欧拉方程或Laplace方程出发。在一定的非线性和缓坡假设等条件下,国内外学者建立了多个Boussinesq型水波方程,并以Stokes波的相关理论为依据,考察了这些方程在相速度、群速度、线性变浅梯度、二阶非线性、三阶非线性、波幅离散、速度沿水深分布以及和(差)频等多方面性能的精度。将Boussinesq型水波方程分为水平二维和三维两大类,并对主要Boussinesq型水波方程的特性进行了评述。进而又对适合渗透地形和存在流体分层情况下的Boussinesq型水波方程进行了简述与评论。最后对这些方程的应用进行了总结与分析。  相似文献   

16.
On the modeling of wave propagation on non-uniform currents and depth   总被引:1,自引:0,他引:1  
By transforming two different time-dependent hyperbolic mild slope equations with dissipation term for wave propagation on non-uniform currents into wave-action conservation equation and eikonal equation, respectively, shown are the different effects of dissipation term on the eikonal equation in the two different mild slope equations. The performances of intrinsic frequency and wave number are also discussed. Thus the suitable mathematical model is chosen in which the wave number vector and intrinsic frequency are expressed both more rigorously and completely. By using the perturbation method, an extended evolution equation, which is of time-dependent parabolic type, is developed from the time-dependent hyperbolic mild slope equation which exists in the suitable mathematical model, and solved by using the alternating direction implicit (ADI) method. Presented is the numerical model for wave propagation and transformation on non-uniform currents in water of slowly varying topography. From the comparisons of the numerical solutions with the theoretical solutions of two examples of wave propagation, respectively, the results show that the numerical solutions are in good agreement with the exact ones. Calculating the interactions between incident wave and current on a sloping beach [Arthur, R.S., 1950. Refraction of shallow water waves. The combined effects of currents and underwater topography. EOS Transactions, August 31, 549–552], the differences of wave number vector between refraction and combined refraction–diffraction of waves are discussed quantitatively, while the effects of different methods of calculating wave number vector on numerical results are shown.  相似文献   

17.
In this study the evolution of internal solitary waves shoaling onto a shelf is considered. The results of high resolution two-dimensional numerical simulations of the incompressible Euler equations are compared with the predictions of several weakly-nonlinear shoaling models of the Korteweg–de Vries family including the Gardner equation and the cubic regularized long wave (or Benjamin–Bona–Mahoney) equation. Wave models in both physical xt space and in sx space are considered where s is a commonly used characteristic time variable. The effects of rotation, background currents and damping are ignored. The Boussinesq and rigid lid approximations are also used. The shoaling internal solitary waves generally fission into several waves. Reflected waves are negligible in the cases considered here. Several hyperbolic tangent stratifications are considered with and without a critical point. Among the equations in xt space the cubic regularized long wave equation gives the best predictions. The Gardner equation in sx space gives the best predictions of the shape of the leading waves on the shelf, but for many stratifications it predicts a propagation speed that is too large.  相似文献   

18.
When studying the harbor water tranquility, cases are often confronted as that the verification point is not located on the generation line or that the angle between the generation line and the isobath is so large that the differences of the wave climates along the generation line can not be ignored. For these cases, the incident boundary conditions are difficult to evaluate. In order to solve this problem, a combined wave model is developed in the present paper based on the Boussinesq equation and the wave action balance equation. Instead of the one-line wave generation method, a multi-line generation method is proposed for the combined model. Application of this method is given to a case that the harbor is designed with two entrances and the angle between the generation line and the isobath is large and the results are shown reasonable. We suggest that the wave generation method on multi-lines might also be introduced to the wave physical model as the replacement for the one-line generation method.  相似文献   

19.
《Coastal Engineering》2001,44(1):1-12
In order to verify modified mild-slope equation models in a horizontal two-dimensional space, a hydraulic experiment is made for surface wave propagation over a circular shoal on which water depth varies substantially. A horizontal two-dimensional numerical model is also constructed based on the hyperbolic equations that have been developed from the modified mild-slope equation to account for the substantial depth variation. Comparison between experimental measurements and numerical results shows that the modified mild-slope equation model is capable of producing accurate results for wave propagation in a region where water depth varies substantially, while the conventional mild-slope equation model gives large errors as the mild-slope assumption is violated.  相似文献   

20.
晋鹏  谢巨伦 《海洋预报》2004,21(4):60-68
针对目前缓坡方程中势函数假设比较多的问题,本文利用二维浅水方程来描述海浪水质点运动的有势假设,采取WKBJ方法推导缓坡方程在缓变地形下的波包方程,对势函数缓坡方程进行修正,以建立更全面更实用的近岸波浪传播计算模式。同时,文中还采用非势函数型模拟波浪传播。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号