首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
黄土高原南北样带不同土层土壤水分变异与模拟   总被引:5,自引:0,他引:5       下载免费PDF全文
为掌握黄土高原区域尺度土壤水分的时空分异特征及其影响因素,在黄土高原布设一条南北方向样带(N=86),动态监测0~5 m剖面土壤含水率。采用经典统计学方法分析了土壤蓄水量的分布规律、变异特征及影响因素。结果表明:不同土层土壤水分均呈中等程度变异,并由南向北递减,样带0~5 m剖面平均土壤蓄水量为735 mm;随着土层深度的增加,土壤水分在空间上的变异增强,而在时间上的变异减弱,表明深层土壤水分具有较强的时间稳定性特征。干燥度、黏粒、归一化植被指数和坡度是影响区域土壤水分空间分布的主要因素,可作为一定置信水平上预测区域土壤水分空间分布状况的预测变量。  相似文献   

2.
青藏高原高寒草甸区土壤水分的空间异质性   总被引:12,自引:0,他引:12       下载免费PDF全文
通过网格(10m×10m)取样,用地统计学方法研究了青藏高原高寒草甸覆盖区域(110m×90m)浅层剖面(0~40cm)土壤水分的空间异质性特征。结果表明:在高寒草甸覆盖区0~30cm深度范围内,土壤水分均存在高度空间异质性,其中87.3%~74.9%的空间异质性是由空间自相关部分引起的,主要体现在201m以下尺度,10m以下随机因素对空间异质性作用较小;30~40cm土壤水分空间异质性由10m以下尺度随机因素导致的占42.3%,而自相关部分的空间异质性(57.7%)体现在10~87.2m尺度。随土层深度的增加,分维数D有逐渐增大的趋势,说明随深度增加高寒草甸区土壤水分自相关空间异质性程度在降低,而随机因素导致的空间异质性程度在增加。从4层的C0/(C+C0)值来看,10~20cm这一层的值最小,表明在这一层的系统变量的空间自相关性程度最高。说明高寒草甸区0~30cm土层的土壤水分含量是受降水、植被发育、根系分布、土壤特性和人为干扰等影响,其空间异质性主要受自相关因素控制,而30cm以下的土壤水分受自相关因素和随机因素共同控制。  相似文献   

3.
黄土高原区域尺度土壤水分空间变异性   总被引:24,自引:0,他引:24       下载免费PDF全文
土壤水分是黄土高原植物生长发育和生态环境重建的主要限制因子。为揭示黄土高原区域尺度深层土壤水分的空间变异性,在黄土高原共布点234个,采集深剖面土壤水分样品12198个。采用经典统计和地统计学相结合的方法系统分析了土壤水分的分布规律、变异特征及影响因素。结果表明:①黄土高原地区土壤水分在水平方向上表现出由东南向西北递减,在垂直方向上(0~500cm)表现出先减小后增加的分布特征;②土地利用对区域尺度土壤水分的数量及垂直分布规律具有显著影响;③土壤水分在不同土层深度(0~500cm)的变异系数、空间异质比等参数的垂直分布均呈先减小后增加趋势,这些参数在表达土壤水分变异的效果上具有一致性。相关结果对黄土高原区域尺度水土过程调控、生态水文过程研究具有一定参考价值。  相似文献   

4.
贵州喀斯特区域土壤水分时空分布特征   总被引:1,自引:0,他引:1  
基于贵州喀斯特区域2011-2015年53个自动土壤水分观测站0~100 cm的逐日土壤水分、降水、气温资料,分析了不同农业气候区土壤水分时空分布特征、变异系数以及土层之间的相关关系。得出以下主要结论:(1)各区土壤水分的范围总体相差较小,据 0~100 cm层土壤水分相对小值区的分布形态,可分为持续性土壤干旱区、季节性土壤干旱区、土壤湿润区。(2)依据各区土壤水分的变异系数相对大值区的时空分布形态类似可分为变异一致区、季节变异区及持续变异区。(3)通过10~50 cm对其下层土壤水分的关系研究发现,温暖湿润区、温和湿润区、高寒区研究土层(10~50 cm)与其下层(20~90 cm)土壤水分相关系数均>0.60,其余各区土层只与其下20~40 cm土层相关系数较大,而对其下更深土层相关系数较小;从滑动日数来看,各区10~50 cm土层与其下10~20 cm、30~50 cm、60~100 cm层最大相关系数的滑动日数随深度的增加而增加,分别为3~10日、10~20日、20~30日。(4)通过对比各区土壤水分与其变异系数分布特征发现,土壤水分的低值区发生的层次及时间与变异系数大值区基本相对应,土壤水分的变化除与降水、气温直接关系外,还可能与土质及环境等其他要素有关。   相似文献   

5.
荒漠绿洲区人工梭梭林土壤水分空间异质性的定量研究   总被引:13,自引:0,他引:13  
何志斌  赵文智 《冰川冻土》2004,26(2):207-211
利用12×12m2样地中1×1m2、0~100cm剖面的土壤水分调查数据,采用地统计学原理与方法,研究了人工梭梭林(Haloxylon ammodendron)在栽植20a后的土壤水分格局的空间异质性程度、异质性组成、尺度以及与梭梭生长的关系.结果表明:人工梭梭林土壤水分空间异质性的96%~88%是由空间自相关因素引起的,随机因素起的作用较小.除60~80cm土层土壤水分的块金值与基台值比值较高(C0/(C0+C)=0.5),其它各层都较小(0.04~0.12),变程为1.57~2.97m.在较小(<2m)和较大(>8m)的尺度上,土壤水分的空间相关性较强.沿垂直剖面土壤含水量差异显著,10~20cm土层含水量最高(2.82%),其它各层较小(1.30%~1.67%).  相似文献   

6.
高寒草甸土壤微生物功能多样性对积雪变化的响应   总被引:2,自引:2,他引:0  
积雪是高寒地区不可忽视的生态因子,不仅直接影响土壤温度、水分,而且间接影响土壤微生物群落组成和多样性。为研究高寒草甸生态系统中土壤微生物对积雪变化的响应,于2013年11月至2014年7月在青藏高原东缘红原县高寒草甸,通过人工堆积的方法建立4个不同积雪梯度,以自然积雪量为对照(CK),2倍于自然积雪量(S1)、3倍于自然积雪量(S2)、4倍于自然积雪量(S3)。运用Biolog-Eco板法研究不同积雪梯度下土壤微生物功能多样性,并测定积雪变化对土壤温度和土壤养分的影响。结果表明:积雪期内,0~10 cm土层土壤温度随着积雪量的增加而降低,而10~20 cm土层随积雪量增加先降低后升高。增加积雪量处理后0~10 cm土层全磷(TP)、有机碳(SOC)显著增加(P<0.05);而10~20 cm土层仅S3下全氮(TN)、TP、SOC增加。每孔平均变化率值(Average well color development,AWCD)在0~10 cm土层表现为CK > S2 > S1 > S3,而10~20 cm表现为S2 > S1 > CK > S3。在0~10 cm土层,S3处理显著降低了土壤微生物多样性McIntosh指数、Shannon-Wiener指数和Pielou指数(P<0.05); 10~20 cm土层,S1和S2处理下多样性指数显著增加(P<0.05)。主成分分析显示:氨基酸类和酚酸类是微生物利用的主要碳源类型。相关性分析表明:多样性指数与TP、SOC、碳氮比(C/N)显著负相关(P<0.05),氨基酸类碳源与TP、C/N显著负相关(P<0.05)。因此,冬季积雪一定程度上影响着土壤温度和土壤养分,进而影响高寒草甸土壤微生物群落功能多样性。  相似文献   

7.
为掌握黄土高原土壤干燥化程度的空间分布特征,定量评价雨季前、后土壤干燥化程度,于2013年在黄土高原南北方向布设一条样带(N=86),获取雨季前、后0~5 m剖面土壤含水量。采用地统计学方法分析了土壤干燥化指数的空间分布规律及变异特征。结果表明:在黄土高原地区,土壤干燥化程度存在明显的纬度地带性,且雨季前土壤干燥化指数的空间变异程度高于雨季后;经过雨季降水的补给,土壤干层在一定程度上得到修复,且中部地区的修复效果明显优于南部及北部地区;土壤干燥化指数剖面分布特征在雨季前、后的差异主要表现在浅层0~2.3 m土层,这主要归因于降水对浅层土壤水分的补给。  相似文献   

8.
兰州新区位于黄土高原西段, 为典型干旱区, 道路修建形成了许多坡度大于30°的工程开挖边坡。在边坡上重建植被对改善局地景观和防治水土流失具有重要的作用, 而坡面土壤水分状况对植被重建影响重大。选择3种整地类型(条形坑、 圆形坑和原状坡样地), 研究兰州新区黄土工程开挖边坡植被重建的初期土壤水分状况, 结果表明: 3种整地类型中条形坑的土壤水分条件最好, 与圆形坑、 原状坡样地土壤水分存在显著差异(P<0.05)。不同灌溉频率下原状坡样地0 ~ 20 cm土层土壤含水量较低, 20 ~ 50 cm土层土壤含水量较高。土壤含水量的变异系数随土层深度的增加而减小, 随灌溉频率的降低而增加。在边坡植被重建初期, 需把土壤水分维持在8.4% ~ 10.8%, 即田间持水量的38% ~ 49%, 才能保证植物正常生育生长。当栽植的植被根系长度大于10 cm时, 可考虑将喷灌频率从每天喷灌改为隔天喷灌, 否则植物有死亡的风险。研究结果可为类似的黄土边坡植被恢复和生态建设提供参考。  相似文献   

9.
认识沙漠土壤水分的时空变异性,是揭示沙漠生态系统生态-水文格局的基础。利用中子土壤水分仪的实测数据,对古尔班通古特沙漠树枝状沙丘土壤水分时空变异进行了系统分析。研究表明:① 沙丘不同部位土壤水分随时间具有一致性变化规律,上层土壤和下层土壤的变化趋势有所不同。0~1 m土层坡顶>坡中>坡脚,1~2 m土层坡脚>坡中>坡顶。② 土壤水分具有明显的季节变化和分层变化特征。春季是古尔班通古特沙漠土壤水分最丰富、变化最迅速的时期;0~40 cm、40~140 cm、140~200 cm土层土壤水分变异系数分别为13.56%、5.35%和0.80%,与不同土层水分来源和消耗以及植物根系分布相对应;不同土层土壤水分的变异强度要大于不同部位土壤水分的变异强度。③ 植被和地形对土壤水分的空间分异作用明显,沙丘坡脚处以及荒漠灌木梭梭根区始终存在土壤水分相对富集区。  相似文献   

10.
黄土高原关键带全剖面土壤水分空间变异性   总被引:2,自引:0,他引:2       下载免费PDF全文
土壤水分是黄土高原关键带水循环、地下水补给和植被恢复的关键因素。为揭示黄土高原关键带黄土整个剖面的土壤水分空间变化特征,通过土芯钻探的方式获取了黄土高原关键带5个典型样点(杨凌、长武、富县、安塞和神木)从地表到基岩的土壤水分样品,采用经典统计学和地统计学相结合的方法分析了剖面土壤水分的分布规律、变异特征及空间结构。结果表明:黄土高原关键带剖面土壤水分从南往北,土壤平均含水量由高变低;5个样点的土壤水分均为中等变异,随着深度由40 m增加到200 m,土壤水分变异性变弱,且样点之间的土壤含水量差异降低;地统计学分析表明样点的半方差函数能被理论模型较好地拟合(杨凌除外),指数模型能够描述大部分样点深剖面的空间变异结构。相关结果有助于了解黄土高原深层土壤水分状况及分布规律,对于黄土高原土壤水资源估算和区域植被恢复具有重要价值。  相似文献   

11.
Soil moisture variability and controls are little known in large gullies of the Loess Plateau which represent complex topography with steep slopes. This study analyzed spatial–temporal variability of soil moisture at the 0–20, 20–40, 40–60, and 60–80 cm depths in a large gully of the Loess Plateau based on root-zone soil moisture measurements for 3 years (2009–2011). The result showed that mean soil moisture, standard deviation (SD), and coefficient of variation, were highly dependent on depth; the highest mean value was observed at the 20–40 cm depth, while the lowest one was at the 0–20 cm depth. The SD increased with mean soil moisture for various depths as soil moisture was relatively wet; however, a transition that SD decreased with mean soil moisture occurred when soil moisture was relatively dry. Positive correlations exist between moisture contents over different depths, and that the relationships of the neighboring layers are relatively high with R 2 from 0.70 to 0.76. Correlation analysis, principle component analysis, and stepwise multiple regression analysis showed that soil particle size distribution and topography (slope and elevation) were the main environmental factors controlling soil moisture variability in the large gully.  相似文献   

12.
研究青藏高原多年冻土区高寒草甸土壤CO2通量有助于准确估算该区域的土壤CO2排放, 对认识高原土壤碳循环及其对全球气候变化的响应具有重要意义. 利用静态箱-气相色谱法和LI-8100土壤CO2通量自动测量系统对疏勒河上游多年冻土区高寒草甸土壤CO2通量进行了定期观测, 结合气象和土壤环境因子进行了分析. 结果表明: 整个观测期高寒草甸土壤表现为CO2的源, 土壤CO2通量的日变化范围为2.52~532.81 mg·m-2·h-1. 土壤CO2年排放总量为1 429.88 g·m-2, 年均通量为163.23 mg·m-2·h-1; 其中, CO2通量与空气温度和相对湿度、活动层表层2 cm、10 cm、20 cm、30 cm 土壤温度、含水量和盐分均显著相关. 2 cm土壤温度、空气温度和总辐射、空气温度、2 cm土壤盐分分别是影响活动层表层2 cm土壤完全融化期、冻结过程期、完全冻结期、融化过程期土壤CO2通量的最重要因子. 在完全融化期、冻结过程期和整个观测期, 拟合最佳的温度因子变化分别能够解释土壤CO2通量变化的72.0%、82.0%和38.0%, 对应的Q10值分别为1.93、6.62和2.09. 冻融期(含融化过程期和冻结过程期)和完全冻结期的土壤CO2排放量分别占年排放总量的15.35%和11.04%, 在年排放总量估算中不容忽视.  相似文献   

13.
以黄土高原渭河流域西部黄土丘陵沟壑区为研究区域,建立了野外观测场地,对该区域浅层非饱和土体冻融过程及水热运移规律对气候作用的响应过程进行了研究与分析。结果表明:气温对地温及地温变幅的影响随深度增加而迅速衰减,地温振幅随深度增加按指数规律衰减且温度波的相位随深度的增加而滞后,地表下200 cm深度以内地温振幅受气温影响较大。该区域裸露地表土壤的最大冻结深度在20~50 cm之间。在土壤冻结过程中,深层土壤未冻水逐渐向冻结层运移,导致深层含水量逐渐减少。不同深度土壤冻结系数随土壤深度的增加而减小,融化系数则相反。地表下50 cm深度以内的土体含水量受降水影响波动显著。土壤含水量与温度呈相似变化,地温峰值出现的时间总滞后于土壤水分,其变异程度均随土壤深度的增加而减小。  相似文献   

14.
基于Laio土壤水分动态随机模型(Laio模型),利用2006-2010年5~9月土壤水分连续监测数据及日降水资料,分析科尔沁沙地固定沙丘和沙质草地生长季根系层土壤水分动态及其与降水格局的关系,研究点尺度土壤水分概率密度函数,并对Laio模型涉及的13个参数进行了敏感性分析。结果表明:① 研究区年降水的季节分配极不均匀,主要集中在4~10月的生长季,占全年降水量的93%;0~5 mm降水事件占全年降水事件的73%,但其降水量只占全年降水量的25%;降水间隔期以0~10 d为主,占全年无降水期的38%,其频数最高,占全年间隔期频数的87%。② 固定沙丘和沙质草地根系层厚度分别为0~100 cm和0~70 cm,沙质草地根系层土壤水分显著高于固定沙丘;两类沙地7月份的土壤水分都显著高于生长季其他月份。③ 两类沙地生长季根系层土壤水分均服从正态分布;通过Laio模型得到了两类沙地生长季根系层土壤水分概率密度函数p(s),其峰值及峰值出现的位置和峰的阔度均与观测结果很接近,说明Laio模型能对科尔沁沙地土壤水分概率密度函数进行较好的模拟。④ Laio模型涉及的13个参数中,对p(s)最为敏感的参数是降水频率λ、平均降水量α、最大蒸散量Emax、水分胁迫点s*和凋萎系数sw,主要影响p(s)曲线的峰值。  相似文献   

15.
黄土高原丘陵沟壑区包气带土壤水运移过程   总被引:1,自引:0,他引:1       下载免费PDF全文
包气带土壤水运移过程是黄土高原生态修复中亟需回答的关键科学问题。环境同位素方法可获取其他方法难以获取的水文过程信息。通过对黄土高原丘陵沟壑区羊圈沟小流域降水、包气带0~150 cm土壤水和绣线菊(Spiraea salicifolia)木质部水等样品的同位素δD和δ18O进行测定。结果表明:羊圈沟小流域降水同位素组成受蒸发作用影响较大,呈现明显分馏效应。包气带土壤水、降水与木质部水同位素组成存在明显月份变化特征。降水是土壤水的主要补给来源,灌丛的水分利用来源主要为降水和土壤水,符合降水-土壤水-植被水的运移特征。灌丛木质部水和20~40 cm土壤水δD和δ18O最为接近,20~40 cm土壤水是灌丛水分利用的主要来源。研究揭示了包气带土壤水运移过程及植物水分利用来源,为土壤水运移过程、模型结构与参数识别等提供科学依据。  相似文献   

16.
土壤水作为陆地水循环和水量平衡的一个重要组成部分,在土壤-植被-大气连续体物质与能量转化中起着重要的作用,成为陆面过程研究中的重要参量.选择黄土高原西部的安家坡流域,采用多点长序列观测方法,对该区域土壤水分的时空变化规律进行研究.结果表明:坡向和土地利用类型是小流域土壤水分变异的重要影响因素,得出了不同立地条件下土壤水分的剖面变化与时间的动态规律.在此基础上,利用土壤湿度指数结合主要影响因素预测土壤水分的时空变化,旨在为黄土高原大中尺度的土壤水分模拟提供思路.  相似文献   

17.
张涛  王根绪  杨燕  毛天旭 《冰川冻土》2018,40(6):1255-1264
研究多年冻土区不同草地类型及季节生态系统呼吸,对理解青藏高原碳源汇关系及其对气候变化响应具有重要意义。在青藏高原风火山选取高寒草甸和沼泽草甸对生长季和非生长季生态系统呼吸进行观测。结果表明:生态系统呼吸呈明显的日变化和季节变化,高寒草甸日变异系数(0.30~0.92)高于沼泽草甸(0.12~0.29),高寒草甸非生长季生态系统呼吸白天/晚上比高于生长季,而沼泽草甸季节变化较小;季节变化与5 cm地温变化一致。高寒草甸和沼泽草甸非生长季生态系统呼吸平均速率分别为0.31和0.36 μmol·m-2·s-1,生长季分别为1.99和2.85 μmol·m-2·s-1。沼泽草甸生态系统呼吸年排放总量为1 419.01 gCO2·m-2,显著高于高寒草甸(1 042.99 gCO2·m-2),其中非生长季高27%,生长季高39%。高寒草甸和沼泽草甸非生长季生态系统呼吸总量分别为268.13和340.40 gCO2·m-2,分别占全年的25.71%和23.99%。两种草地类型生态系统呼吸与气温、5 cm和20 cm地温均显著相关,可解释37%~73%的季节变异,除生长季沼泽草甸外,生态系统呼吸与5 cm地温相关性最高。非生长季5 cm地温对应Q10为4.34~5.02,高于生长季(2.35~2.75),且沼泽草甸高于高寒草甸。生长季生态系统呼吸与土壤水分无显著关系,而非生长季生态系统呼吸受土壤水分显著影响(R2:0.21~0.40),随土壤水分增加而增加。  相似文献   

18.
黄土丘陵小流域地形和土地利用对土壤水分时空格局的影响   总被引:47,自引:0,他引:47  
采用1982~1985年和2002年两个时段的定点观测数据,系统分析了小流域尺度地形和土地利用类型对土壤水分时空格局的影响.结果表明:1)土壤水分变化特征为所有年份农地土壤水分都最大,灌木林地和荒草地较低,林地居中;不同坡向间以阴坡土壤水分最大;而不同坡位间以坡中部土壤水分最大.受降雨和植被耗水的影响,所有土地利用类型中土壤水分在整个生长期表现为降低型.2)在年尺度上表现为干旱年份土地利用类型和坡向对土壤水分的影响较大;而在湿润年份,其影响程度减弱;坡位在干旱和湿润年份对土壤水分的影响都较小.湿润年份,降雨量的增大弱化了地形和土地利用类型对土壤水分时空格局的影响;而干旱年份正好相反.3)在季节尺度上表现为在生长季节的中后期,土壤水分的变异格局主要受坡向影响;而在生长季节的中期,主要受土地利用类型影响;坡位在整个观测时段内影响都较小.4)在不同土壤层次方面特征为土地利用类型对0~20em层次影响较小,而对其他4个深度较大的层次(20~100cm)影响较大,并且5个层次中以40~60cm层次的差异最大;坡向对5个层次土壤水分的变异格局均有明显影响,并呈现随着深度的增加,其影响减弱的趋势;坡位对5个层次的土壤水分变异格局影响均较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号