首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The Guizhou Plateau represents a geomorphic transition between the Tibetan Plateau and the Yangtze River Plain. It likely formed in response to the propagation of surface uplift in southeastern Tibet during India-Eurasia continental collision. However, the uplift history of the region is unclear largely due to a lack of datable material. The bedrock geology is dominated by carbonate rocks, which contains numerous multi-level caves in the main river valleys that are linked to the river incision history. Cosmogenic 26Al and 10Be burial dating of sediments in caves and river terraces from the northwestern and southern plateau reveals the fluvial chronology and provides the first direct determination of long-term river incision rates. The caves and terraces on the Liuchong River in NW Guizhou yield burial ages of between 0.41 ± 0.12 Ma and 2.85 ± 0.21 Ma, indicating an average incision rate of 57 ± 3 m/Ma. Four level caves at Libo in southern Guizhou yield burial ages of between 0.56 ± 0.16 Ma and 3.54 (+0.25/-0.22) Ma, indicating slightly slower incision rate (47 ± 5 m/Ma). These new results imply that the high elevation of the Guizhou Plateau had developed before the Late Pliocene, and that surface uplift during the Late Cenozoic was largely uniform across the region.  相似文献   

2.
The Longxi region contains different kinds of Cenozoic sediments, including eolian deposits, reworked loess, fluvial and lacustrine deposits. The provenance evolution of these sediments is of great significance in exploring the uplift, tectonic deformation and associated with geomorphic evolution of the Northeastern Tibetan Plateau. In this paper, we used the single-grain zircon provenance analysis to constrain the provenances for the Paleogene alluvial conglomerates and for the Neogene fluvial-lacustrine sediments, and compared them with results from the loess deposits since the Miocene. The results show that: (1) the Paleogene alluvial conglomerates contain a large number of detrital zircons ranging from 560 to 1100 Ma that were derived from the Yangzi Block. However, the sediments of early Miocene have much fewer zircons of this age span, which are characterized by an abundance of zircon ages in the ranges of 200–360 Ma. This indicates that the Paleogene alluvial conglomerates mainly come from the middle and/or southern West Qinling, and the early Miocene sediments are primarily from the northern West Qinling; (2) Late Neogene fluvial sediments (11.5 Ma onward) in Tianshui-Qinan region are dominated by zircon ages of 380–450 Ma. This zircon population is similar to that of the exposed intrusive rocks of southern part of the Liupan Mountains, implying that the southern part of Liupan Mountains probably had already uplifted by 11.5 Ma; (3) Late Miocene lacustrine sediments in Tianshui region have a zircon age spectra that is remarkably different from coeval fluvial deposits, but is similar to the zircon age distributions of the Miocene loess in Qinan region, late Miocene-Pliocene Hipparion red clay and Quaternary loess. This indicates that fine particles within these Miocene lacustrine sediments in Tianshui region may be dominated by aeolian materials. This study reveals that provenance changes of Cenozoic sediments in Tianshui-Qinan region and its geomorphic evolution are closely related to the multi-stage uplift of the Northeastern Tibetan Plateau. In particular, the major uplift of the Northern Tibetan Plateau during late Oligocene-early Miocene may have not only provided the source areas and wind dynamic conditions for the deposits of the Miocene loess, but also provided the geomorphic conditions for its accumulation.  相似文献   

3.
The uplift process of the Qinghai-Tibetan Plateau holds the key to understand the dynamic mechanisms of continental crust shortening and mountain-building and to test the relationship between the Tibetan uplift and tectonic-climatic coupling and environmental im-pacts[1―4].However,there are still many debates in the process and mechanism of how the Tibetan Plateau uplifted to the present configuration.Among various approaches to solve these key questions,dating of the Cenozoic stratigraphy …  相似文献   

4.
Paleoelevation constraints from fossil leaf physiognomy and stable isotopes of sedimentary carbonate suggest that significant surface uplift of the northern Andean plateau, on the order of 2.5 ± 1 km, occurred between ~ 10.3 and 6.4 Ma. Independent spatial and temporal constraints on paleoelevation and paleoclimate of both the northern and southern plateau are important for understanding the distribution of rapid surface uplift and its relation to climate evolution across the plateau. This study focuses on teeth from modern and extinct mammal taxa (including notoungulates, pyrotheres, and litopterns) spanning ~ 29 Ma to present, collected from the Altiplano and Eastern Cordillera of Bolivia (16.2°S to 21.4°S), and lowland Brazil. Tooth enamel of large, water-dependent mammals preserves a record of surface water isotopes and the type of plants that animals ingested while their teeth were mineralizing. Previous studies have shown that the δ18O of modern precipitation and surface waters decrease systematically with increasing elevations across the central Andes. Our results from high elevation sites between 3600 and 4100 m show substantially more positive δ18O values for late Oligocene tooth samples compared to < 10 Ma tooth δ18O values. Late Oligocene teeth collected from low elevation sites in southeast Brazil show δ18O values similar (within 2‰) to contemporaneous teeth collected at high elevation in the Eastern Cordillera. This affirms that the Andean plateau was at a very low elevation during the late Oligocene. Late Oligocene teeth from the northern Eastern Cordillera also yield consistent δ13C values of about ? 9‰, indicating that the environment was semi-arid at that time. Latitudinal gradients in δ18O values of late Miocene to Pliocene fossil teeth are similar to modern values for large mammals, suggesting that by ~ 8 Ma in the northern Altiplano and by ~ 3.6 Ma in the southern Altiplano, both regions had reached high elevation and established a latitudinal rainfall gradient similar to modern.  相似文献   

5.
2013年4月20日在龙门山南段发生M_W6.7强震,造成重大人员伤亡和财产损失.芦山地震发生后,针对发震断层是高角度还是低角度断层?断层的归属、性质和地震构造模型等问题,一直存在不同的认识和争议.本次研究采用了芦山震区的三条高精度二维人工地震反射剖面,结合区域地质、钻井资料,对芦山震区浅层沉积与构造变形进行综合解释;研究同时综合了震源机制解、小震重定位结果以及深地震探测剖面,并结合龙门山地区古生代以来的构造演化史,对震区地质构造进行解析.研究认为龙门山南段主要发育了三套不同层次的滑脱层并控制了上地壳形变,呈现多层滑脱、多期变形、构造叠加的复杂特征.2013年芦山地震的主要活动断层发育在深部约20 km滑脱层之上,倾向NW、倾角较陡大约在45°~50°,并产生反冲断层形成Y字状结构.地震地质解释表明,芦山地震的同震活动断层没有突破中生界和新生界,并非先前认为的双石—大川断裂(F4)或山前大邑隐伏断裂(F6);芦山地震的发震断层为一基底盲冲断层;深地震反射结果进一步揭示芦山地震的发震断层为一早期(古生代)形成的正断层.研究认为芦山地震发震构造符合简单剪切断层转折褶皱模型(Simple-shear Fault-Bend Fold),2013年芦山地震为一次非特征型地震.晚新生代以来在青藏高原向四川盆地强烈挤压持续作用下,早期正断层重新活动并产生了芦山地震.这种深部隐伏断层活化产生的特殊型地震,无疑增加了龙门山地区地震灾害的风险和不确定性.  相似文献   

6.
The Bjøirnøya West Basin lies between latitudes 73° and 74°, longitudes 16°E and 18°E, contains at least 8 km of sediments deposited from the Late Jurassic, and is of considerable interest for hydrocarbon exploration. The Cenozoic extensional tectonics in the basin can be clearly seen from seismic data with normal faulting and from subsidence curves with rapid subsidence. The extension occurred during the Late Palaeocene with active extension lasting about 6 million years (m.y.) followed by thermal cooling. The tectonic subsidence within the study area shows a three-phase development: phase 1, synrift (58–52 Ma (million years before the present day)), is characterized by rapid subsidence; phase 2, postrift (52–5 Ma), by slow subsidence with occasional uplift; and phase 3 (5–0 Ma), by rapid subsidence. An adaptive finite-element model, with consideration of the radiogenic heat production in the lithosphere, has been used to model the subsidence and heat flow. The modelling of subsidence shows the β-factor distribution varying from 1.9 to 3.5 with an average of 2.4 for the uniform lithospheric extension. The heat-flow modelling predicts a rapid increase of heat flow during the Early Palaeocene. The maximum heat flow at about 52 Ma, which could be as much as 3.0 hfu (10?6 cal/cm2/s), was followed by a decrease in heat flow. A plate-weakening model has been proposed to explain the rapid subsidence for the last 5 m.y. by flexure of the elastic lithosphere which is weakened by a decrease in elastic thickness caused by an increase of the temperature gradient in the lithosphere. The plate-weakening model predicts a heat-flow increase at 5 Ma of up to 2.0 hfu. Our study, using quantitative modelling of the tectonic subsidence, provides a partial (if not a full) understanding of the tectonic development and thermal evolution of the Bjønøya West Basin.  相似文献   

7.

Late Cenozoic sediments in the Hexi Corridor, foreland depression of the Qilian Mountain preserved reliable records on the evolution of the Northern Tibetan Plateau. Detailed magnetic polarity dating on a 1150 m section at Wenshushan anticline in the Jiudong Basin, west of Hexi Corridor finds that the ages of the Getanggou Formation, Niugetao Formation and Yumen Conglomerate are >11-8.6 Ma, 8.6-4.5 Ma and 4.5-0.9 Ma respectively. Accompanying sedimentary analysis on the same section suggests that the northern Tibetan Plateau might begin gradual uplift since 8.6-7.6 Ma, earlier than the northeastern Tibetan Plateau but does not suppose that the plateau has reached its maximum elevation at that time. The commencement of the Yumen Conglomerate indicates the intensive tectonic uplift since about 4.5 Ma.

  相似文献   

8.
Combustion metamorphic (CM) rocks (clinker and paralava) occur in abundance in the eastern and southern margins of the Goose Lake in Western Transbaikalia and form five fields. The sections we studied in natural outcrops exposed in numerous gullies and in quarries comprise the full range of CM varieties from low-grade to fused paralavas and clinkers. The tridymite-plagioclase-cordierite and tridymite-cordierite paralava and clinker have medium to high K/Ca ratios (∼2.5–4.5 wt.%) with K restricted to K-rich (∼4–6 wt.% K2O) high-silica glass, making the bulk samples suitable for 40Ar/39Ar dating.Regional-scale combustion metamorphic events were triggered by reactivation of faults in the Goose Lake Basin causing repeated erosion of gently dipping coal-bearing sediments that exposed coal beds to oxidation resulting in their spontaneous ignition. Geological evidence indicates that the earliest natural coal fire and formation of CM rocks occurred at the end of the Early Cretaceous. Geological and preliminary geochronological data indicate that large-scale coal fires occurred in the Early Pleistocene (no later than 1.8 ± 0.4 Ma ago) and in Late Pleistocene (0.02 ± 0.01 Ma and 0.03 ± 0.03 Ma).  相似文献   

9.
报道了米仓山-汉南穹窿一带磷灰石裂变径迹分析结果,以制约该区白垩纪以来的剥蚀-演化历史.露头样品磷灰石裂变径迹年龄分布显示从汉南穹窿南部的核部地区向南至四川盆地北部裂变径迹的年龄逐渐变新,这与米仓山地区逆冲断裂以背驮式扩展的构造样式从汉南穹窿向南经米仓山褶皱-逆冲带发育到四川盆地北缘的构造模式相吻合.热模拟的结果显示米仓山-汉南穹窿经历了两期快速的剥蚀,其分别发生在白垩纪(约90 Ma之前)和15 Ma以来.研究区白垩纪的快速剥蚀反映了秦岭-大别造山带白垩纪的区域性剥蚀事件,这可能是对临区诸多构造事件(如西伯利亚-蒙古-中朝板块的碰撞,拉萨-羌塘-思茅-印支块体的碰撞,太平洋板块向欧亚板块的俯冲及其相关的岩浆活动)远场效应的响应;约15 Ma以来的快速剥蚀是对青藏高原隆升向东北方向传递的响应.  相似文献   

10.
Neogene alkaline basaltic volcanic fields in the western Pannonian Basin, Hungary, including the Bakony–Balaton Highland and the Little Hungarian Plain volcanic fields are the erosional remnants of clusters of small-volume, possibly monogenetic volcanoes. Moderately to strongly eroded maars, tuff rings, scoria cones, and associated lava flows span an age range of ca. 6 Myr as previously determined by the K/Ar method. High resolution 40Ar/39Ar plateau ages on 18 samples have been obtained to determine the age range for the western Pannonian Basin Neogene intracontinental volcanic province. The new 40Ar/39Ar age determinations confirm the previously obtained K/Ar ages in the sense that no systematic biases were found between the two data sets. However, our study also serves to illustrate the inherent advantages of the 40Ar/39Ar technique: greater analytical precision, and internal tests for reliability of the obtained results provide more stringent constraints on reconstructions of the magmatic evolution of the volcanic field. Periods of increased activity with multiple eruptions occurred at ca. 7.95 Ma, 4.10 Ma, 3.80 Ma and 3.00 Ma.  相似文献   

11.
A record of changes in Nd and Sr isotopic composition of the eolian deposits from the central Loess Plateau has been determined for the past 8 Ma. The isotopic records of the silicate fraction of the Quaternary and Tertiary eolian deposits allow interpreting the interplay between the Sr isotopic variations in the eolian deposits and the late Cenozoic tectonic and climatic changes. The results indicate that the temporal variations of Nd and Sr isotopes show remarkable changes around the beginning of the Quaternary. The lower values of the 143Nd/144Nd and the decreasing trend of the 87Sr/86Sr ratios after 2.58 Ma ago are attributed to the additions of relatively younger crust materials in response to the climatic cooling and the late Cenozoic uplift induced glacial grinding in the high orogenic belts in central Asia. In this context, the substantial changes in climate and tectonics have modified dust sources significantly, and the Quaternary loess forming processes are preferentially sampling relatively younger and high relief crust materials than that of the Tertiary Red Clay.  相似文献   

12.
The northeastern Tibetan Plateau began to grow during the Eocene and it is important to understand the climatic history of Asia during this period of so-called ‘doubthouse' conditions. However, despite major advances in the last few decades,the evolutionary history and possible mechanisms of Eocene climate change in the northeastern Tibetan Plateau remain unclear.The Xining Basin in the northeastern Tibetan Plateau contains a continuous sequence of Early to Late Eocene non-marine sediments which provides the opportunity to resolve long-term climate changes during this period. In this study, we report the results of analyses of lithofacies, sediment color and geochemistry of bulk samples collected from the Xijigou section of the Xining Basin. An abrupt lithofacies change between the Early(~52–40 Ma) and Late Eocene(~40–34 Ma) indicates a change in the depositional environment from a shallow lake to a playa lake in response to a significant climatic shift. During ~52–40 Ma,higher values of sediment redness(a*), redness/lightness(a*/L*) and higher modified Chemical Index of Weathering(CIW′)indicate a relatively warm and humid climate, while from ~40–34 Ma the lower values of a*, a*/L*and lower CIW′ imply subhumid to semi-arid climatic conditions. The paleoclimatic records indicate a long-term(~52–34 Ma) trend of decreasing chemical weathering, consistent with global climate change. An abrupt sharp excursion of the proxy records during ~42–40 Ma suggests a relatively brief warm interval, corresponding to the Middle Eocene Climatic Optimum(MECO). We suggest that global cooling substantially reduced humidity in inner Asia, resulting in sub-humid to semi-arid climatic conditions after 40 Ma in the Xining Basin, which may have been responsible for the long-term trend of decreasing chemical weathering during the Eocene.  相似文献   

13.
We applied both single-sample and isochron methods of cosmogenic-nuclide burial dating to determine the age of the sedimentary fill in Unaweep Canyon, western Colorado, USA. This stratigraphic sequence is of interest because it documents capture and diversion of the ancestral Gunnison River by the Colorado River during late Cenozoic incision of the Colorado Plateau. Seven 26Al–10Be burial ages from sedimentary infill penetrated by a borehole in central Unaweep Canyon, as well as a 26Al–10Be burial isochron age formed by multiple clasts and grain-size separates in a sample from the stratigraphically lower Gateway gravels, indicate that canyon blockage, initiation of lacustrine sediment accumulation, and presumed river capture, took place 1.41 ± 0.19 Ma. Lacustrine sedimentation ceased 1.34 ± 0.13 Ma.  相似文献   

14.
Mesozoic and Cenozoic tectonic evolution of the Longmenshan fault belt   总被引:8,自引:0,他引:8  
The giant earthquake (M s=8.0) in Wenchuan on May 12, 2008 was triggered by oblique convergence between the Tibetan Plateau and the South China along the Longmenshan fault belt. The Longmenshan fault belt marks an important component of the tectonic and geomorphological boundary between the eastern and western part of China and has a protracted tectonic history. It was first formed as an intracontinental transfer fault, patitioning the differential deformation between the Pacific and Tethys tectonic domains, initiated in late Paleozoic-early Mesozoic time, then served as the eastern boundary of the Tibetan Plateau to accommodate the growth of the plateau in Cenozoic. Its current geological and geomorphological frameworks are the result of superimposition of these two tectonic events. In Late Triassic, the Longmenshan underwent left-slip oblique NW-SE shortening due to the clockwise rotation of the Yangtze Block, which led to the flexural subsidence of the Sichuan foreland basin, but after that, the subsidence of the Sichuan Basin seems no longer controlled by the tectonic activity of the Longmenshan fault belt. The Meosozoic tectonic evolution of the Songpan-Ganzi fold belt differs significantly compared with that of the Yangtze Platform, featured by intensive northeast and southwest shortening and resulted in the close of the Paleo-Tethys. Aerial photos taken immediately after main shock of the giant May 12, 2008 earthquake have documented extensive rock fall and landslides that represent one of the most destructive aspects of the earthquake. Both rock avalanches and landslides delivered a huge volume of debris into the middle part of the Minjiang River, and formed many dammed lakes. Breaching of these natural dams can be catastrophic, as occurred in the Diexi area along the upstream of the Minjiang River in the year of 1933 that led to devastating floodings. The resultant flood following the breaching of these dams flowed through and out of the Longmenshan belt into the Chengdu Plain, bringing a huge volume of sediments. The oldest alluvial deposits within the Chengdu Plain are estimated to be Late Miocene (8–13 Ma). We suggest that the flooding that transported the course-grained sediments into the Chengdu Plain occurred in late Cenozoic, resulted from both the climate and the historical earthquakes similar to the May 12 earthquake. Estimated age of the sediments related to earthquakes and coeval shortening across the Chengdu Plain indicate that the eastern margin of the plateau became seismically and tectonically active in Late Miocene. Supported by Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KZCX2-YW-12), National Natural Science Foundation of China (Grant Nos. 40672151, 40721003, 40472121 and 40830314) and PetroChina Company Limited  相似文献   

15.
Carbon isotope stratigraphy of the Late Jurassic and earliest Cretaceous was revealed from Torinosu‐type limestone, which was deposited in a shallow‐marine setting in the western Paleo‐Pacific, in Japan. Two sections were examined; the Nakanosawa section of the late Kimmeridgian to early Tithonian age (Fukushima Prefecture, Northeast Japan), and the Furuichi section of the late Kimmeridgian to early Berriasian age (Ehime Prefecture, Southwest Japan). The age‐model was established using Sr isotope ratio and fossil occurrence. The limestone samples have a low Mn/Sr ratio (mostly <0.5) and lack a distinct correlation between δ13C and δ18O, indicating a low degree of diagenetic alteration. Our composite δ13C profile from the two limestone sections shows three stratigraphic correlation points that can be correlated with the profiles of relevant ages from the Alpine Tethyan region: a large‐amplitude fluctuation (the lower upper Kimmeridgian, ~152 Ma), a positive anomaly (above the Kimmeridgian/Tithonian boundary, ~150 Ma), and a negative anomaly (the upper lower Tithonian, ~148 Ma). In addition, we found that δ13C values of the Torinosu‐type limestone are ~1‰ lower than the Tethyan values in the late Kimmeridgian. This inter‐regional difference in δ13C values is likely to have resulted from a higher productivity and/or an organic burial in the Tethyan region. The difference gradually reduces and disappears in the late Tithonian, where the Tethyan and our δ13C records show similar stable values of 1.5–2.0‰. This isotopic homogenization is probably due to changes in the continental distribution and the global ocean circulation, which propagated the 13C‐depleted signature from the larger Paleo‐Pacific to the smaller Tethys Ocean during this time.  相似文献   

16.
To improve the French Plio-Pleistocene biostratigraphy scheme based on mammal biozone boundaries or “Mammal Neogene/Quaternary Zones” (MNQ) we collected volcanic material that could be dated using the 40Ar/39Ar method in five exceptional mammalian paleofauna sites located in the Massif Central (France). We present 40Ar/39Ar ages that we obtained for Perrier-Les Etouaires, Roca-Neyra, Chilhac, Senèze and le Creux de Peyrolles. We show that the overall stratigraphic position of these sites based on faunal assemblages is valid from the relative point of view. However, we greatly improve both the accuracy and precision of the age of these mammalian paleofaunas. We obtained 40Ar/39Ar ages varying between 2.78 ± 0.01 Ma (1σ external) for Les Etouaires (Lower MNQ 16b) and 1.47 ± 0.01 Ma for the Creux de Peyrolles site (MNQ 19). Based on these new dates we estimate the duration of several biozones including MNQ 16b, 17a and 17b. We suggest that the first Late Villafranchian biozone (MNQ 18) starts as early as the Reunion subchron or just after. The first occurrence of Equus stenonis in Roca-Neyra (i.e. 2.60 ± 0.02 Ma) is close to or synchronous with the Gauss–Matuyama transition (i.e. 2.59 Ma) and the Pliocene/Pleistocene boundary. The chronological framework we build shows the very rapid increase of the large grazers community in French faunal assemblages at the beginning of MNQ 17 (i.e. 2.6 to 2.4 Ma). This rapid faunal turnover is probably associated with a general decrease of woodland habitat in the Massif Central contemporaneous with the onset of the Northern Hemisphere glaciations. The faunal assemblages in France, Spain, and Italy covering the period between 2.1 and 2.0 Ma suggest that favorable conditions for early hominin settlement (mainly savannah prairies, grassland with open forest patches) existed in southwestern Europe at least 200 ka before the first traces of Homo in Eurasia. This period also shows the arrival of taxa originating in Asia and Africa, suggesting dispersal events within southwestern Europe well before the Olduvai subchron and with no indication (as yet) of Homo as a “fellow traveler”.  相似文献   

17.
柴达木盆地东部都兰一带,由于一系列北东倾的、向南西推覆的逆冲断层作用和温泉断裂的右行走滑作用,将柴达木盆地的变质基底和前中生界沉积基底翘起,从而使得柴达木盆地与共和盆地分隔开来. 逆冲断层中磷灰石裂变径迹(FT)测年结果反映了柴达木盆地基底断层作用的规律性. 从FT测年结果可以看出,FT年龄分为2组,也就是2个活动时期:第1期为108 Ma至61 Ma;第2期为26.6 Ma至17.8 Ma. 第1期反映的断裂活动具有明显的规律性:从柴达木盆地南缘的东昆仑开始,向柴北缘方向,逆冲推覆的断层作用时间逐渐变年轻,从东昆仑的108.0±9.6 Ma(柴达木南缘断裂)变为63.7±4.4 Ma(柴北缘断裂),之后可能有小的跳动. 第2期,在原有的一些逆冲断层上形成了新的活动,或形成了一些新的逆冲断层,总体上具有无序或跳跃式变动的特点.  相似文献   

18.
The study of basement geochronology provides crucial insights into the tectonic evolution of oceans. However, early studies on the basement of the Xisha Uplift were constrained by limited geophysical and seismic data; Xiyong1 was the only commercial borehole drilled during the 1970 s because of the huge thickness of overlying Cenozoic strata on the continental margin. Utilizing two newly-acquired basement samples from borehole XK1, we present petrological analysis and zircon uranium(U)-lead(Pb) isotope dating data in this paper that enhance our understanding of the formation and tectonic features of the Xisha Uplift basement. Results indicate that this basement is composed of Late Jurassic amphibole plagiogneisses that have an average zircon 206 Pb/238 U age of 152.9±1.7 Ma. However, the youngest age of these rocks, 137±1 Ma, also suggests that metamorphism termination within the Xisha basement occurred by the Early Cretaceous. These metamorphic rocks have adamellites underneath them which were formed by magmatic intrusions during the late stage of the Early Cretaceous(107.8±3.6 Ma). Thus, in contrast to the Precambrian age(bulk rubidium(Rb)-strontium(Sr) analysis, 627 Ma) suggested by previous work on the nearby Xiyong1 borehole, zircons from XK1 are likely the product of Late Mesozoic igneous activity. Late Jurassic-Early Cretaceous regional metamorphism and granitic intrusions are not confined to Xisha; rocks have also been documented from areas including the Pearl River Mouth Basin and the Nansha Islands(Spratly Islands) and thus are likely closely related to large-scale and long-lasting subduction of the paleo-Pacific plate underneath the continental margins of East Asia, perhaps the result of closure of the Meso-Tethys in the South China Sea(SCS). Controversies remain as to whether, or not, the SCS region developed initially on a uniform Precambrian-aged metamorphic crystalline basement. It is clear, however, that by this time both Mesozoic compressive subduction and Cenozoic rifting and extension had significantly modified the original basement of the SCS region.  相似文献   

19.
The Loncopué Trough is located in the hinterland Andean zone between 36°30′ and 39°S. It constitutes a topographic low bounded by normal faults and filled by lavas and sediments less than 5 Ma old. Reprocessed seismic lines show wedge-like depocenters up to 1700 m deep associated with high-angle faults, correlated with the 27–17 Ma Cura Mallín basin deposits, and buried beneath Pliocene to Quaternary successions and Late Miocene foreland sequences. The southern Central Andes seem to have been under extension in the hinterland zone some 27 Ma ago and again at approximately 5 Ma ago. This last extensional period could have been the product of slab steepening after a shallow subduction cycle in the area, although other alternatives are discussed. Orogenic wedge topography, altered by the first extensional stage in the area, was recovered through Late Miocene inversion, and was associated with foreland sequences. However, since the last extension (<5 Ma) the Andes have not recovered their characteristic contractional behavior that controlled past orogenic growth.  相似文献   

20.
The Minas Basin, the eastern end of the Bay of Fundy, is well known for its high tide ranges and strong tidal currents, which can be exploited to extract electricity power. The properties of the tidally-induced sediment transport in the Minas Basin, where significant changes in tidal processes may occur due to a recently proposed tidal power project, have been studied with a three-dimensional hydrodynamic model, an empirical bed load sediment transport model and surface sediment concentrations derived from the remotely-sensed images. The hydrodynamic model was evaluated against independent observational data, which include tidal elevation, tidal current (in the full water column and bottom layer), residual current profile and tidal asymmetry indicators. The evaluation shows that the model is in good agreement with the observations.The sediment transport includes two components, bed load and suspended particulate load. The bed load is calculated using the modelled bottom shear stress and the observed grain size data. The estimated features of bed load transport roughly agree with the observed patterns of the erosion and deposition in the Minas Basin and Cobequid Bay. The transport of the suspended load is estimated using the modelled velocity fields and the surface sediment concentration derived from remote-sensing images. The comparisons between the modelled results and the limited observations illustrate that the observed directions of suspended sediment transport are basically reproduced by the model. The modelled net suspended sediment input into the Minas Basin through Minas Passage is 2.4×106 m3 yr?1, which is comparable to the observed value of 1.6×106 m3 yr?1.The variations of the bed load and the suspended load in space and time are also presented. The total net transport, defined as the mean value of the sum of bed and suspended load transports during the tidal cycle, shows strong spatial variability. The magnitude of the transport flux ranges from 0.1 to 0.2 kg m?1 s?1 in Minas Channel and Minas Passage, 0.1 kg m?1 s?1 in Cobequid Bay, to 0.01 kg m?1 s?1 in the central Minas Basin and Southern Bight. In Minas Channel, the sediment transport follows the structure of the tidal residual circulation, which features a large anticlockwise gyre. The sediment in Minas Passage moves eastward and deposits into the central Minas Basin. However, the sediment from the eastern part of the Basin moves westward and deposits in the central Minas Basin as well. In the Cobequid Bay, sediment moves eastward and deposits in the upper bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号