首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lake Zigetang is located on the central Tibetan Plateau (TP) and represents a rare but typical meromictic lake in China. The lake’s stable meromixis sustains microflora communities, and changes in these communities are relatively independent of climate. Therefore, these communities can be used as paleoclimate proxies. In this paper, the stratification properties and their relationships with the microflora of Lake Zigetang were analyzed. We found that water depth and climate conditions were two important factors for maintaining meromixis in Lake Zigetang. Generally, stratification was enhanced during warm periods, while temperature differences between the mixolimnion and monimolimnion were decreased during cold periods. The presence of anoxygenic phototrophic bacteria (APB) was demonstrated by the discovery of bacteriopheophytin-a (Bph-a) in the sediments. This bacterial community is mainly concentrated at the bottom of the chemocline and the top of the monimolimnion, where it forms a thin APB layer. Moreover, total APB productivity is mainly affected by the light intensity penetrating to the APB layer, which exponentially increases as the thermocline becomes shallow. Therefore, high Bph-a values in the lake corresponded to a shallow thermocline and warm periods, low Bph-a values corresponded to cold periods, and zero changes indicated that the water was completely mixed and reflected an extreme cold climate or low lake level period. Thus, Bph-a can be used as a climate proxy to reconstruct the history of lake stratification and climate changes.  相似文献   

2.
Actual evapotranspiration(ET_a) over the Tibetan Plateau(TP) is an important component of the water cycle,and greatly influences the water budgets of the TP lake basins.Quantitative estimation of ET_a within lake basins is fundamental to physically understanding ET_a changes,and thus will improve the understanding of the hydro logical processes and energy balance throughout the lake basins.In this study,the spatiotemporal dynamic changes of ET_α within the Lake Selin Co(the TP's largest lake) and its surrounding small lakes and land area during 2003-2012 are examined at the basin scale.This was carried out using the well-established Water and Energy Budget-based Distributed Hydrological Model(WEB-DHM) for the land area,the Penman method for the water area when unfrozen,and a simple sublimation estimation approach for the water area when frozen.The relationships between ET_a changes and controlling factors are also discussed.Results indicate that the simulated land ET_a from the WEB-DHM reasonably agrees with the estimated ET_a values from the nonlinear complementary relationship model using appropriately calibrated parameter values at a point scale.Land ET_a displayed a non-significant increase of 7.03 mm year~(-1),and largely depends on precipitation.For the water area,the combined effects of reduced wind speed and net radiation offset the effect of rising temperature and vapor pressure deficit,and contributed to a non-significant decrease in evaporation of 4.17 mm year~(-1).Sensitivity analysis shows that vapor pressure deficit and wind speed are the most sensitive variables to the changes of evaporation from the water area.  相似文献   

3.
In the Tarim Basin, black shale series at the bottom of Cambrian is one of the important marine facies hydrocarbon source rocks. This research focuses on the analysis of the isotope of noble gas of 11 cherts. The R/R a ratio of chert in the Keping area is 0.032–0.319, and 40Ar/36Ar is 338–430. In Quruqtagh the R/R a ratio is 0.44–10.21, and 40Ar/36Ar is 360–765. The R/R a ratio of chert increases with 40Ar/36Ar from the west to the east accordingly. They have evolved from the crust source area to the mantle source area in a direct proportion. Surplus argon 40ArE in chert is in direct proportion to the R/R a ratio, indicating that it has the same origin of excess argon as in fluid and mantle source helium. Comparison of the R/R a ratios between the west and the east shows that the chert in the eastern part formed from the activity system of the bottom hydrothermal venting driven by the mantle source, where the material and energy of crust and mantle had a strong interaction in exchange; whereas in the western part, chert deposited from the floating of hydrothermal plume undersea bottom, which is far away from the centre of activities of the hydrothermal fluid of ocean bottom. In addition, from noble gas isotope composition of chert, it is suggested that the ocean anoxia incident happened at the black shale of the Cambrian bottom probably because of the large-scaled ocean volcanoes and the following hydrothermal activities.  相似文献   

4.
The correlation between cyclic (11-year) variations in geomagnetic activity and tropical cyclogenesis during the completed solar activity cycle (cycle 23, 1996–2006) is studied. The total number of the semidiurnal intervals, with the mean values of the planetary a p index not less than 40, for each year and the annual number of cyclones, regardless of their intensity, are used as the characteristics. The correlation coefficients r are calculated for each of the following four cyclogenesis regions: the Atlantic, northeastern and central Pacific, northwestern Pacific, and water areas of oceans and seas in the Southern Hemisphere. The conclusion that the correlation exists between magnetic storms and tropical cyclones in the Atlantic, obtained earlier by Ivanov [2006] on the basis of the data for 1996–2005, is confirmed. It has been found that the linear correlation coefficient r changed in different regions from positive to negative values: 0.55, 0, ?0.50, and ?0.50, respectively.  相似文献   

5.
The study of the Gutenberg-Richter (GR) parameters a and b has been very important to describe and characterize the seismicity over the different seismic provinces around the world. As far as we know, the possible correlation between the GR parameters a and b has not received enough attention. Bayrak et al. reported the a and b values for 27 active seismic regions around the boundaries of the main tectonic plates of the world. From these data, we found that there exists a positive correlation between the a and b parameters (R =?0.85, R2 =?0.72). On the other hand, we made around 150 computer runs of a spring-block model proposed by Olami et al. (Phys Rev Lett 68(8):1244–1247, 1992). This model roughly emulates the interaction between two fault planes and it reaches a self-organized critical state. With these simulations, we also found that the a and b parameters are positively correlated. Motivated by these results, we propose an analytical demonstration that indeed a and b are positively correlated. In addition, we discuss on other possible applications of the spring-block model to actual seismicity and to frictional experiments made with sandpapers.  相似文献   

6.
The genus Paliurus is characterized by its distinctive orbicular-winged fruits and a trilocular (or bilocular) ovary. Macrofossil records suggested this genus was distributed widely in North America, Europe, and Asia during the Paleogene and Neogene, before its present limitation to Eurasia. In this study, we describe some Paliurus fossil winged fruits from the lower part of Youganwo Formation (middle Eocene) and Huangniuling Formation (late Eocene) of the Maoming Basin, South China. These fruits are recognized as Paliurus favonii Unger based on a detailed study on the fossil morphology and cuticle characteristics. This represents the earliest occurrence of Paliurus fossil fruits in eastern Asia, and to date is the world’s lowest latitude appearance for this genus. The most ancient records of Paliurus throughout the world are from the middle Eocene of North America and the late Eocene of Japan, leading some researchers to conclude the Paliurus may have originated in North America. Molecular data, however, do not support this hypothesis. The present Paliurus fossil fruits provide new evidence for the origin and phytogeographic history of this genus.  相似文献   

7.
We present validation studies of MLS V2.2 and V3.3 water vapor(WV) and ozone profiles over the Tibetan Plateau(Naqu and Lhasa) and its adjacent region(Tengchong) respectively by using the balloon-borne Cryogenic Frost point Hygrometer and Electrochemical Concentration Cell ozonesonde. Coincident in situ measurements were selected to compare the MLS V2.2 and V3.3 WV and ozone profiles for understanding the applicability of the two version MLS products over the region. MLS V2.2 and V3.3 WV profiles respectively show their differences within ?2.2±15.7%(n=74) and 0.3±14.9%(n=75) in the stratosphere at and above 82.5 h Pa. Accordingly, at 100 h Pa, the altitude approaching the tropopuase height, differences are within 9.8± 46.0%(n=18) and 23.0±45.8%(n=17), and they are within 21.5±90.6%(n=104) and 6.0±83.4%(n=99) in upper troposphere. The differences of MLS ozone are within ?11.7±16.3%(n=135, V2.2) and 15.6±24.2%(n=305, V3.3) at and above 82.5 h Pa. At 100 h Pa, they are within ?3.5±54.4%(n=27) and ?8.7±41.6%(n=38), and within 18.0±79.1%(n=47) and 34.2±76.6%(n=160) in the upper troposphere. The relative difference of MLS WV and ozone profile has significant oscillation and scatter at upper troposphere and lower stratosphere partly due to the stronger gradients of WV and ozone concentrations here as well the linear interpolation of sonde data for the intercomparison. At and below 70 h Pa, the relative differences of MLS ozone are significantly larger over Lhasa during the Tibetan Plateau "ozone valley" season, which is also the Asian Summer Monsoon period. The MLS ozone differences over the three sites are similar in their vertical distributions during that period. A simple linear correlation analysis between MLS and sonde profiles indicates that the sensitivity of MLS profile products is related to concentrations at each pressure level. The MLS V3.3 product sensitivity is slightly improved for WV at and above 82.5 h Pa, whereas it is not obvious for ozone. The possible factors contributing to the differences of the MLS profile products of WV and ozone are discussed.  相似文献   

8.
The dynamics of wave disturbances in the ionospheric E region in the band of periods of thermal tidal waves and waves of planetary scales (T = 48, 72, and 192 h) has been studied based on the variations in the horizontal component of the geomagnetic field, observed at Paratunka and Barrow observatories in September–October 1999. It has been found that, at midlatitudes during high geomagnetic activity, the intensity of oscillations in the power spectra with T = 24 and 12 h varies with a periodicity of 16 days different from the periodicity of changes in the ΣKp index. The maximal deviations of these periods from the values under quiet conditions coincide with the maximal changes in the ΣKp index. The variations in the 48–192 h band of periods (especially with T ~192 h) intensify simultaneously with increasing geomagnetic activity. The intensity of this harmonic is several times as high as that of the harmonic with T ~ 24 h. The periodicity of changes in the harmonics intensity within the 48–192 h band coincides with the periodicity of changes in the ΣKp index. In the polar ionosphere, the effect of high geomagnetic activity is observed as an increase in the variations with a quasi-period of T ~ 24 h and as an appearance of variations in the 48–192 h band with the periodicity coinciding with the maximums in the ΣKp index variations.  相似文献   

9.
Seismicity has been identified as an example of a natural, nonlinear system for which the distribution of frequency and event size follow a power law called the “Gutenberg–Richter (G-R) law.” The parameters of the G-R law, namely b- and a-values, have been widely used in many studies about seismic hazards, earthquake forecasting models, and other related topics. However, the plausibility of the power law model and applicability of parameters were mainly verified by statistical error σ of the b-value, the effectiveness of which is still doubtful. In this research, we used a newly defined p value developed by Clausetet al. (Power-Law Distributions in Empirical Data, SIAM Rev. 51, 661–703, 2009) instead of the statistical error σ of the b-value and verified its effectiveness as a plausibility index of the power-law model. Furthermore, we also verified the effectiveness of K–S statistics as a goodness-of-fit test in estimating the crucial parameter \(M_{\text{c}}\) of the power-law model.  相似文献   

10.
The dynamics of energetic electrons (E e =0.17–8 MeV) and protons (E p =1 MeV) of the outer radiation belt during the magnetic storm of May 15, 2005, at high (GOES-10 and LANL-84 geosynchronous satellites) and low (Meteor-3M polar satellite) altitudes is analyzed. The data have been compared to the density, plasma velocity, solar wind, and magnetic field measurements on the ACE satellite and geomagnetic disturbances. During the magnetic storm main phase, the nighttime boundary of the region of trapped radiation and the center of westward electrojet shifted to L ~ 3. Enhancements of only low-energy electrons were observed on May 15, 2005. The belt of relativistic electrons with a maximum at L ~ 4 was formed during the substorm, the amplitude of which reached its maximum at ~0630 UT on May 16. The results are in good agreement with the regularity relating the position of a maximum of the new relativistic electron belt, boundaries of the trapped radiation region, and extreme low-latitude position of westward electrojet center to the Dst variation amplitude.  相似文献   

11.
Methods of selecting paleomagnetic data for the construction of apparent polar wander paths (APWPs) are analyzed. It is shown that the existing criteria of reliability of paleomagnetic data cannot be regarded as evidence for their validity. In other words, no unambiguous dependence exists between the reliability and the closeness of paleomagnetic poles to a hypothetical region crossed by the reliable APWP. A new approach to the construction of paleomagnetic APWPs based on simple principles (principle of space and principle of time) is proposed. Using a numerical implementation of this algorithm, three stable clusters were determined (L p = 164, F p = 43; L p = 144, F p = 13; and L p = 170, F p = ?2); the respective maximum estimates of their ages are 248–251, 345, and 385 Ma. These clusters can be regarded as reliable paleomagnetic poles in the Paleozoic of the East European platform.  相似文献   

12.
The Gumbel’s third asymptotic distribution (GIII) of the extreme value method is employed to evaluate the earthquake hazard parameters in the Iranian Plateau. This research quantifies spatial mapping of earthquake hazard parameters like annual and 100-year mode beside their 90 % probability of not being exceeded (NBE) in the Iranian Plateau. Therefore, we used a homogeneous and complete earthquake catalogue during the period 1900–2013 with magnitude M w ? ?4.0, and the Iranian Plateau is separated into equal area mesh of 1° late?×?1° long. The estimated result of annual mode with 90 % probability of NBE is expected to exceed the values of M w 6.0 in the Eastern part of Makran, most parts of Central and East Iran, Kopeh Dagh, Alborz, Azerbaijan, and SE Zagros. The 100-year mode with 90 % probability of NBE is expected to overpass the value of M w 7.0 in the Eastern part of Makran, Central and East Iran, Alborz, Kopeh Dagh, and Azerbaijan. The spatial distribution of 100-year mode with 90 % probability of NBE uncovers the high values of earthquake hazard parameters which are frequently connected with the main tectonic regimes of the studied area. It appears that there is a close communication among the seismicity and the tectonics of the region.  相似文献   

13.
Stable isotope paleoaltimetry has provided unprecedented insights into the topographic histories of many of the world’s highest mountain ranges. However, on the Tibetan Plateau (TP), stable isotopes from paleosols generally yield much higher paleoaltitudes than those based on fossils. It is therefore essential when attempting to interpret accurately this region’s paleoaltitudes that the empirical calibrations of local stable isotopes and the relations between them are established. Additionally, it is vital that careful estimations be made when estimate how different isotopes sourced from different areas may have been influenced by different controls. We present here 29 hydrogen isotopic values for leaf wax-derived n-alkanes (i.e., δDwax values, and abundance-weighted average δD values of C29 and C31) in surface soils, as well as the δD values of soil water (δDsw) samples (totaling 22) from Mount Longmen (LM), on the eastern TP (altitude ~0.8–4.0 km above sea level (asl), a region climatically affected by the East Asian Monsoon (EAM). We compared our results with published data from Mount Gongga (GG). In addition, 47 river water samples, 55 spring water samples, and the daily and monthly summer precipitation records (from May to October, 2015) from two precipitation observation stations were collected along the GG transect for δD analysis. LM soil δDwax values showed regional differences and responded strongly to altitude, varying from?160‰ to?219‰, with an altitudinal lapse rate (ALR) of?18‰ km?1 (R 2=0.83; p<0.0001; n=29). These δDwax values appeared more enriched than those from the GG transect by ~40‰. We found that both the climate and moisture sources led to the differences observed in soil δDwax values between the LM and GG transects. We found that, as a general rule, ε wax/rw, ε wax/p and ε wax/sw values (i.e., the isotopic fractionation of δDwax corresponding to δDrw, δDp and δDsw) increased with increasing altitude along both the LM and GG transects (up to 34‰and 50‰, respectively). Basing its research on a comparative study of δDwax, δDp, δDrw(δDspringw) and δDsw, this paper discusses the effects of moisture recycling, glacier-fed meltwater, relative humidity (RH), evapotranspiration (ET), vegetation cover, latitude, topography and/or other factors on ε wax/p values. Clearly, if ε wax-p values at higher altitudes are calculated using smaller ε wax-p values from lower altitudes, the calculated paleowaterδDp values are going to be more depleted than the actual δD values, and any paleoaltitude would therefore be overestimated.  相似文献   

14.
A spectral analysis of simultaneous diurnal variations in the E z component of the quasi-static electric field in the near-Earth atmosphere, VLF radio noise, and the horizontal component of the geomagnetic field, observed at Kamchatka in September 1999, has been performed. These geophysical parameters are indirectly used to study wave processes in the near-Earth atmosphere and in the ionospheric D and dynamo regions within the band of periods of internal gravity waves (T = 0.5?3.5 h). The correlation method in the frequency region is used to analyze the interrelation between the wave processes in these atmospheric regions. The power cross-spectra of various pairs of geophysical parameters have been studied depending on meteorological, seismic, and geomagnetic activities. It is shown that the oscillations in the power spectra in the T ~ 1–1.5 h band of periods are caused by the sources of internal gravity waves in the near-Earth atmosphere and by the remote sources above the dynamo region of the ionosphere within the T ~ 1.5–3 h band of periods.  相似文献   

15.
The effect of baric variations of different origins on characteristics of seismic noise is analyzed in the frequency range 0.03–20 Hz. Long period variations in atmospheric pressure caused by cyclones, whose period T ranges from half a day to a few days, are shown to increase the microseismic background amplitude by two to four times in the frequency range 0.03–1 Hz (the coefficient of linear correlation between time variations in the amplitude and atmospheric pressure is K = 0.65 at a significance level of r = 0.95). Short-period baric variations with T ~ 5–30 min associated with the passage of cold fronts lead to a tenfold increase in the microseismic background amplitude in the frequency range 4–8 Hz (K = 0.67 at r = 0.95). In this case, disturbances of seismic background are recorded for 20–60 min after the passage of an atmospheric front and display an exponential drop in the amplitude. In distinction to cyclones, an atmospheric front increases the number of impulsive microseismic events of the resonance type.  相似文献   

16.
Terrestrial heat flow, Q=K×ΔT/ΔZ cal/cm2 sec has been determined at 51 localities (39 on land and 12 in the sea) in and around the Japanese Islands. The average values of observed heat flow in land and sea are 1.53µ cal/cm2sec and 1.48µcal/cm2sec respectively. These value do not differ greatly from the world’s averages. The outstanding features of the heat flow distribution are as follows:a) High heat flow region (Q>2.0µcal/cm2sec) exists in the Inner Zone of the Honshu Arc. This region of high heat flow is more distinct in the northeastern Japan than in the southwestern Japan.b) The High heat flow region seems to extend, through the Fossa Magna area, down to the Izu-Mariana Arc.c) It is also probable that a similar high heat flow zone exists in the inner side of the Kurile Arc.d) These zones of high heat flow precisely coincide with the zones of the Cenozoic orogeny in the area concerned.e) Far off the coast of the northeastern Japan, the area at about 150° E may be a high heat flow region.f) Low heat flow (Q<1.0µcal/cm2sec) prevails in the Pacific coast side of the northeastern Japan and in the oceanic area directly east of it, including the area of the Japan Trench.g) The region bounded by the above mentioned high and low heat flow regions has heat flow which is more or less normal. Based on these measurements, a « steady state ” temperature distribution in the crust has been calculated for each of the above regions of high, low and intermediate heat flow, and it was found that there is a large temperature differences between the bottom of the crust of the high and low heat flow regions: the temperature at the Moho boundary in the high heat flow regions should be as high as some 800~1000°C (d=27 km), whereas that under the low heat flow region should be only about 200°C (d=23 km). The high general temperature at the Moho under the high heat flow region seems to favor a production of magma in the upper mantle. Calculated Moho temperatures disfavor the hypothesis that the Moho boundary is due to phase transition.  相似文献   

17.
The hydrogen isotopic composition(δD) of leaf wax long-chain n-alkanes(C27, C29, and C31) from lacustrine sediments has been widely applied to reconstruct terrestrial paleoclimatic and paleohydrological changes. However, few studies have addressed whether the aquatic-derived n-alkanes can affect the δD values of lake sedimentary long-chain n-alkanes, which are usually regarded as a recorder of the terrestrial hydrological signals. Here we systematically investigated δD values of long-chain n-alkanes from modern aquatic plants, both near-shore and off-shore surface sediments, surrounding terrestrial plant litters, as well as river water and lake water in Lake Qinghai and its satellite lakes on the northeastern Qinghai-Tibet Plateau. Our data showed that(i) δD values of long-chain n-alkanes from aquatic plants varied from-184‰ to-132‰ for n-C27, from-183‰ to-138‰ for n-C29, and from-189‰ to-130‰ for n-C31, respectively, with no significant differences among the three n-alkanes homologues;(ii) δD values of long-chain n-alkanes from aquatic plants were generally more positive than those from surrounding terrestrial plants, possibly because that they recorded the D-enrichment of lake water in this semi-arid region;(iii) δD values of long-chain n-alkanes from surface sediments showed significant differences among the three n-alkanes homologues, due to the larger aquatic input of n-C27 to the sedimentary lipid pool than that of n-C31, and(iv) n-C27 δD values of near-shore aquatic plants and near-shore sediments are more negative than those from off-shore as a result of lower δD values of near-shore lake water. Our findings indicate that in this region(i) the offset between sedimentary n-C27 and n-C31 δD values(ΔδDC27-C31) could potentially be used to evaluate if sedimentary long-chain n-alkanes are derived from a single source;(ii) while δD values of n-C27 may be influenced by lake water hydrological changes, sedimentary n-C31 is derived predominantly from terrestrial plants and thus its δD can serve as a relatively reliable indicator for terrestrial paleoclimatic and paleohydrological reconstructions.  相似文献   

18.
We studied the effects of expected end-of-the-century pCO2 (1000 ppm) on the photosynthetic performance of a coastal marine cyanobacterium Synechococcus sp. PCC7002 during the lag, exponential, and stationary growth phases. Elevated pCO2 significantly stimulated growth, and enhanced the maximum cell density during the stationary phase. Under ambient pCO2 conditions, the lag phase lasted for 6 days, while elevated pCO2 shortened the lag phase to two days and extended the exponential phase by four days. The elevated pCO2 increased photosynthesis levels during the lag and exponential phases, but reduced them during the stationary phase. Moreover, the elevated pCO2 reduced the saturated growth light (Ik) and increased the light utilization efficiency (α) during the exponential and stationary phases, and elevated the phycobilisome:chlorophyll a (Chl a) ratio. Furthermore, the elevated pCO2 reduced the particulate organic carbon (POC):Chl a and particulate organic nitrogen (PON):Chl a ratios during the lag and stationary phases, but enhanced them during the exponential phase. Overall, Synechococcus showed differential physiological responses to elevated pCO2 during different growth phases, thus providing insight into previous studies that focused on only the exponential phase, which may have biased the results relative to the effects of elevated pCO2 in ecology or aquaculture.  相似文献   

19.
ADCP and temperature chain measurements have been used to estimate the rate of energy input by wind stress to the water surface in the south basin of Windermere. The energy input from the atmosphere was found to increase markedly as the lake stratified in spring. The efficiency of energy transfer (Eff), defined as the ratio of the rate of working in near-surface waters (RW) to that above the lake surface (P 10), increased from ~0.0013 in vertically homogenous conditions to ~0.0064 in the first 40 days of the stratified regime. A maximum value of Eff~0.01 was observed when, with increasing stratification, the first mode internal seiche period decreased to match the diurnal wind period of 24 h. The increase in energy input, following the onset of stratification was reflected in enhancement of the mean depth-varying kinetic energy without a corresponding increase in wind forcing. Parallel estimates of energy dissipation in the bottom boundary layer, based on determination of the structure function show that it accounts for ~15% of RW in stratified conditions. The evolution of stratification in the lake conforms to a heating stirring model which indicates that mixing accounts for ~21% of RW. Taken together, these estimates of key energetic parameters point the way to the development of full energy budgets for lakes and shallow seas.  相似文献   

20.
The complex seismotectonic studies of the pleistoseist area of the Ilin-Tas earthquake (Ms = 6.9), one of the strongest seismic events ever recorded by the regional seismic network in northeastern Russia, are carried out. The structural tectonic position, morphotectonic features of present-day topography, active faults, and types of Cenozoic deformations of the epicentral zone are analyzed. The data of the instrumental observations are summarized, and the manifestations of the strong seismic events in the Yana–Indigirka segment of the Cherskii seismotectonic zone are considered. The explanation is suggested for the dynamical tectonic setting responsible for the Andrei-Tas seismic maximum. This setting is created by the influence of the Kolyma–Omolon indenter, which intrudes into the Cherskii seismotectonic zone from the region of the North American lithospheric plate and forms the main seismogenic structures of the Yana–Indigirka segment in the frontal zone (the Ilin-Tas anticlinorium). The highest seismic potential is noted in the Andrei- Tas block—the focus of the main tectonic impacts from the Kolyma–Omolon superterrane. The general trend of this block coincides with the orientation of the major axis of isoseismal ellipses (azimuth 50°–85°), which were determined from the observations of macroseismic effects on the ground after the Uyandina (Ms = 5.6), Andrei-Tas (Ms = 6.1), and Ilin-Tas (Ms = 6.9) earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号