首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary A conceptually simple model based on cloud geometry is proposed to explain direct adjustment of moisture by convective clouds. The model is tested using deep convective cloud geometry and changes in upper tropospheric humidity in the Tropical Western Pacific (TWP) during TOGACOARE. The model and the data emphasize the importance of clouds larger than a General Circulation Model (GCM) grid box in drying the upper topospheric environment and in sub grid scale clouds in moistening the upper topospheric environment. The convective cloud sizes and changes in moisture are shown to be linked to precipitation rates. The change from clouds that moisten to clouds that dry the environment occurs when the average cloud size in 6.8×104 km2 or rain rate of 2.1 mm hr–1. In a study of moisture change in the sub cloud layer due to convection, Barnes and Garstang (1982) demonstrated that precipitation rates greater than 2 mm hr–1 resulted in drying. The critical rain rates above which environmental drying occurs is similar for both upper tropospheric regions and the sub cloud. The similarity of the rain rates indicates that the model concepts maybe used to explain direct adjustment of moisture under a variety of conditions.With 12 Figures  相似文献   

2.
 Experiments using a GCM with two different vertical resolutions show differences in the amount of variability in the tropical upper tropospheric zonal wind component associated with the Madden-Julian Oscillation (MJO). The GCM with lower vertical resolution shows very little variability in this quantity whereas when the vertical resolution is doubled in the free troposphere, the GCM produces variability which is of the same strength as observations. However, the eastward propagation of an enhanced convective region from the Indian Ocean into the west Pacific is not well represented in either simulation of this atmospheric GCM. A water-covered or “aqua-planet” version of the same GCM is used to investigate the behaviour of tropical convection when the vertical resolution is doubled. When the vertical resolution is increased, the spectrum of tropical cloud types changes from a bimodal distribution with peaks representing shallow cumulus and deep cumulonimbus clouds to a trimodal distribution with a third peak in mid-troposphere near the melting level. Associated with periods when these mid-level congestus clouds are dominant, the detrainment from these clouds significantly moistens the mid-troposphere. The appearance of these congestus clouds is shown to be partly due to improved resolution of the freezing level and the convective processes occurring at this level. However, due to the way in which convective detrainment is parametrized in this model, the vertical profile becomes rather noisy and this too contributes to the change in the nature of the convective clouds. The resulting cloud distribution more closely resembles observations, particularly during the suppressed phase of the MJO when cumulus congestus is the dominant cloud type. Received: 17 April 2000 / Accepted: 30 November 2000  相似文献   

3.
R. A. Colman 《Climate Dynamics》2001,17(5-6):391-405
This study addresses the question: what vertical regions contribute the most to water vapor, surface temperature, lapse rate and cloud fraction feedback strengths in a general circulation model? Multi-level offline radiation perturbation calculations are used to diagnose the feedback contribution from each model level. As a first step, to locate regions of maximum radiative sensitivity to climate changes, the top of atmosphere radiative impact for each feedback is explored for each process by means of idealized parameter perturbations on top of a control (1?×?CO2) model climate. As a second step, the actual feedbacks themselves are calculated using the changes modelled from a 2?×?CO2 experiment. The impact of clouds on water vapor and lapse rate feedbacks is also isolated using `clear sky' calculations. Considering the idealized changes, it is found that the radiative sensitivity to water vapor changes is a maximum in the tropical lower troposphere. The sensitivity to temperature changes has both upper and lower tropospheric maxima. The sensitivity to idealized cloud changes is positive (warming) for upper level cloud increases but negative (cooling) for lower level increases, due to competing long and shortwave effects. Considering the actual feedbacks, it is found that water vapor feedback is a maximum in the tropical upper troposphere, due to the large relative increases in specific humidity which occur there. The actual lapse rate feedback changes sign with latitude and is a maximum (negative) again in the tropical upper troposphere. Cloud feedbacks reflect the general decrease in low- to mid-level low-latitude cloud, with an increase in the very highest cloud. This produces a net positive (negative) shortwave (longwave) cloud feedback. The role of clouds in the strength of the water vapor and lapse rate feedbacks is also discussed.  相似文献   

4.
A new cloud microphysics scheme including a prognostic treatment of cloud ice (PCI) is developed to yield a more physically based representation of the components of the atmospheric moisture budget in the general circulation model ECHAM. The new approach considers cloud water and cloud ice as separate prognostic variables. The precipitation formation scheme for warm clouds distinguishes between maritime and continental clouds by considering the cloud droplet number concentration, in addition to the liquid water content. Based on several observational data sets, the cloud droplet number concentration is derived from the sulfate aerosol mass concentration as given from the sulfur cycle simulated by ECHAM. Results obtained with the new scheme are compared to satellite observations and in situ measurements of cloud physical and radiative properties. In general, the standard model ECHAM4 and also PCI capture the overall features, and the simulated results usually lie within the range of observed uncertainty. As compared to ECHAM4, only slight improvements are achieved with the new scheme. For example, the overestimated liquid water path and total cloud cover over convectively active regions are reduced in PCI. On the other hand, some shortcomings of the standard model such as underestimated shortwave cloud forcing over the extratropical oceans of the respective summer hemisphere are more pronounced in PCI.This paper was presented at the Third International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 4–9 Sept. 1995 under the auspices of the Max Planck Institute for Meteorology, Hamburg. Editor for these papers is L. Dümenil.  相似文献   

5.
Physical processes responsible for tropospheric adjustment to increasing carbon dioxide concentration are investigated using abrupt CO2 quadrupling experiments of a general circulation model (GCM) called the model for interdisciplinary research on climate version 5 with several configurations including a coupled atmosphere–ocean GCM, atmospheric GCM, and aqua-planet model. A similar experiment was performed in weather forecast mode to explore timescales of the tropospheric adjustment. We found that the shortwave component of the cloud radiative effect (SWcld) reaches its equilibrium within 2 days of the abrupt CO2 increase. The change in SWcld is positive, associated with reduced clouds in the lower troposphere due to warming and drying by instantaneous radiative forcing. A reduction in surface turbulent heat fluxes and increase of the near-surface stability result in shoaling of the marine boundary layer, which shifts the cloud layer downward. These changes are common to all experiments regardless of model configuration, indicating that the cloud adjustment is primarily independent of air–sea coupling and land–sea thermal contrast. The role of land in cloud adjustment is further examined by a series of idealized aqua-planet experiments, with a rectangular continent of varying width. Land surface warming from quadrupled CO2 induces anomalous upward motion, which increases high cloud and associated negative SWcld over land. The geographic distribution of continents regulates the spatial pattern of the cloud adjustment. A larger continent produces more negative SWcld, which partly compensates for a positive SWcld over the ocean. The land-induced negative adjustment is a factor but not necessary requirement for the tropospheric adjustment.  相似文献   

6.
The planetary boundary layer turbulence and moist convection parameterizations have been modified recently in the NASA Goddard Institute for Space Studies(GISS) Model E2 atmospheric general circulation model(GCM; post-CMIP5,hereafter P5). In this study, single column model(SCM P5) simulated cloud fractions(CFs), cloud liquid water paths(LWPs)and precipitation were compared with Atmospheric Radiation Measurement(ARM) Southern Great Plains(SGP) groundbased observations made during the period 2002–08. CMIP5 SCM simulations and GCM outputs over the ARM SGP region were also used in the comparison to identify whether the causes of cloud and precipitation biases resulted from either the physical parameterization or the dynamic scheme. The comparison showed that the CMIP5 SCM has difficulties in simulating the vertical structure and seasonal variation of low-level clouds. The new scheme implemented in the turbulence parameterization led to significantly improved cloud simulations in P5. It was found that the SCM is sensitive to the relaxation time scale. When the relaxation time increased from 3 to 24 h, SCM P5-simulated CFs and LWPs showed a moderate increase(10%–20%) but precipitation increased significantly(56%), which agreed better with observations despite the less accurate atmospheric state. Annual averages among the GCM and SCM simulations were almost the same, but their respective seasonal variations were out of phase. This suggests that the same physical cloud parameterization can generate similar statistical results over a long time period, but different dynamics drive the differences in seasonal variations. This study can potentially provide guidance for the further development of the GISS model.  相似文献   

7.
在对GRAPES全球预报系统(GRAPES_GFS)云预报性能进行诊断评估的基础上,对凝结(华)和蒸发等物理过程及对流卷出对云的影响过程进行改进和优化,旨在提高GRAPES_GFS云量及其特征量和降水的预报精度.通过研究GRAPES全球模式、欧洲中期天气预报中心(ECMWF)和美国环境预报中心(NCEP)全球模式中3种...  相似文献   

8.
末次冰期冰盛期中国地区水循环因子变化的模拟研究   总被引:2,自引:1,他引:1  
刘煜  李维亮  何金海  陈隆勋 《气象学报》2008,66(6):1005-1019
ISCCP卫星资料(1983—2006年)的结果显示:青藏高原地区是高云的高值中心;而以四川为中心直到同纬度的中国东南沿海地区是中云的高值区,同时,青藏高原地区是中云的低值中心。利用全球气候模式CCM3嵌套区域模式MM5模拟了现代和末次冰期冰盛期的气候。MM5模拟的结果与ISCCP的卫星资料对比表明:模拟结果再现了中国地区高云和中云分布的主要特征。这暗示云分布的气候特征可能主要由相对湿度决定。同时,通过MM5的结果与NCEP资料的对比也说明,模式可以较好地模拟水汽和温度的垂直分布。在此基础上,研究了末次冰期冰盛期水循环因子的变化。模拟结果显示:末次冰期冰盛期夏季对流层的温度降低,在对流层中上层存在温度降低的中心;而在冬季在南方的对流层中层存在降温中心,在北方的对流层中上层温度升高。大气中水汽含量与温度变化有很好的正相关,除了冬季北方对流层中上层水汽增加外,水汽含量一般降低,而且在近地层降低的最多,随高度增高水汽变化逐渐变小。但是,水汽的相对变化在对流层上层存在降低的高值中心。相对湿度存在变化,最大的变化超过15%,而且有增加,也有减少。在区域尺度相对湿度不是保守的。相对湿度变化与中云和低云的变化一致。在末次冰期冰盛期,中国地区高云量减少,除中国西南地区外,中云和低云量减少,低云量减少的最多。降水的变化与中云和低云的变化相对应,云量增加降水增加,云量减少降水也减少。从相对湿度和有效降水可以看到在西南地区末次冰期冰盛期变得潮湿,在夏季西北地区也变得潮湿。  相似文献   

9.
混合云在GCM气候模拟中的重要性   总被引:1,自引:1,他引:1       下载免费PDF全文
文章提出了一种简单且适用于大气环流模式(GCM)的冰云辐射参数化。利用该参数化和UGAMP大气环流模式研究了混合云在GCM气候模拟中的重要性。结果表明,云的相态变化及其所产生的反馈作用对模拟的气候状态有显著的影响。在高纬地区,云的相态变化可使地气系统净辐射增加。而在热带则使净辐射减少。  相似文献   

10.
Diurnal variations of outgoing longwave radiation (OLR) are examined in conjunction with diurnal variations of high cloud and upper tropospheric humidity (UTH) over the Indian Ocean and surrounding land areas using Meteosat-5 measurements. Most land areas exhibit a significant diurnal variation of OLR with the largest amplitude over the Arabian Peninsula, whereas the diurnal variation of OLR is much weaker over the Indian Ocean. While diurnal maxima of OLR are found in the early afternoon over many regions of the analysis domain following the diurnal cycle of solar heating, convectively active regions of both land and ocean where high cloud and UTH exhibit distinct diurnal variations show OLR maxima before local noon. These results indicate that high cloud development in the afternoon induces a shift in local time of OLR maxima over convective regions. In agreement with earlier studies it is shown that UTH diurnal variations are less important in regard to their impact on the OLR variations.  相似文献   

11.
Based on the International Satellite Cloud Climatology Project (ISCCP) data in 1983–2006,it is found that there is a high value center of high cloud amount over the Tibetan Plateau (TP),while there is a high value center of middle cloud amount over the Sichuan Basin extending to the coastal area of southeastern China along the same latitude,and a low one over the TP.The present day (PD) and Last Glacial Maximum (LGM) climates are simulated by using the NCAR Community Climate Model (CCM3) nested with a regio...  相似文献   

12.
13.
GRAPES全球模式次网格对流过程对云预报的影响研究   总被引:4,自引:2,他引:2  
谭超  刘奇俊  马占山 《气象学报》2013,71(5):867-878
50 km分辨率下的GRAPES全球模式对赤道及低纬度地区云水、云冰、云量和格点降水的预报较实际观测偏少。为解决这一问题,在模式原有的格点尺度云方案基础上,将次网格对流过程的影响作为源汇项,加入到云水、云冰和总云量的预报方程中。结合云和地球辐射能量系统(CERES)与热带降雨测量(TRMM)等卫星云观测资料,进行了改进后的云方案与原云方案预报结果的对比分析。结果显示,考虑了对流对格点尺度云含水量和云量预报的影响后,GRAPES全球模式预报的云和格点降水在赤道及低纬度地区有明显改善,水凝物含水量和总云量的预报结果与实况较为接近,格点降水在总降水中的比例由原来的5%提高到25%。研究进一步表明,次网格对流过程对格点尺度云和降水的影响取决于上升气流质量通量的分布和强度,上升气流的质量通量在对流活动强烈的低纬度热带地区较强,其最大值出现在650—450 hPa高度,因此,次网格对流的卷出过程对中云的影响最为明显。对高云和低云也有一定程度的影响,使云顶变高,云底变低。  相似文献   

14.
Possible causes behind the unusual cooling by summer monsoon clouds over India are investigated. Results suggest that the causes behind the cooling over the Bay of Bengal, India (BBI) and Arabian Sea (AS) within the Indian monsoon region are different. Over the BBI, clouds are tall. A unique upper tropospheric easterly jet stream exists over India during the summer monsoon season, which horizontally spreads the vertically growing deep convective clouds and thereby increases the cloud cover. Hence, more incoming solar radiation is reflected back to space, which leads to cooling. A radiative transfer study employing the Santa Barbara DISORT Atmospheric Radiative Transfer model supports this view. Over the Arabian Sea, clouds are shallow, and hence the upper tropospheric jet cannot affect them. Due to their proximity to the ground, Arabian Sea clouds exert less warming effect, but they exert a considerable cooling effect, which arises because of the high reflectivity of the clouds. Over the Equatorial Indian Ocean (EIO), where the monsoon clouds originate and propagate towards the monsoon trough region, both cooling and warming effects are nearly canceled out. The upper tropospheric jet is located hundreds of kilometers north of the EIO, and hence it does not disturb the deep convective clouds of the EIO. Therefore, they behave similarly to other deep convective clouds in the tropical belt.  相似文献   

15.
An overview of radiative climate feedbacks and ocean heat uptake efficiency diagnosed from idealized transient climate change experiments of 14 CMIP5 models is presented. Feedbacks explain about two times more variance in transient climate response across the models than ocean heat uptake efficiency. Cloud feedbacks can clearly be identified as the main source of inter-model spread. Models with strong longwave feedbacks in the tropics feature substantial increases in cloud ice around the tropopause suggestive of changes in cloud-top heights. The lifting of the tropical tropopause goes together with a general weakening of the tropical circulation. Distinctive inter-model differences in cloud shortwave feedbacks occur in the subtropics including the equatorward flanks of the storm-tracks. Related cloud fraction changes are not confined to low clouds but comprise middle level clouds as well. A reduction in relative humidity through the lower and mid troposphere can be identified as being the main associated large-scale feature. Experiments with prescribed sea surface temperatures are analyzed in order to investigate whether the diagnosed feedbacks from the transient climate simulations contain a tropospheric adjustment component that is not conveyed through the surface temperature response. The strengths of the climate feedbacks computed from atmosphere-only experiments with prescribed increases in sea surface temperatures, but fixed CO2 concentrations, are close to the ones derived from the transient experiment. Only the cloud shortwave feedback exhibits discernible differences which, however, can not unequivocally be attributed to tropospheric adjustment to CO2. Although for some models a tropospheric adjustment component is present in the global mean shortwave cloud feedback, an analysis of spatial patterns does not lend support to the view that cloud feedbacks are dominated by their tropospheric adjustment part. Nevertheless, there is positive correlation between the strength of tropospheric adjustment processes and cloud feedbacks across different climate models.  相似文献   

16.
Results are presented from two versions of a global R15 atmospheric general circulation model (GCM) coupled to a nondynamic, 50-m deep, slab ocean. Both versions include a penetrative convection scheme that has the effect of pumping more moisture higher into the troposphere. One also includes a simple prescribed functional dependence of cloud albedo in areas of high sea-surface temperature (SST) and deep convection. Previous analysis of observations has shown that in regions of high SST and deep convection, the upper-level cloud albedos increase as a result of the greater optical depth associated with increased moisture content. Based on these observations, we prescribe increased middle- and upper-level cloud albedos in regions of SST greater than 303 K where deep convection occurs. This crudely accounts for a type of cloud optical property feedback, but is well short of a computed cloud-optical property scheme. Since great uncertainty accompanies the formulation and tuning of such schemes, the prescribed albedo feedback is an intermediate step to examine basic feedbacks and sensitivities. We compare the two model versions (with earlier results from the same model with convective adjustment) to a model from the Canadian Climate Centre (CCC) having convective adjustment and a computed cloud optical properties feedback scheme and to several other GCMs. The addition of penetrative convection increases tropospheric moisture, cloud amount, and planetary albedo and decreases net solar input at the surface. However, the competing effect of increased downward infrared flux (from increased tropospheric moisture) causes a warmer surface and increased latent heat flux. Adding the prescribed cirrus albedo feedback decreases net solar input at the surface in the tropics, since the cloud albedos increase in regions of high SST and deep convection. Downward infrared radiation (from increased moisture) also increases, but this effect is overpowered by the reduced solar input in the tropics. Therefore, the surface is somewhat cooler in the tropics, latent heat flux decreases, and global average sensitivity to a doubling of CO2 with regard to temperature and precipitation/evaporation feedback is reduced. Similar processes, evident in the CCC model with convective adjustment and a computed cloud optical properties feedback scheme, occur over a somewhat expanded latitudinal range. The addition of penetrative convection produces global effects, as does the prescribed cirrus albedo feedback, although the strongest local effects of the latter occur in the tropics.Portions of this study are supported by the Office of Health and Environmental Research of the U.S. Department of Energy as part of its Carbon Dioxide Research Program, and by the Electric Power Research Institute as part of its Model Evaluation Consortium for Climate Assessment ProjectThe National Center for Atmospheric Research is sponsored by the National Science Foundation  相似文献   

17.
Many studies have investigated the effects that misrepresentation of sub-grid cloud structure can have on the radiation budget. In this study, we perform 20-year simulations of the current climate using an atmosphere-only version of the Met Office Unified Model to investigate the effects of cloud approximation on model climate. We apply the “Tripleclouds” scheme for representing horizontal cloud inhomogeneity and “exponential-random” overlap, both separately and in combination, in place of a traditional plane-parallel representation with maximum-random overlap, to the clouds within the radiation scheme. The resulting changes to both the radiation budget and other meteorological variables, averaged over the 20?years, are compared. The combined global effect of the parameterizations on top-of-atmosphere short-wave and long-wave radiation budget is less than 1?W?m?2, but changes of up to 10?W?m?2 are identified in marine stratocumulus regions. A cooling near the surface over the winter polar regions of up to 3°C is also identified when horizontal cloud inhomogeneity is represented, and a warming of similar magnitude is found when exponential-random overlap is implemented. Corresponding changes of the same sign are also found in zonally averaged temperature, with maximum changes in the upper tropical troposphere of up to 0.5°C. Changes in zonally averaged cloud fraction in this location were of opposite sign and up to 0.02. The individual effects on tropospheric temperature of improving the two components of cloud structure are of similar magnitudes to about 2% of the warming created by a quadrupling of carbon dioxide.  相似文献   

18.
Tropical disturbances in a GCM   总被引:7,自引:0,他引:7  
We have analyzed the tropical disturbances in a 11-layer atmospheric general circulation model (GCM) on a 2.5° × 3.75° horizontal grid coupled to a 50 m-mixed layer ocean. Due to the coarse resolution, the GCM is unable to resolve adequately tropical cyclones. The tropical disturbances simulated by the GCM are much weaker and have a much larger horizontal extent. However, they still display much of the essential physics of tropical cyclones, including low-level convergence of mass and moisture, upper tropospheric outflow and a warm core. For most ocean basins the spatial and temporal distribution of the simulated tropical disturbances compares well with the observed tropical cyclones. On doubling the CO2 concentration, the number of simulated tropical disturbances increases by about 50%. There is a relative increase in the number of more intense tropical disturbances, whose maximum windspeed increases by about 20%. This agrees with the theoretical estimate of Emanuel. However, because the low-resolution of the GCM severely restricts their maximum possible intensity, simulated changes in tropical disturbance intensity should be interpreted cautiously.  相似文献   

19.
The effects of sea surface temperature (SST), radiation, cloud microphysics, and diurnal variations on the vertical structure of tropical tropospheric temperature are investigated by analyzing 10 two-dimensional equilibrium cloud-resolving model simulation data. The increase of SST, exclusion of diurnal variation of SST, and inclusion of diurnal variation of solar zenith angle, radiative effects of ice clouds, and ice microphysics could lead to tropical tropospheric warming and increase of tropopause height. The increase of SST and the suppression of its diurnal variation enhance the warming in the lower and upper troposphere, respectively, through increasing latent heat and decreasing IR cooling. The inclusion of diurnal variation of solar zenith angle increases the tropospheric warming through increasing solar heating. The inclusion of cloud radiative effects increases tropospheric warming through suppressing IR cooling in the mid and lower troposphere and enhancing solar heating in the upper troposphere. The inclusion of ice microphysics barely increases warming in the mid and lower troposphere because the warming from ice radiative effects is nearly offset by the cooling from ice microphysical effects, whereas it causes the large warming enhancement in the upper troposphere due to the dominance of ice radiative effects. The tropopause height is increased mainly through the large enhancement of IR cooling.  相似文献   

20.
华北两次副高边缘暴雨过程卫星云图释用   总被引:1,自引:0,他引:1  
郭锐  付宗钰 《气象科技》2013,41(6):1095-1100
利用实况探空资料与FY 2C、2E卫星探测资料,对2005年8月16日、2010年8月20—21日两次西太副高与西风槽共同作用下出现的华北暴雨过程进行分析,将两次过程卫星云图与各种物理要素场的配置进行对比,得到以下结果。两次过程云系均表现为典型的锋面云系特征,靠近冷空气一侧云带边界光滑整齐。从结构上看,锋面云带主要由多层云系组成。整个云系位于高空槽前580 dagpm线与副高外围588 dagpm线之间;降水云带由对流云团、稳定性降水云带及混合性降水云带3部分组成,对流云团集中发展在云带靠近副高边缘晴空区一侧,通常位于在584 dagpm线与588 dagpm线之间靠近副高一侧;稳定性降水集中高空槽前,即云带后部,580 dagpm线与584 dagpm线之间;混合性降水位于两个云系之间,多产生于584 dagpm线附近。云系的分布与各层的垂直速度场、涡度场、散度场,以及中高层的涡度平流场有很好的对应关系。比湿通量、比湿通量散度与假相当位温等温湿参量的分布特征,清楚的解释了锋面云带的移动、发展和分布特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号